메뉴 건너뛰기




Volumn 37, Issue 7, 2016, Pages 1671-1691

A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; IMAGE SEGMENTATION; NEURAL NETWORKS; REMOTE SENSING;

EID: 84962719370     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1159745     Document Type: Article
Times cited : (34)

References (48)
  • 2
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation
    • M.Baatz,, and A.Schäpe. 2000. “Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation.” In Angewandte Geographische Informationsverarbeitung XII, edited by J. Strobl and T. Blaschke, 12–23. Heidelberg: Wichmann Verlag.
    • (2000) Angewandte Geographische Informationsverarbeitung , vol.XII
    • Baatz, M.1    Schäpe, A.2
  • 5
    • 63949083045 scopus 로고    scopus 로고
    • Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors
    • G.Chander,, B.Markham, and D.Helder. 2009. “Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors.” Remote Sensing of Environment 113 (5): 893–903. doi:10.1016/j.rse.2009.01.007.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.5 , pp. 893-903
    • Chander, G.1    Markham, B.2    Helder, D.3
  • 6
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
    • X.Chen,, S.Xiang, C.Liu, and C.Pan. 2014. “Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks.” IEEE Geoscience and Remote Sensing Letters 11 (10): 1797–1801. doi:10.1109/LGRS.2014.2309695.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.3    Pan, C.4
  • 11
    • 0141885057 scopus 로고    scopus 로고
    • A Tree-Structured Markov Random Field Model for Bayesian Image Segmentation
    • C.D’Elia,, G.Poggi, and G.Scarpa. 2003. “A Tree-Structured Markov Random Field Model for Bayesian Image Segmentation.” IEEE Transactions on Image Processing 12 (10): 1259–1273. doi:10.1109/TIP.2003.817257.
    • (2003) IEEE Transactions on Image Processing , vol.12 , Issue.10 , pp. 1259-1273
    • D’Elia, C.1    Poggi, G.2    Scarpa, G.3
  • 14
    • 84939141053 scopus 로고    scopus 로고
    • Deep Convolutional Neural Networks for Hyperspectral Image Classification
    • W.Hu,, Y.Huang, L.Wei, F.Zhang, and H.Li. 2015. “Deep Convolutional Neural Networks for Hyperspectral Image Classification.” Journal of Sensors 2015: 1–12. doi:10.1155/2015/258619.
    • (2015) Journal of Sensors , vol.2015 , pp. 1-12
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 15
    • 84880310932 scopus 로고    scopus 로고
    • A Spatially-Constrained Color–Texture Model for Hierarchical VHR Image Segmentation
    • Z.Hu,, Z.Wu, Q.Zhang, Q.Fan, and J.Xu. 2013. “A Spatially-Constrained Color–Texture Model for Hierarchical VHR Image Segmentation.” IEEE Geoscience and Remote Sensing Letters 10 (1): 120–124. doi:10.1109/LGRS.2012.2194693.
    • (2013) IEEE Geoscience and Remote Sensing Letters , vol.10 , Issue.1 , pp. 120-124
    • Hu, Z.1    Wu, Z.2    Zhang, Q.3    Fan, Q.4    Xu, J.5
  • 17
    • 77956942046 scopus 로고    scopus 로고
    • Segmenting Clustered Nuclei Using H-Minima Transform-Based Marker Extraction and Contour Parameterization
    • C.Jung,, and C.Kim. 2010. “Segmenting Clustered Nuclei Using H-Minima Transform-Based Marker Extraction and Contour Parameterization.” IEEE Transactions on Biomedical Engineering 57 (10): 2600–2604. doi:10.1109/TBME.2010.2060336.
    • (2010) IEEE Transactions on Biomedical Engineering , vol.57 , Issue.10 , pp. 2600-2604
    • Jung, C.1    Kim, C.2
  • 18
    • 79952074186 scopus 로고    scopus 로고
    • Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery
    • S.Kim,, W.Lee, D.Kwak, G.Biging, P.Gong, J.Lee, and H.Cho. 2011. “Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery.” Sensors 11 (12): 1943–1958. doi:10.3390/s110201943.
    • (2011) Sensors , vol.11 , Issue.12 , pp. 1943-1958
    • Kim, S.1    Lee, W.2    Kwak, D.3    Biging, G.4    Gong, P.5    Lee, J.6    Cho, H.7
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • A.Krizhevsky,, I.Sutskever, and G.Hinton. 2012. “Imagenet Classification with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, Vol. 25, edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, 1097–1105. Pahrump, NV: Curran Associates, Inc.
    • (2012)
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 20
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-Based Learning Applied to Document Recognition
    • Y.Lecun,, L.Bottou, Y.Bengio, and P.Haffner. 1998. “Gradient-Based Learning Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324. doi:10.1109/5.726791.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 34548334676 scopus 로고    scopus 로고
    • Parallel Fine Spatial Resolution Satellite Sensor Image Segmentation Based on an Improved Pulse-Coupled Neural Network
    • L.Li,, J.Ma, and Q.Wen. 2007. “Parallel Fine Spatial Resolution Satellite Sensor Image Segmentation Based on an Improved Pulse-Coupled Neural Network.” International Journal of Remote Sensing 28 (18): 4191–4198. doi:10.1080/01431160701442047.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.18 , pp. 4191-4198
    • Li, L.1    Ma, J.2    Wen, Q.3
  • 24
    • 80052153041 scopus 로고    scopus 로고
    • Enhanced Evaluation of Image Segmentation Results
    • P.Marpu,, M.Neubert, H.Herold, and I.Niemeyer. 2010. “Enhanced Evaluation of Image Segmentation Results.” Journal of Spatial Science 55 (1): 55–68. doi:10.1080/14498596.2010.487850.
    • (2010) Journal of Spatial Science , vol.55 , Issue.1 , pp. 55-68
    • Marpu, P.1    Neubert, M.2    Herold, H.3    Niemeyer, I.4
  • 27
    • 79952070569 scopus 로고    scopus 로고
    • Per-Pixel Vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery
    • S.Myint,, P.Gober, A.Brazel, S.Grossman-Clarke, and Q.Weng. 2011. “Per-Pixel Vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery.” Remote Sensing of Environment 115 (5): 1145–1161. doi:10.1016/j.rse.2010.12.017.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.5 , pp. 1145-1161
    • Myint, S.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5
  • 28
    • 84856742245 scopus 로고    scopus 로고
    • Machine Learning Comparison between Worldview-2 and Quickbird-2 Simulated Imagery regarding Object-Based Urban Land Cover Classification
    • T.Novack,, T.Esch, H.Kux, and U.Stilla. 2011. “Machine Learning Comparison between Worldview-2 and Quickbird-2 Simulated Imagery regarding Object-Based Urban Land Cover Classification.” Remote Sensing 3 (12): 2263–2282. doi:10.3390/rs3102263.
    • (2011) Remote Sensing , vol.3 , Issue.12 , pp. 2263-2282
    • Novack, T.1    Esch, T.2    Kux, H.3    Stilla, U.4
  • 31
    • 0033886791 scopus 로고    scopus 로고
    • Binary Partition Tree as an Efficient Representation for Image Processing, Segmentation, and Information Retrieval
    • P.Salembier,, and L.Garrido. 2000. “Binary Partition Tree as an Efficient Representation for Image Processing, Segmentation, and Information Retrieval.” IEEE Transactions on Image Processing 9 (4): 561–576. doi:10.1109/83.841934.
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.4 , pp. 561-576
    • Salembier, P.1    Garrido, L.2
  • 32
    • 84884727061 scopus 로고    scopus 로고
    • Dynamic Hierarchical Segmentation of Remote Sensing Images
    • Petrosino A., (ed), Berlin: Springer
    • G.Scarpa,, G.Masi, R.Gaetano, L.Verdoliva, and G.Poggi. 2013. “Dynamic Hierarchical Segmentation of Remote Sensing Images.” In Image Analysis and Processing, edited by A.Petrosino, no. 8156 In Lecture Notes in Computer Science, 371–380. Berlin: Springer. doi:10.1007/978-3-642-41181-6_38.
    • (2013) Image Analysis and Processing , pp. 371-380
    • Scarpa, G.1    Masi, G.2    Gaetano, R.3    Verdoliva, L.4    Poggi, G.5
  • 33
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
    • Diamantaras K., Duch W., Iliadis L., (eds), Berlin: Springer
    • D.Scherer,, A.Müller, and S.Behnke. 2010. “Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition.” In Artificial Neural Networks, edited by K.Diamantaras, W.Duch, and L.Iliadis, no. 6354 In Lecture Notes in Computer Science, 92–101. Berlin: Springer. doi:10.1007/978-3-642-15825-4_10.
    • (2010) Artificial Neural Networks , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 37
    • 84886905535 scopus 로고    scopus 로고
    • Extraction and Segmentation of Sputum Cells for Lung Cancer Early Diagnosis
    • F.Taher,, N.Werghi, H.Al-Ahmad, and C.Donner. 2013. “Extraction and Segmentation of Sputum Cells for Lung Cancer Early Diagnosis.” Algorithms 6 (3): 512–531. doi:10.3390/a6030512.
    • (2013) Algorithms , vol.6 , Issue.3 , pp. 512-531
    • Taher, F.1    Werghi, N.2    Al-Ahmad, H.3    Donner, C.4
  • 39
    • 84869505872 scopus 로고    scopus 로고
    • Best Merge Region-Growing Segmentation with Integrated Nonadjacent Region Object Aggregation
    • J.Tilton,, Y.Tarabalka, P.Montesano, and E.Gofman. 2012. “Best Merge Region-Growing Segmentation with Integrated Nonadjacent Region Object Aggregation.” IEEE Transactions on Geoscience and Remote Sensing 50 (11): 4454–4467. doi:10.1109/TGRS.2012.2190079.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.11 , pp. 4454-4467
    • Tilton, J.1    Tarabalka, Y.2    Montesano, P.3    Gofman, E.4
  • 40
    • 40049090853 scopus 로고    scopus 로고
    • Using Colour, Texture, and Hierarchial Segmentation for High-Resolution Remote Sensing
    • R.Trias-Sanz,, G.Stamon, and J.Louchet. 2008. “Using Colour, Texture, and Hierarchial Segmentation for High-Resolution Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (2): 156–168. doi:10.1016/j.isprsjprs.2007.08.005.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , Issue.2 , pp. 156-168
    • Trias-Sanz, R.1    Stamon, G.2    Louchet, J.3
  • 44
    • 48849109176 scopus 로고    scopus 로고
    • Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN
    • Q.Weng,, and X.Hu. 2008. “Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN.” IEEE Transactions on Geoscience and Remote Sensing 46 (8): 2397–2406. doi:10.1109/TGRS.2008.917601.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.8 , pp. 2397-2406
    • Weng, Q.1    Hu, X.2
  • 45
    • 84939541134 scopus 로고    scopus 로고
    • Towards Dropout Training for Convolutional Neural Networks
    • H.Wu,, and X.Gu. 2015. “Towards Dropout Training for Convolutional Neural Networks.” Neural Networks 71: 1–10. doi:10.1016/j.neunet.2015.07.007.
    • (2015) Neural Networks , vol.71 , pp. 1-10
    • Wu, H.1    Gu, X.2
  • 46
    • 84962709373 scopus 로고    scopus 로고
    • Segmentation-Based Image Processing System
    • J.Xiaoying, 2007. “Segmentation-Based Image Processing System.” US Patent 2009/0123070A1, filed November 17. http://patentimages.storage.googleapis.com/pdfs/US20090123070.pdf
    • (2007) US Patent 2009/0123070A1
    • Xiaoying, J.1
  • 47
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks
    • J.Yue,, W.Zhao, S.Mao, and H.Liu. 2015. “Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks.” Remote Sensing Letters 6 (6): 468–477. doi:10.1080/2150704X.2015.1047045.
    • (2015) Remote Sensing Letters , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 48
    • 84921492033 scopus 로고    scopus 로고
    • Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation
    • W.Zhang,, R.Li, H.Deng, L.Wang, W.Lin, S.Ji, and D.Shen. 2015. “Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation.” NeuroImage 108: 214–224. doi:10.1016/j.neuroimage.2014.12.061.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.