메뉴 건너뛰기




Volumn 1, Issue 2, 2013, Pages 6-36

Hyperspectral remote sensing data analysis and future challenges

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; DEGRADATION; PARAMETER ESTIMATION; REMOTE SENSING;

EID: 84888349041     PISSN: 24732397     EISSN: 21686831     Source Type: Journal    
DOI: 10.1109/MGRS.2013.2244672     Document Type: Review
Times cited : (1819)

References (187)
  • 4
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • June
    • A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science, Vol. 228, no. 4704, pp. 1147-1153, June 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.F.H.1    Vane, G.2    Solomon, J.E.3    Rock, B.N.4
  • 7
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • June
    • M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, "Automated hyperspectral cueing for civilian search and rescue," Proc. IEEE, Vol. 97, no. 6, pp. 1031-1055, June 2009.
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.T.1    Stocker, A.D.2    Nasrabadi, N.M.3
  • 10
    • 0142059968 scopus 로고    scopus 로고
    • Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models
    • W. Verhoef and H. Bach, "Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models," Remote Sens. Environ., Vol. 87, no. 1, pp. 23-41, 2003.
    • (2003) Remote Sens. Environ. , vol.87 , Issue.1 , pp. 23-41
    • Verhoef, W.1    Bach, H.2
  • 11
    • 84905919357 scopus 로고    scopus 로고
    • Technical committees corner: International spaceborne imaging spectroscopy (ISIS) technical committee
    • K. Staenz, A. Mueller, A. Held, and U. Heiden, "Technical committees corner: International spaceborne imaging spectroscopy (ISIS) technical committee," IEEE Geosci. Remote Sensing Newsletter, no. 165, pp. 38-42, 2012.
    • (2012) IEEE Geosci. Remote Sensing Newsletter , Issue.165 , pp. 38-42
    • Staenz, K.1    Mueller, A.2    Held, A.3    Heiden, U.4
  • 12
    • 85032752191 scopus 로고    scopus 로고
    • Parallel hyperspectral image and signal processing
    • A. Plaza, J. Plaza, A. Paz, and S. Sánchez, "Parallel hyperspectral image and signal processing," IEEE Signal Processing Mag, Vol. 28, no. 3, pp. 119-126, 2011.
    • (2011) IEEE Signal Processing Mag , vol.28 , Issue.3 , pp. 119-126
    • Plaza, A.1    Plaza, J.2    Paz, A.3    Sánchez, S.4
  • 13
    • 85003776280 scopus 로고    scopus 로고
    • The promise of reconfigurable computing for hyperspectral imaging on-board systems: Review and trends
    • to be published
    • S. López, T. Vladimirova, C. Gónzalez, J. Resano, D. Mozos, and A. Plaza, "The promise of reconfigurable computing for hyperspectral imaging on-board systems: Review and trends," Proc. IEEE, to be published.
    • Proc. IEEE
    • López, S.1    Vladimirova, T.2    Gónzalez, C.3    Resano, J.4    Mozos, D.5    Plaza, A.6
  • 14
    • 84871030144 scopus 로고    scopus 로고
    • ESA's roadmap for next generation payload data processors
    • R. Trautner. (2011). ESA's roadmap for next generation payload data processors. presented at DASIA Conf. [Online]. 1. Available: http://www.esa.int/TEC/OBDP/
    • (2011) DASIA Conf. , pp. 1
    • Trautner, R.1
  • 15
    • 85179379091 scopus 로고    scopus 로고
    • Special issue on high performance computing for hyperspectral imaging
    • Special Issue on High Performance Computing for Hyperspectral Imaging, Int. J. High Perform. Comput., Vol. 4, no. 3, pp. 528-544, 2011.
    • (2011) Int. J. High Perform. Comput. , vol.4 , Issue.3 , pp. 528-544
  • 16
    • 70349907462 scopus 로고    scopus 로고
    • Special issue on architectures and techniques for real-time processing of remotely sensed images
    • Special Issue on Architectures and Techniques for Real-Time Processing of Remotely Sensed Images, J. Real-Time Image Processing, Vol. 4, no. 3, pp. 191-193, 2009.
    • (2009) J. Real-Time Image Processing , vol.4 , Issue.3 , pp. 191-193
  • 17
    • 84867063792 scopus 로고    scopus 로고
    • Hyperspectral image denoising employing a spectral-spatial adaptive total variation model
    • Q. Yuan, L. Zhang, and H. Shen, "Hyperspectral image denoising employing a spectral-spatial adaptive total variation model," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 10 Pt 1, pp. 3660-3677, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.10 , pp. 3660-3677
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 18
    • 84867090591 scopus 로고    scopus 로고
    • Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis
    • X. Liu, S. Bourennane, and C. Fossati, "Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 10 Pt 1, pp. 3717-3724, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.10 , pp. 3717-3724
    • Liu, X.1    Bourennane, S.2    Fossati, C.3
  • 20
    • 27844498673 scopus 로고    scopus 로고
    • Design goals and solutions for display of hyperspectral images
    • Nov.
    • N. Jacobson and M. Gupta, "Design goals and solutions for display of hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 43, no. 11, pp. 2684-2692, Nov. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.11 , pp. 2684-2692
    • Jacobson, N.1    Gupta, M.2
  • 21
    • 80052310457 scopus 로고    scopus 로고
    • Enhanced visualization of hyperspectral images
    • Z. Mahmood and P. Scheunders, "Enhanced visualization of hyperspectral images," IEEE Geosci. Remote Sensing Lett., Vol. 8, no. 5, pp. 869-873, 2011.
    • (2011) IEEE Geosci. Remote Sensing Lett. , vol.8 , Issue.5 , pp. 869-873
    • Mahmood, Z.1    Scheunders, P.2
  • 22
    • 84856318064 scopus 로고    scopus 로고
    • A bicriteria optimization approach based dimensionality reduction model for the color display of hyperspectral images
    • M. Mignotte, "A bicriteria optimization approach based dimensionality reduction model for the color display of hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 2, pp. 501-513, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.2 , pp. 501-513
    • Mignotte, M.1
  • 23
  • 24
    • 27844467218 scopus 로고    scopus 로고
    • Super-resolution reconstruction of hyperspectral images
    • T. Akgun, Y. Altunbasak, and R. Mersereau, "Super-resolution reconstruction of hyperspectral images," IEEE Trans. Image Processing, Vol. 14, no. 11, pp. 1860-1875, 2005.
    • (2005) IEEE Trans. Image Processing , vol.14 , Issue.11 , pp. 1860-1875
    • Akgun, T.1    Altunbasak, Y.2    Mersereau, R.3
  • 25
    • 77952582332 scopus 로고    scopus 로고
    • Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model
    • J. C.-W. Chan, J. Ma, P. Kempeneers, and F. Canters, "Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model," IEEE Trans. Geosci. Remote Sensing, Vol. 48, no. 6, pp. 2569-2579, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.6 , pp. 2569-2579
    • Chan, J.C.-W.1    Ma, J.2    Kempeneers, P.3    Canters, F.4
  • 26
    • 84862823369 scopus 로고    scopus 로고
    • A super-resolution reconstruction algorithm for hyperspectral images
    • H. Zhang, L. Zhang, and H. Shen, "A super-resolution reconstruction algorithm for hyperspectral images," Signal Processing, Vol. 92, no. 9, pp. 2082-2096, 2012.
    • (2012) Signal Processing , vol.92 , Issue.9 , pp. 2082-2096
    • Zhang, H.1    Zhang, L.2    Shen, H.3
  • 27
    • 84870418950 scopus 로고    scopus 로고
    • Enhancing spatial resolution of hyperspectral imagery using sensor's intrinsic keystone distortion
    • S. Qian and G. Chen, "Enhancing spatial resolution of hyperspectral imagery using sensor's intrinsic keystone distortion," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 12, pp. 5033-5048, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.12 , pp. 5033-5048
    • Qian, S.1    Chen, G.2
  • 28
    • 33747012780 scopus 로고    scopus 로고
    • A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models
    • K. C. Mertens, B. De Baets, L. P. C. Verbeke, and R. R. De Wulf, "A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models," Int. J. Remote Sens., Vol. 27, no. 15, pp. 3293-3310, 2006.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.15 , pp. 3293-3310
    • Mertens, K.C.1    De Baets, B.2    Verbeke, L.P.C.3    De Wulf, R.R.4
  • 29
    • 53349129867 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for resolution enhancement in hyperspectral images
    • Y. Gu, Y. Zhang, and J. Zhang, "Integration of spatial-spectral information for resolution enhancement in hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 46, no. 5, pp. 1347-1358, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.5 , pp. 1347-1358
    • Gu, Y.1    Zhang, Y.2    Zhang, J.3
  • 30
    • 79959741708 scopus 로고    scopus 로고
    • Enhanced self-training superresolution mapping technique for hyperspectral imagery
    • F. A. Mianji, Y. Gu, Y. Zhang, and J. Zhang, "Enhanced self-training superresolution mapping technique for hyperspectral imagery," IEEE Geosci. Remote Sensing Letters, Vol. 8, no. 4, pp. 671-675, 2011.
    • (2011) IEEE Geosci. Remote Sensing Letters , vol.8 , Issue.4 , pp. 671-675
    • Mianji, F.A.1    Gu, Y.2    Zhang, Y.3    Zhang, J.4
  • 32
    • 70350662759 scopus 로고    scopus 로고
    • Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images
    • Y. Zhang, S. De Backer, and P. Scheunders, "Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 47, no. 11, pp. 3834-3843, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.11 , pp. 3834-3843
    • Zhang, Y.1    De Backer, S.2    Scheunders, P.3
  • 33
    • 84865678680 scopus 로고    scopus 로고
    • A Bayesian restoration approach for hyperspectral images
    • Y. Zhang, A. Duijster, and P. Scheunders, "A Bayesian restoration approach for hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 9, pp. 3453-3462, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.9 , pp. 3453-3462
    • Zhang, Y.1    Duijster, A.2    Scheunders, P.3
  • 35
    • 84856329450 scopus 로고    scopus 로고
    • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
    • N. Yokoya, T. Yairi, and A. Iwasaki, "Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 2, pp. 528-537, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.2 , pp. 528-537
    • Yokoya, N.1    Yairi, T.2    Iwasaki, A.3
  • 36
    • 64149115077 scopus 로고    scopus 로고
    • Superresolution construction of multispectral imagery based on local enhancement
    • M. Elbakary and M. Alam, "Superresolution construction of multispectral imagery based on local enhancement," IEEE Geosci. Remote Sensing Lett., Vol. 5, no. 2, pp. 276-279, 2008.
    • (2008) IEEE Geosci. Remote Sensing Lett. , vol.5 , Issue.2 , pp. 276-279
    • Elbakary, M.1    Alam, M.2
  • 37
    • 53349176951 scopus 로고    scopus 로고
    • Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics
    • C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, "Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics," IEEE Trans. Geosci. Remote Sensing, Vol. 46, no. 5, pp. 1301-1312, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.5 , pp. 1301-1312
    • Thomas, C.1    Ranchin, T.2    Wald, L.3    Chanussot, J.4
  • 38
    • 84867328371 scopus 로고    scopus 로고
    • A novel approach to quantitative evaluation of hyperspectral image fusion techniques
    • K. Kotwal and S. Chaudhuri, "A novel approach to quantitative evaluation of hyperspectral image fusion techniques," Inform. Fusion, Vol. 14, no. 1, pp. 5-18, 2013.
    • (2013) Inform. Fusion , vol.14 , Issue.1 , pp. 5-18
    • Kotwal, K.1    Chaudhuri, S.2
  • 40
    • 0001473286 scopus 로고
    • Bidirection reflectance spectroscopy. I. Theory
    • B. Hapke, "Bidirection reflectance spectroscopy. I. Theory," J. Geophys. Res., Vol. 86, pp. 3039-3054, 1981.
    • (1981) J. Geophys. Res. , vol.86 , pp. 3039-3054
    • Hapke, B.1
  • 41
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • M. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sensing, Vol. 32, pp. 542-552, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sensing , vol.32 , pp. 542-552
    • Craig, M.1
  • 42
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • J. Nascimento and J. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data?" IEEE Trans. Geosci. Remote Sensing, Vol. 43, no. 1, pp. 175-187, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 43
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Ann. JPL Airborne Geoscience Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Ann. JPL Airborne Geoscience Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 44
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sensing, Vol. 43, no. 4, pp. 898-910, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 45
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • C.-I. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sensing, Vol. 44, no. 10, pp. 2804-2819, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sensing , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.3    Ouyang, Y.-C.4
  • 46
  • 48
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end member determination in hyperspectral data," in Proc. SPIE Image Spectrometry V, 1999, vol. 3753, pp. 266-277.
    • (1999) Proc. SPIE Image Spectrometry V , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 51
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sensing, Vol. 45, no. 3, pp. 765-777, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 52
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection for hyperspectral imagery
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection for hyperspectral imagery," IEEE Geosci. Remote Sensing Lett., Vol. 4, no. 3, pp. 446-450, 2007.
    • (2007) IEEE Geosci. Remote Sensing Lett. , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 54
    • 70350488509 scopus 로고    scopus 로고
    • Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. Chan, C. Chi, Y., Huang, and W. Ma, "Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Processing, Vol. 57, no. 11, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 55
    • 67651111832 scopus 로고    scopus 로고
    • Bayesian separation of spectral sources under non-negativity and full additivity constraints
    • Dec.
    • N. Dobigeon, S. Moussaoui, J.-Y. Tourneret, and C. Carteret, "Bayesian separation of spectral sources under non-negativity and full additivity constraints," Signal Process., Vol. 89, no. 12, pp. 2657-2669, Dec. 2009.
    • (2009) Signal Process , vol.89 , Issue.12 , pp. 2657-2669
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.-Y.3    Carteret, C.4
  • 56
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of dirichlet components
    • J. Nascimento and J. Bioucas-Dias, "Hyperspectral unmixing based on mixtures of Dirichlet components," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 3, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.3
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 59
    • 0000187025 scopus 로고
    • Quantitative abundance estimates from bidirectional reflectance measurements
    • J. Mustard and C. Pieters, "Quantitative abundance estimates from bidirectional reflectance measurements," J. Geophys. Res., Vol. 92, pp. E617-E626, 1987
    • (1987) J. Geophys. Res. , vol.92 , pp. E617-E626
    • Mustard, J.1    Pieters, C.2
  • 60
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • Nov.
    • A. Halimi, Y Altmann, N. Dobigeon, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using a generalized bilinear model," IEEE Trans. Geosci. Remote Sensing, no. 11, pp. 4153-4162, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altmann, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 62
    • 84872100099 scopus 로고    scopus 로고
    • Recent developments in spectral unmixing and endmember extraction
    • S. Prasad, L. M. Bruce, and J. Chanussot, Eds. Berlin, Germany: Springer-Verlag ch. 12
    • A. Plaza, G. Martin, J. Plaza, M. Zortea, and S. Sánchez, "Recent developments in spectral unmixing and endmember extraction," in Optical Remote Sensing, S. Prasad, L. M. Bruce, and J. Chanussot, Eds. Berlin, Germany: Springer-Verlag, 2011, ch. 12, pp. 235-267.
    • (2011) Optical Remote Sensing , pp. 235-267
    • Plaza, A.1    Martin, G.2    Plaza, J.3    Zortea, M.4    Sánchez, S.5
  • 63
    • 84861144324 scopus 로고    scopus 로고
    • Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery
    • Y. Altmann, A. Halimi, N. Dobigeon, and J.-Y. Tourneret, "Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery," IEEE Trans. Image Processing, Vol. 21, no. 6, pp. 3017-3025, 2012.
    • (2012) IEEE Trans. Image Processing , vol.21 , Issue.6 , pp. 3017-3025
    • Altmann, Y.1    Halimi, A.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 64
    • 84861197539 scopus 로고    scopus 로고
    • Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model
    • R. Heylen and P. Scheunders, "Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model," IEEE Geosci. Remote Sensing Lett., Vol. 9, no. 4, pp. 644-648, 2012.
    • (2012) IEEE Geosci. Remote Sensing Lett. , vol.9 , Issue.4 , pp. 644-648
    • Heylen, R.1    Scheunders, P.2
  • 66
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. Candès, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, no. 8, pp. 1207-1223, 2006.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 67
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput., Vol. 24, no. 2, pp. 227-234, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.1
  • 69
    • 34249687049 scopus 로고    scopus 로고
    • Sparsity and incoherence in compressive sampling
    • E. Candès and J. J. Romberg, "Sparsity and incoherence in compressive sampling," IEEE Trans. Image Processing, Vol. 23, pp. 969-985, 2007
    • (2007) IEEE Trans. Image Processing , vol.23 , pp. 969-985
    • Candès, E.1    Romberg, J.J.2
  • 71
    • 80555129671 scopus 로고    scopus 로고
    • Convex and network flow optimization for structured sparsity
    • J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, "Convex and network flow optimization for structured sparsity," J. Mach. Learn. Res., Vol. 12, pp. 2681-2720, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2681-2720
    • Mairal, J.1    Jenatton, R.2    Obozinski, G.3    Bach, F.4
  • 72
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 73
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I. Greedy pursuit
    • J. Tropp, A. Gilbert, and M. Strauss, "Algorithms for simultaneous sparse approximation. Part I. Greedy pursuit," Signal Process., Vol. 86, no. 3, pp. 572-588, 2006.
    • (2006) Signal Process , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.1    Gilbert, A.2    Strauss, M.3
  • 77
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • A. Green, M. Berman, P. Switzer, and M. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sensing, Vol. 26, pp. 65-74, 1988.
    • (1988) IEEE Trans. Geosci. Remote Sensing , vol.26 , pp. 65-74
    • Green, A.1    Berman, M.2    Switzer, P.3    Craig, M.4
  • 78
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification," IEEE Trans. Geosci. Remote Sensing, Vol. 37, pp. 538-542, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 79
    • 0035391661 scopus 로고    scopus 로고
    • Wavelets for computationally efficient hyperspectral derivative analysis
    • L. Bruce and J. Li, "Wavelets for computationally efficient hyperspectral derivative analysis," IEEE Trans. Geosci. Remote Sensing, Vol. 39, pp. 1540-1546, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , pp. 1540-1546
    • Bruce, L.1    Li, J.2
  • 80
    • 84871993453 scopus 로고    scopus 로고
    • Semisupervised local discriminant analysis for feature extraction in hyperspectral images
    • W. Liao, A. Pizurica, P. Scheunders, W. Philips, and Y. Pi, "Semisupervised local discriminant analysis for feature extraction in hyperspectral images," IEEE Trans. Geosci. Remote Sensing, Vol. 51, pp. 184-198, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , pp. 184-198
    • Liao, W.1    Pizurica, A.2    Scheunders, P.3    Philips, W.4    Pi, Y.5
  • 81
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sensing, Vol. 39, pp. 1368-1379, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 82
    • 0032010537 scopus 로고    scopus 로고
    • Progressive two-class decision classifier for optimization class discriminations
    • X. Jia and J. A. Richards, "Progressive two-class decision classifier for optimization class discriminations," Remote Sens. Environ., Vol. 63, pp. 289-297, 1998.
    • (1998) Remote Sens. Environ. , vol.63 , pp. 289-297
    • Jia, X.1    Richards, J.A.2
  • 84
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sensing, Vol. 47, no. 3, pp. 862-873, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 85
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote-sensing images with support vector machines," IEEE Trans. Geosci. Remote Sensing, Vol. 42, no. 8, pp. 1778-1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 86
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 43, pp. 1351-1362, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 88
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., Vol. 70, no. 5, pp. 627-633, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.1
  • 89
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Statist. Math., Vol. 44, pp. 197-200, 1992.
    • (1992) Ann. Inst. Statist. Math. , vol.44 , pp. 197-200
    • Böhning, D.1
  • 90
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyper-spectral image segmentation using multinomial logistic regression with active learning
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyper-spectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sensing, Vol. 48, pp. 4085-4098, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 91
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 3, pp. 809-823, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 93
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • M. Pesaresi and J. Benediktsson, "A new approach for the morphological segmentation of high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 39, no. 2, pp. 309-320, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.2
  • 94
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • J. Benediktsson, J. Palmason, and J. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sensing, Vol. 43, no. 3, pp. 480-491, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.1    Palmason, J.2    Sveinsson, J.3
  • 95
  • 96
    • 78649843439 scopus 로고    scopus 로고
    • Extended profiles with morphological attribute filters for the analysis of hyperspectral data
    • M. Dalla Mura, J. Atli Benediktsson, B. Waske, and L. Bruzzone, "Extended profiles with morphological attribute filters for the analysis of hyperspectral data," Int. J. Remote Sensing, Vol. 31, no. 22, pp. 5975-5991, 2010.
    • (2010) Int. J. Remote Sensing , vol.31 , Issue.22 , pp. 5975-5991
    • Dalla Mura, M.1    Atli Benediktsson, J.2    Waske, B.3    Bruzzone, L.4
  • 99
    • 77958017904 scopus 로고    scopus 로고
    • SVM- and MRF-based method for accurate classification of hyperspectral images
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, "SVM- and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sensing Lett., Vol. 7, no. 4, pp. 736-74 0, 2010.
    • (2010) IEEE Geosci. Remote Sensing Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.4
  • 100
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., Vol. 43, pp. 2367-2379, 2010.
    • (2010) Pattern Recognit. , vol.43 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 103
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sensing, Vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 104
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Dec.
    • A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G. Sapiro, "Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 49, no. 11, pp. 4263-4281, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.2    Greer, J.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 105
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vector machine
    • F. Bovolo, L. Bruzzone, and L. Carlin, "A novel technique for subpixel image classification based on support vector machine," IEEE Trans. Image Processing, Vol. 19, pp. 2983-2999, 2010.
    • (2010) IEEE Trans. Image Processing , vol.19 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carlin, L.3
  • 106
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remotesensing images
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for the semisupervised classification of remotesensing images," IEEE Trans. Geosci. Remote Sensing, Vol. 11, pp. 3363-3373, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sensing , vol.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 107
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. Bandos, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 45, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 108
    • 65049083029 scopus 로고    scopus 로고
    • Improving hyperspectral image classification using spatial preprocessing
    • S. Velasco-Forero and V. Manian, "Improving hyperspectral image classification using spatial preprocessing," IEEE Geosci. Remote Sensing Lett., Vol. 6, pp. 297-301, 2009.
    • (2009) IEEE Geosci. Remote Sensing Lett. , vol.6 , pp. 297-301
    • Velasco-Forero, S.1    Manian, V.2
  • 109
    • 65049084094 scopus 로고    scopus 로고
    • Semisupervised remote sensing image classification with cluster kernels
    • Apr.
    • D. Tuia and G. Camps-Valls, "Semisupervised remote sensing image classification with cluster kernels," IEEE Geosci. Remote Sensing Lett., Vol. 6, no. 2, pp. 224-228, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sensing Lett. , vol.6 , Issue.2 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 110
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • L. Bruzzone and C. Persello, "A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples," IEEE Trans. Geosci. Remote Sensing, Vol. 47, no. 7, pp. 2142-2154, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 113
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Mar.
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 4, no. 1, pp. 65-74, Mar. 2011.
    • (2011) IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 114
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 115
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • J. Muñoz-Marí, D. Tuia, and G. Camps-Valls, "Semisupervised classification of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 10, pp. 3751-3763, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.10 , pp. 3751-3763
    • Muñoz-Marí, J.1    Tuia, D.2    Camps-Valls, G.3
  • 116
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • June
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Marí, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Select. Topics Signal Processing, Vol. 5, no. 3, pp. 606-617, June 2011.
    • (2011) IEEE J. Select. Topics Signal Processing , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Muñoz-Marí, J.5
  • 117
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Select. Topics Signal Process., Vol. 5, no. 3, pp. 618-628, 2011.
    • (2011) IEEE J. Select. Topics Signal Process , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 118
    • 84858080696 scopus 로고    scopus 로고
    • A batch-mode active learning technique based on multiple uncertainty for SVM classifier
    • May
    • S. Patra and L. Bruzzone, "A batch-mode active learning technique based on multiple uncertainty for SVM classifier," IEEE Geosci. Remote Sensing Lett., Vol. 9, no. 3, pp. 497-501, May 2012.
    • (2012) IEEE Geosci. Remote Sensing Lett. , vol.9 , Issue.3 , pp. 497-501
    • Patra, S.1    Bruzzone, L.2
  • 120
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • L. Ma, M. Crawford, and J. Tian, "Local manifold learning-based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sensing, Vol. 48, no. 11, pp. 4099-4109, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.2    Tian, J.3
  • 121
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel mac Hines
    • W. Kim and M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel mac hines," IEEE Trans. Geosci. Remote Sensing, Vol. 48, no. 11, pp. 4110-4121, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.2
  • 122
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Processing Mag., Vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Processing Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 123
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • July
    • S. Matteoli, M. Diani, and G. Corsini, "A tutorial overview of anomaly detection in hyperspectral images," IEEE Aerospace Elect. Systems Mag., Vol. 25, no. 7, pp. 5-27, July 2010.
    • (2010) IEEE Aerospace Elect. Systems Mag. , vol.25 , Issue.7 , pp. 5-27
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 125
    • 0031374467 scopus 로고    scopus 로고
    • Subclutter target detection using sequences of thermal infrared multispectral imagery
    • A. P. Schaumand A. D. Stocker, "Subclutter target detection using sequences of thermal infrared multispectral imagery," in Proc. SPIE, 1997, vol. 3071, pp. 12-22.
    • (1997) Proc. SPIE , vol.3071 , pp. 12-22
    • Schaum, A.P.1    Stocker, A.D.2
  • 126
    • 85008024035 scopus 로고    scopus 로고
    • Hyperspectral change detection in the presence of diurnal and seasonal variations
    • Jan.
    • M. Eismann, J. Meola, and R. Hardie, "Hyperspectral change detection in the presence of diurnal and seasonal variations," IEEE Trans. Geosci. Remote Sensing, Vol. 46, no. 1, pp. 237-249, Jan. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.1 , pp. 237-249
    • Eismann, M.1    Meola, J.2    Hardie, R.3
  • 127
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • G. Healey and D. Slater, "Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions," IEEE Trans. Geosci. Remote Sensing, Vol. 37, no. 6, pp. 2706-2717, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , Issue.6 , pp. 2706-2717
    • Healey, G.1    Slater, D.2
  • 128
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sensing, Vol. 32, no. 4, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sensing , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.1    Chang, C.-I.2
  • 129
    • 0028485933 scopus 로고
    • Matched subspace detectors
    • L. Scharf and B. Friedlander, "Matched subspace detectors," Signal Process., Vol. 42, no. 8, pp. 2146-2157, 1994.
    • (1994) Signal Process , vol.42 , Issue.8 , pp. 2146-2157
    • Scharf, L.1    Friedlander, B.2
  • 131
    • 0035124109 scopus 로고    scopus 로고
    • Adaptive subspace detectors
    • S. Kraut, L. Scharf, and L. McWhorter, "Adaptive subspace detectors," Signal Process., Vol. 49, no. 1, pp. 208-216, 2001.
    • (2001) Signal Process , vol.49 , Issue.1 , pp. 208-216
    • Kraut, S.1    Scharf, L.2    McWhorter, L.3
  • 133
    • 33846220041 scopus 로고    scopus 로고
    • A comparative analysis of kernel subspace target detectors for hyperspectral imagery
    • H. Kwon and N. Nasrabadi, "A comparative analysis of kernel subspace target detectors for hyperspectral imagery," EURASIP J. Appl. Signal Process., Vol. 2007, no. 1, pp. 193-193, 2007.
    • (2007) EURASIP J. Appl. Signal Process , vol.2007 , Issue.1 , pp. 193
    • Kwon, H.1    Nasrabadi, N.2
  • 134
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust., Speech, Signal Process., Vol. 38, no. 10, pp. 1760-1770, 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Process , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, S.1    Yu, X.2
  • 135
    • 33644530662 scopus 로고    scopus 로고
    • Comparison of anomaly detection methods for hyperspectral imagery
    • Orlando, FL
    • C. Willis, "Comparison of anomaly detection methods for hyperspectral imagery," in Proc. SPIE, Orlando, FL, 2005, vol. 5988, pp. B1-B12.
    • (2005) Proc. SPIE , vol.5988 , pp. B1-B12
    • Willis, C.1
  • 137
    • 0031384963 scopus 로고    scopus 로고
    • Application of stochastic mixing models to the hyperspectral detection problems
    • Orlando, FL
    • A. Stocker and A. Schaum, "Application of stochastic mixing models to the hyperspectral detection problems," in Proc. SPIE, Orlando, FL, 1997, vol. 3071, pp. 47-60.
    • (1997) Proc. SPIE , vol.3071 , pp. 47-60
    • Stocker, A.1    Schaum, A.2
  • 138
    • 0347603473 scopus 로고    scopus 로고
    • Adaptive anomaly detection using subspace separation for hyperspectral images
    • H. Kwon, S. Der, and N. Nasrabadi, "Adaptive anomaly detection using subspace separation for hyperspectral images," Opt. Eng, Vol. 42, no. 11, pp. 3342-3351, 2003.
    • (2003) Opt. Eng , vol.42 , Issue.11 , pp. 3342-3351
    • Kwon, H.1    Der, S.2    Nasrabadi, N.3
  • 139
    • 33746641760 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection within the signal subspace
    • K. Ranney and M. Soumekh, "Hyperspectral anomaly detection within the signal subspace," IEEE Trans. Geosci. Remote Sensing Lett., Vol. 3, no. 3, pp. 312-316, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sensing Lett. , vol.3 , Issue.3 , pp. 312-316
    • Ranney, K.1    Soumekh, M.2
  • 140
    • 0036395066 scopus 로고    scopus 로고
    • Stochastic compositional models applied to sub-pixel analysis of hyperspectral imagery
    • D. Stein, "Stochastic compositional models applied to sub-pixel analysis of hyperspectral imagery," in Proc. SPIE, 2001, vol. 4480, pp. 49-56.
    • (2001) Proc. SPIE , vol.4480 , pp. 49-56
    • Stein, D.1
  • 141
    • 0032027086 scopus 로고    scopus 로고
    • Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier
    • E. Ashton, "Detection of subpixel anomalies in multispectral infrared imagery using an adaptive bayesian classifier," IEEE Trans. Geosci. Remote Sensing, Vol. 36, no. 2, pp. 506-517, 1998.
    • (1998) IEEE Trans. Geosci. Remote Sensing , vol.36 , Issue.2 , pp. 506-517
    • Ashton, E.1
  • 142
    • 0034248248 scopus 로고    scopus 로고
    • Hperspectral imagery: Clutter adaptation in anomaly detection
    • S. Schweizer and J. Moura, "Hperspectral imagery: Clutter adaptation in anomaly detection," IEEE Trans. Inform. Theory, Vol. 46, pp. 1855-1871, 2000.
    • (2000) IEEE Trans. Inform. Theory , vol.46 , pp. 1855-1871
    • Schweizer, S.1    Moura, J.2
  • 143
    • 13144306114 scopus 로고    scopus 로고
    • A cluster-based approach for detecting man-made objects and changes in imagery
    • M. Carlotto, "A cluster-based approach for detecting man-made objects and changes in imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 43, no. 2, pp. 374-387, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.2 , pp. 374-387
    • Carlotto, M.1
  • 144
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • A. Banerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 44, no. 8, pp. 2282-2291, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sensing , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 145
    • 35948987265 scopus 로고    scopus 로고
    • A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
    • Orlando, FL
    • H. Goldberg and N. Nasrabadi, "A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery," in Proc. SPIE, Orlando, FL, 2007, vol. 6497.
    • (2007) Proc. SPIE , vol.6497
    • Goldberg, H.1    Nasrabadi, N.2
  • 146
    • 11244309418 scopus 로고    scopus 로고
    • Joint subspace detection of hyperspectral targets
    • A. Schaum, "Joint subspace detection of hyperspectral targets," in Proc. IEEE Aerospace Conf., 2004, vol. 3.
    • (2004) Proc. IEEE Aerospace Conf. , vol.3
    • Schaum, A.1
  • 149
    • 0034314901 scopus 로고    scopus 로고
    • Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery
    • D. Gu, A. Gillespie, A. Kahle, and F. Palluconi, "Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 38, no. 11, pp. 2557-2570, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , Issue.11 , pp. 2557-2570
    • Gu, D.1    Gillespie, A.2    Kahle, A.3    Palluconi, F.4
  • 150
    • 0033332150 scopus 로고    scopus 로고
    • Improved matched-filter detection techniques
    • Orlando, FL
    • P. Villeneuve, H. Fry, J. Theiler, and W. Clodius, "Improved matched-filter detection techniques," in Proc. SPIE, Orlando, FL, 1999, vol. 3753.
    • (1999) Proc. SPIE , vol.3753
    • Villeneuve, P.1    Fry, H.2    Theiler, J.3    Clodius, W.4
  • 151
    • 66249142802 scopus 로고    scopus 로고
    • Regularized spectral matched filter for target recognition in hyperspectral imagery
    • N. Nasrabadi, "Regularized spectral matched filter for target recognition in hyperspectral imagery," IEEE Trans. Signal Processing Lett., Vol. 15, pp. 317-320, 2008.
    • (2008) IEEE Trans. Signal Processing Lett. , vol.15 , pp. 317-320
    • Nasrabadi, N.1
  • 152
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery
    • Y. Chen, N. Nasrabadi, and T. Tran, "Sparse representation for target detection in hyperspectral imagery," IEEE J. Select. Topics Signal Processing, Vol. 5, no. 3, pp. 629-640, 2011.
    • (2011) IEEE J. Select. Topics Signal Processing , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 153
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • Y. Chen, N. Nasrabadi, and T. Tran, "Simultaneous joint sparsity model for target detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sensing Lett., Vol. 8, no. 4, pp. 676-680, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 154
    • 84890334180 scopus 로고    scopus 로고
    • Kernel sparse representation for hyperspectral target detection
    • Baltimore, MD
    • C. Chen, N. Nasrabadi, and T. Tran, "Kernel sparse representation for hyperspectral target detection," in Proc. SPIE, Baltimore, MD, 2012, vol. 8390.
    • (2012) Proc. SPIE , vol.8390
    • Chen, C.1    Nasrabadi, N.2    Tran, T.3
  • 157
    • 84900657092 scopus 로고    scopus 로고
    • Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems
    • Germany: Springer-Verlag
    • F. Baret and S. Buis, "Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems," in Advances in Land Remote Sensing: System, Modeling, Inversion and Applications. Germany: Springer-Verlag, 2008.
    • (2008) Advances in Land Remote Sensing: System, Modeling, Inversion and Applications
    • Baret, F.1    Buis, S.2
  • 158
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
    • J. Berni, P. Zarco-Tejada, L. Suárez, and E. Fereres, "Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle," IEEE Trans. Geosci. Remote Sensing, Vol. 47, no. 3, pp. 722-738, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.3 , pp. 722-738
    • Berni, J.1    Zarco-Tejada, P.2    Suárez, L.3    Fereres, E.4
  • 159
    • 41249092628 scopus 로고    scopus 로고
    • Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data
    • J. Verrelst, M. Schaepman, B. Koetz, and M. Kneubhler, "Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data," Remote Sens. Environ., Vol. 112, no. 5, pp. 2341-2353, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 2341-2353
    • Verrelst, J.1    Schaepman, M.2    Koetz, B.3    Kneubhler, M.4
  • 161
    • 79960729748 scopus 로고    scopus 로고
    • Improved forest biomass estimates using ALOS AVNIR-2 texture indices
    • L. Sarker and J. Nichol, "Improved forest biomass estimates using ALOS AVNIR-2 texture indices," Remote Sens. Environ., Vol. 115, no. 4, pp. 968-977, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.4 , pp. 968-977
    • Sarker, L.1    Nichol, J.2
  • 162
    • 0042382985 scopus 로고    scopus 로고
    • Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central appalachian mountains using hyperion and AVIRIS
    • June
    • P. Townsend, J. Foster, R. J. Chastain, and W. Currie, "Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS," IEEE Trans. Geosci. Remote Sensing, Vol. 41, no. 6, pp. 1347-1354, June 2003.
    • (2003) IEEE Trans. Geosci. Remote Sensing , vol.41 , Issue.6 , pp. 1347-1354
    • Townsend, P.1    Foster, J.2    Chastain, R.J.3    Currie, W.4
  • 163
    • 53949085760 scopus 로고    scopus 로고
    • Efficient kernel orthonormalized PLS for remote sensing applications
    • Oct.
    • J. Arenas-García and G. Camps-Valls, "Efficient kernel orthonormalized PLS for remote sensing applications," IEEE Trans. Geosci. Remote Sensing, Vol. 46, no. 10, pp. 2872-2881, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.10 , pp. 2872-2881
    • Arenas-García, J.1    Camps-Valls, G.2
  • 164
    • 33746606930 scopus 로고    scopus 로고
    • Robust support vector regression for biophysical variable estimation from remotely sensed images
    • G. Camps-Valls, L. Bruzzone, J. L. Rojo-Álvarez, and F. Melgani, "Robust support vector regression for biophysical variable estimation from remotely sensed images," IEEE Geosci. Remote Sensing Lett., Vol. 3, no. 3, pp. 339-343, 2006.
    • (2006) IEEE Geosci. Remote Sensing Lett. , vol.3 , Issue.3 , pp. 339-343
    • Camps-Valls, G.1    Bruzzone, L.2    Rojo-Álvarez, J.L.3    Melgani, F.4
  • 166
    • 0034478693 scopus 로고    scopus 로고
    • Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode
    • S. Jacquemoud, C. Bacour, H. Poilvé, and J.-P. Frangi, "Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode," Remote Sens. Environ., Vol. 74, no. 3, pp. 471-481, 2000.
    • (2000) Remote Sens. Environ. , vol.74 , Issue.3 , pp. 471-481
    • Jacquemoud, S.1    Bacour, C.2    Poilvé, H.3    Frangi, J.-P.4
  • 167
    • 0033385896 scopus 로고
    • Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data
    • M. Weiss and F. Baret, "Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data," Remote Sens. Environ., Vol. 70, pp. 293-306, 19991.
    • (1991) Remote Sens. Environ. , vol.70 , pp. 293-306
    • Weiss, M.1    Baret, F.2
  • 168
    • 0028995295 scopus 로고
    • The robustness of canopy gap fraction estimates from red and near-infrared reflectance: A comparison of approaches
    • F. Baret, J. Clevers, and M. Steven, "The robustness of canopy gap fraction estimates from red and near-infrared reflectance: A comparison of approaches," Remote Sens. Environ., Vol. 54, pp. 141-151, 1995.
    • (1995) Remote Sens. Environ. , vol.54 , pp. 141-151
    • Baret, F.1    Clevers, J.2    Steven, M.3
  • 169
    • 0030104285 scopus 로고    scopus 로고
    • Remote sensing of forest change using artificial neural networks
    • S. Gopal and C. Woodcock, "Remote sensing of forest change using artificial neural networks," IEEE Trans. Geosci. Remote Sensing, Vol. 34, pp. 398-404, 1996.
    • (1996) IEEE Trans. Geosci. Remote Sensing , vol.34 , pp. 398-404
    • Gopal, S.1    Woodcock, C.2
  • 170
    • 0031431788 scopus 로고    scopus 로고
    • Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements
    • F. Baret and T. Fourty, "Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements," Agronomie, Vol. 17, nos. 9-10, pp. 455-464, 1997.
    • (1997) Agronomie , vol.17 , Issue.9-10 , pp. 455-464
    • Baret, F.1    Fourty, T.2
  • 171
    • 12344289749 scopus 로고    scopus 로고
    • A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies
    • H. Fang and S. Liang, "A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies," Remote Sens. Environ., Vol. 94, no. 3, pp. 405-424, 2005.
    • (2005) Remote Sens. Environ. , vol.94 , Issue.3 , pp. 405-424
    • Fang, H.1    Liang, S.2
  • 172
    • 33751337343 scopus 로고    scopus 로고
    • Neural network estimation of LAI, fAPAR, fCover and LAI#Cab, from top of canopy MERIS reflectance data: Principles and validation
    • C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau, "Neural network estimation of LAI, fAPAR, fCover and LAI#Cab, from top of canopy MERIS reflectance data: Principles and validation," Remote Sens. Environ., Vol. 105, no. 4, pp. 313-325, 2006.
    • (2006) Remote Sens. Environ. , vol.105 , Issue.4 , pp. 313-325
    • Bacour, C.1    Baret, F.2    Béal, D.3    Weiss, M.4    Pavageau, K.5
  • 173
    • 78650885439 scopus 로고    scopus 로고
    • Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations
    • A. Verger, F. Baret, and F. Camacho, "Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations," Remote Sens. Environ., Vol. 115, no. 2, pp. 415-426, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.2 , pp. 415-426
    • Verger, A.1    Baret, F.2    Camacho, F.3
  • 175
    • 33846939265 scopus 로고    scopus 로고
    • Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
    • S. Durbha, R. King, and N. Younan, "Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer," Remote Sens. Environ., Vol. 107, nos. 1-2, pp. 348-361, 2007.
    • (2007) Remote Sens. Environ. , vol.107 , Issue.1-2 , pp. 348-361
    • Durbha, S.1    King, R.2    Younan, N.3
  • 176
    • 40049105739 scopus 로고    scopus 로고
    • An experimental comparison of parallel algorithms for hyperspectral analysis using homogeneous and heterogeneous networks of workstations
    • A. Plaza, D. Valencia, and J. Plaza, "An experimental comparison of parallel algorithms for hyperspectral analysis using homogeneous and heterogeneous networks of workstations," Parallel Compt., Vol. 34, no. 2, pp. 92-114, 2008.
    • (2008) Parallel Compt. , vol.34 , Issue.2 , pp. 92-114
    • Plaza, A.1    Valencia, D.2    Plaza, J.3
  • 177
    • 38349084053 scopus 로고    scopus 로고
    • Cluster versus grid for operation generation of ATCOR's MODTRAN-based look up table
    • J. Brazile, R. A. Neville, K. Staenz, D. Schlaepfer, L. Sun, and K. I. Itten, "Cluster versus grid for operation generation of ATCOR's MODTRAN-based look up table," Parallel Compt., Vol. 34, pp. 32-46, 2008.
    • (2008) Parallel Compt. , vol.34 , pp. 32-46
    • Brazile, J.1    Neville, R.A.2    Staenz, K.3    Schlaepfer, D.4    Sun, L.5    Itten, K.I.6
  • 178
    • 0000950606 scopus 로고    scopus 로고
    • The roles of FPGAS in reprogrammable systems
    • S. Hauck, "The roles of FPGAs in reprogrammable systems," Proc. IEEE, Vol. 86, no. 4, pp. 615-639, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.4 , pp. 615-639
    • Hauck, S.1
  • 179
    • 77951154340 scopus 로고    scopus 로고
    • The GPU computing era
    • J. Nickolls and W. J. Dally, "The GPU computing era," IEEE Micro, Vol. 30, pp. 56-69, 2010.
    • (2010) IEEE Micro , vol.30 , pp. 56-69
    • Nickolls, J.1    Dally, W.J.2
  • 181
    • 34547206554 scopus 로고    scopus 로고
    • Parallel morphological endmember extraction using commodity graphics hardware
    • J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, "Parallel morphological endmember extraction using commodity graphics hardware," IEEE Geosci. Remote Sensing Lett., Vol. 43, no. 3, pp. 441-445, 2007.
    • (2007) IEEE Geosci. Remote Sensing Lett. , vol.43 , Issue.3 , pp. 441-445
    • Setoain, J.1    Prieto, M.2    Tenllado, C.3    Plaza, A.4    Tirado, F.5
  • 182
    • 80051786396 scopus 로고    scopus 로고
    • Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units
    • S. Sánchez, A. Paz, G. Martin, and A. Plaza, "Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units," Concurrency Comput. Pract. Exp., Vol. 23, no. 13, pp. 1538-1557, 2011.
    • (2011) Concurrency Comput. Pract. Exp. , vol.23 , Issue.13 , pp. 1538-1557
    • Sánchez, S.1    Paz, A.2    Martin, G.3    Plaza, A.4
  • 183
    • 70349895901 scopus 로고    scopus 로고
    • Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing
    • Y. Tarabalka, T. V. Haavardsholm, I. Kasen, and T. Skauli, "Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing," J. Real-Time Image Process., Vol. 4, pp. 1-14, 2009.
    • (2009) J. Real-Time Image Process , vol.4 , pp. 1-14
    • Tarabalka, Y.1    Haavardsholm, T.V.2    Kasen, I.3    Skauli, T.4
  • 184
    • 84869502405 scopus 로고    scopus 로고
    • GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis
    • S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, "GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis," IEEE Geosci. Remote Sensing Lett., Vol. 10, no. 2, pp. 221-225, 2013.
    • (2013) IEEE Geosci. Remote Sensing Lett. , vol.10 , Issue.2 , pp. 221-225
    • Bernabe, S.1    Lopez, S.2    Plaza, A.3    Sarmiento, R.4
  • 185
    • 84856354560 scopus 로고    scopus 로고
    • FPGA implementation of the N-FINDR algorithm for remotely sensed hyperspectral image analysis
    • C. González, D. Mozos, J. Resano, and A. Plaza, "FPGA implementation of the N-FINDR algorithm for remotely sensed hyperspectral image analysis," IEEE Trans. Geosci. Remote Sensing, Vol. 50, no. 2, pp. 374-374, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.2 , pp. 374
    • González, C.1    Mozos, D.2    Resano, J.3    Plaza, A.4
  • 186
    • 84857749759 scopus 로고    scopus 로고
    • FPGA implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorit hm
    • C. Gonzalez, J. Resano, A. Plaza, and D. Mozos, "FPGA implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorit hm," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 5, no. 1, pp. 248-261, 2012.
    • (2012) IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing , vol.5 , Issue.1 , pp. 248-261
    • Gonzalez, C.1    Resano, J.2    Plaza, A.3    Mozos, D.4
  • 187
    • 70349903130 scopus 로고    scopus 로고
    • Fast real-time onboard processing of hyperspectral imagery for detection and classification
    • Q. Du and R. Nekovei, "Fast real-time onboard processing of hyperspectral imagery for detection and classification," J. RealTime Image Process., Vol. 4, no. 3, pp. 273-286, 2009.
    • (2009) J. RealTime Image Process , vol.4 , Issue.3 , pp. 273-286
    • Du, Q.1    Nekovei, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.