메뉴 건너뛰기




Volumn 10, Issue 5, 2017, Pages 1975-1986

R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method

Author keywords

Deep learning; hyperspectral image (HSI) classification; limited samples; rolling guidance filter (RGF) and vertex component analysis network (R VCANet)

Indexed keywords

IMAGE CLASSIFICATION; SAMPLING; SPECTROSCOPY;

EID: 85012965527     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2017.2655516     Document Type: Article
Times cited : (177)

References (41)
  • 1
    • 84864414932 scopus 로고    scopus 로고
    • Multi-And hyperspectral geologic remote sensing:A review
    • F. D. V. D. Meer et al., "Multi-A nd hyperspectral geologic remote sensing:A review, " Int. J. Appl. Earth Observ. Geoinf., vol. 14, no. 1, pp. 112-128, 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.14 , Issue.1 , pp. 112-128
    • Meer, F.D.V.D.1
  • 2
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerialsystems for precision agriculture: A review
    • C. Zhang and J. M. Kovacs, "The application of small unmanned aerialsystems for precision agriculture: A review, " Precis. Agriculture, vol. 13, no. 6, pp. 693-712, 2012.
    • (2012) Precis. Agriculture , vol.13 , Issue.6 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 3
    • 84978792776 scopus 로고    scopus 로고
    • A novel spectral-unmixingbasedgreen algae area estimation method for GOCI data
    • Feb.
    • B. Pan, Z. Shi, Z. An., Z. Jiang, "A novel spectral-unmixingbasedgreen algae area estimation method for GOCI data, " IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 2, pp. 437-449, Feb. 2017.
    • (2017) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.10 , Issue.2 , pp. 437-449
    • Pan, B.1    Shi, Z.2    An, Z.3    Jiang, Z.4
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers, "IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 5
    • 84960171676 scopus 로고    scopus 로고
    • Hierarchical discriminativefeature learning for hyperspectral image classification
    • Apr.
    • X. Zhang, Y. Liang, Y. Zheng., J. An, "Hierarchical discriminativefeature learning for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 4, pp. 594-598, Apr. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.4 , pp. 594-598
    • Zhang, X.1    Liang, Y.2    Zheng, Y.3    An, J.4
  • 6
    • 55649122577 scopus 로고    scopus 로고
    • Limitations of principal components analysisfor hyperspectral target recognition
    • Oct.
    • S. Prasad and L. M. Bruce, "Limitations of principal components analysisfor hyperspectral target recognition, " IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 625-629, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 625-629
    • Prasad, S.1    Bruce, L.M.2
  • 7
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifoldcoordinate representations of large-scale hyperspectral scenes
    • Oct.
    • C. M. Bachmann, T. L. Ainsworth., R. A. Fusina, "Improved manifoldcoordinate representations of large-scale hyperspectral scenes, " IEEETrans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEETrans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 8
    • 84863976875 scopus 로고    scopus 로고
    • A discriminative manifold learningbased dimension reduction method for hyperspectral classification
    • B. Du, L. Zhang, T. Chen., K. Wu, "A discriminative manifold learningbased dimension reduction method for hyperspectral classification, " Int. J. Fuzzy Syst., vol. 14, no. 2, pp. 272-277, 2012.
    • (2012) Int. J. Fuzzy Syst. , vol.14 , Issue.2 , pp. 272-277
    • Du, B.1    Zhang, L.2    Chen, T.3    Wu, K.4
  • 9
    • 85027925065 scopus 로고    scopus 로고
    • Band selection using improved sparsesubspace clustering for hyperspectral imagery classification
    • Jun.
    • W. Sun, L. Zhang, B. Du., W. Li, "Band selection using improved sparsesubspace clustering for hyperspectral imagery classification, " IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2784-2797, Jun. 2015.
    • (2015) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2784-2797
    • Sun, W.1    Zhang B Du, L.2    Li, W.3
  • 10
    • 84951310856 scopus 로고    scopus 로고
    • Kernel-based domain-invariant feature selectionin hyperspectral images for transfer learning
    • May
    • C. Persello and L. Bruzzone, "Kernel-based domain-invariant feature selectionin hyperspectral images for transfer learning, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2615-2626, May 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.5 , pp. 2615-2626
    • Persello, C.1    Bruzzone, L.2
  • 11
    • 14644412366 scopus 로고    scopus 로고
    • Classificationof hyperspectral data from urban areas based on extended morphologicalprofiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason., J. R. Sveinsson, "Classificationof hyperspectral data from urban areas based on extended morphologicalprofiles, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 12
    • 84921020001 scopus 로고    scopus 로고
    • A survey onspectral-spatial classification techniques based on attribute profiles
    • May
    • P. Ghamisi, M. D. Mura., J. A. Benediktsson, "A survey onspectral-spatial classification techniques based on attribute profiles, "IEEE Trans. Geosc. Remote Sens., vol. 53, no. 5, pp. 2335-2353, May 2015.
    • (2015) IEEE Trans. Geosc. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 13
    • 84942056672 scopus 로고    scopus 로고
    • A discontinuity preservingrelaxation scheme for spectral-spatial hyperspectral image classification
    • Feb.
    • J. Li, M. Khodadadzadeh, A. Plaza., X. Jia, "A discontinuity preservingrelaxation scheme for spectral-spatial hyperspectral image classification, "IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 625-639, Feb. 2016.
    • (2016) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.9 , Issue.2 , pp. 625-639
    • Li, J.1    Khodadadzadeh, M.2    Plaza, A.3    Jia, X.4
  • 14
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using localand global probabilities for mixed pixel characterization
    • Oct.
    • M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias, andX. Li, "Spectral-spatial classification of hyperspectral data using localand global probabilities for mixed pixel characterization, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6298-6314, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1    Li, J.2    Plaza, A.3    Ghassemian, H.4    Bioucas-Dias, J.M.5    Li, X.6
  • 15
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot., J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images, " inProc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality ofdata with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality ofdata with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classificationwith deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever., G. E. Hinton, "Imagenet classificationwith deep convolutional neural networks, " Adv. Neural Inf. Process. Syst., vol. 25, no. 2, pp. 1097-1105, 2012.
    • (2012) Adv. Neural Inf. Process. Syst. , vol.25 , Issue.2 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data:A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang., B. Du, "Deep learning for remote sensing data:A technical tutorial on the state of the art, " IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 21
    • 84938339675 scopus 로고    scopus 로고
    • Hyperspectral image classification viacontextual deep learning
    • X. Ma, J. Geng., H. Wang, "Hyperspectral image classification viacontextual deep learning, " EURASIP J. Image Video Process., vol. 2015, no. 1, pp. 1-12, 2015.
    • (2015) EURASIP J. Image Video Process. , vol.2015 , Issue.1 , pp. 1-12
    • Ma, X.1    Geng, J.2    Wang, H.3
  • 22
    • 84937140953 scopus 로고    scopus 로고
    • Hyperspectral classification viadeep networks and superpixel segmentation
    • Y. Liu, G. Cao, Q. Sun., M. Siegel, "Hyperspectral classification viadeep networks and superpixel segmentation, " Int. J. Remote Sens., vol. 36, no. 13, pp. 3459-3482, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3459-3482
    • Liu, Y.1    Cao, G.2    Sun, Q.3    Siegel, M.4
  • 23
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial featurelearning with stacked sparse autoencoder for hyperspectral imagery classification
    • Dec.
    • C. Tao, H. Pan, Y. Li., Z. Zou, "Unsupervised spectral-spatial featurelearning with stacked sparse autoencoder for hyperspectral imagery classification, "IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2438-2442, Dec. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1    Pan Y Li, H.2    Zou, Z.3
  • 24
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscaledeep learning features for the classification of hyperspectral remotesensing imagery
    • W. Zhao, Z. Guo, J. Yue, X. Zhang., L. Luo, "On combining multiscaledeep learning features for the classification of hyperspectral remotesensing imagery, " Int. J. Remote Sens., vol. 36, no. 13, pp. 3368-3379, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 26
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neuralnetworks for hyperspectral image classification
    • W. Hu, Y. Huang, L. Wei, F. Zhang., H. Li, "Deep convolutional neuralnetworks for hyperspectral image classification, " J. Sensors, vol. 2015, 2015, Art. no. 258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 27
    • 84962611241 scopus 로고    scopus 로고
    • Hyperspectral imagery classification usingsparse representations of convolutional neural network features
    • [Online]. Available
    • H. Liang and Q. Li, "Hyperspectral imagery classification usingsparse representations of convolutional neural network features, " RemoteSens., vol. 8, no. 2, 2016, Art. no. 99. [Online]. Available:http://www. mdpi. com/2072-4292/8/2/99.
    • (2016) RemoteSens. , vol.8 , Issue.2
    • Liang, H.1    Li, Q.2
  • 28
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep featureextraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta., G. Camps-Valls, "Unsupervised deep featureextraction for remote sensing image classification, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 29
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extractionand classification of hyperspectral images based on convolutionalneural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia., P. Ghamisi, "Deep feature extractionand classification of hyperspectral images based on convolutionalneural networks, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 30
    • 84959533227 scopus 로고    scopus 로고
    • PCANet: A simpledeep learning baseline for image classification
    • Dec.
    • T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng., Y. Ma, "PCANet: A simpledeep learning baseline for image classification" IEEE Trans. ImageProcess., vol. 24, no. 12, pp. 5017-5032, Dec. 2015.
    • (2015) IEEE Trans. ImageProcess. , vol.24 , Issue.12 , pp. 5017-5032
    • Chan, T.H.1    Jia, K.2    Gao, S.3    Lu, J.4    Zeng, Z.5    Ma, Y.6
  • 31
    • 84990821411 scopus 로고    scopus 로고
    • Hyperspectral image classificationbased on nonlinear spectral-spatial network
    • Dec.
    • B. Pan, Z. Shi, N. Zhang., S. Xie, "Hyperspectral image classificationbased on nonlinear spectral-spatial network, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1782-1786, Dec. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 1782-1786
    • Pan, B.1    Shi, Z.2    Zhang, N.3    Xie, S.4
  • 34
    • 84896314121 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectralimage classification with edge-preserving filtering
    • May
    • X. Kang, S. Li., J. A. Benediktsson, "Spectral-spatial hyperspectralimage classification with edge-preserving filtering, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2666-2677, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2666-2677
    • Kang S Li, X.1    Benediktsson, J.A.2
  • 35
    • 84966269022 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using ICA and edgepreservingfilter via an ensemble strategy
    • Aug.
    • J. Xia, L. Bombrun, T. Adal, Y. Berthoumieu., C. Germain, "Spectral-spatial classification of hyperspectral images using ICA and edgepreservingfilter via an ensemble strategy, " IEEE Trans. Geosci. RemoteSens., vol. 54, no. 8, pp. 4971-4982, Aug. 2016.
    • (2016) IEEE Trans. Geosci. RemoteSens. , vol.54 , Issue.8 , pp. 4971-4982
    • Xia, J.1    Bombrun, L.2    Adal, T.3    Berthoumieu, Y.4    Germain, C.5
  • 36
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: Afast algorithm to unmix hyperspectral data
    • Apr.
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: Afast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. RemoteSens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. RemoteSens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 37
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR:A library for large linear classification
    • R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang., C. J. Lin, "LIBLINEAR:A library for large linear classification, " J. Mach. Learn. Res., vol. 9, no. 9, pp. 1871-1874, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , Issue.9 , pp. 1871-1874
    • Fan, R.E.1    Chang, K.W.2    Hsieh, C.J.3    Wang, X.R.4    Lin, C.J.5
  • 38
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical., sparse regression-based approaches
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical., sparse regression-based approaches, " IEEE Sel. Top. Appl. Earth Obs. Remote Sens., vol. 5, no. 2, pp. 354-379, 2012.
    • (2012) IEEE Sel. Top. Appl. Earth Obs. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 39
    • 84896389880 scopus 로고    scopus 로고
    • Feature extraction of hyperspectralimages with image fusion and recursive filtering
    • Jun.
    • X. Kang, S. Li., J. A. Benediktsson, "Feature extraction of hyperspectralimages with image fusion and recursive filtering, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3742-3752, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3742-3752
    • Kang S Li, X.1    Benediktsson, J.A.2
  • 40
    • 85027945747 scopus 로고    scopus 로고
    • Hyperspectral imageclassification with limited labeled training samples using enhanced ensemblelearning and conditional
    • random fields Jun.
    • F. Li, L. Xu, P. Siva, A. Wong., D. A. Clausi, "Hyperspectral imageclassification with limited labeled training samples using enhanced ensemblelearning and conditional random fields, " IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 6, pp. 1-12, Jun. 2015.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.6 , pp. 1-12
    • Li, F.1    Xu, L.2    Siva, P.3    Wong, A.4    Clausi, D.A.5
  • 41
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectraldata based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao., X. Jia, "Spectral-spatial classification of hyperspectraldata based on deep belief network, " IEEE J. Sel. Top. Appl. EarthObs. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Top. Appl. EarthObs. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.