메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 371-383

Hyperspectral image reconstruction by deep convolutional neural network for classification

Author keywords

Band selection; Deep convolutional neural network; Extreme learning machine; Hyperspectral imagery; Pattern classification; Reconstruction

Indexed keywords

CONVOLUTION; IMAGE PROCESSING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NEURAL NETWORKS; PATTERN RECOGNITION; REMOTE SENSING; SPECTROSCOPY;

EID: 84998910231     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.10.019     Document Type: Article
Times cited : (251)

References (50)
  • 1
    • 84930239955 scopus 로고    scopus 로고
    • Remote Sensing Digital Image Analysis: An Introduction, New York, 2013.
    • [1] J. A. Richards, Remote Sensing Digital Image Analysis: An Introduction, New York, 2013.
    • Richards, J.A.1
  • 2
    • 84891584609 scopus 로고    scopus 로고
    • Hyperspectral Data Processing: Algorithm Design and Analysis, New York, 2013.
    • [2] C.-I. Chang, Hyperspectral Data Processing: Algorithm Design and Analysis, New York, 2013.
    • Chang, C.-I.1
  • 3
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral–spatial classification of hyperspectral images
    • [3] Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C., Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101:3 (2013), 652–675.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 4
    • 84896314121 scopus 로고    scopus 로고
    • Spectral–spatial hyperspectral image classification with edge-preserving filtering
    • [4] Kang, X., Li, S., Benediktsson, J.A., Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52:5 (2014), 2666–2677.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2666-2677
    • Kang, X.1    Li, S.2    Benediktsson, J.A.3
  • 5
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • [5] Tarabalka, Y., Chanussot, J., Benediktsson, J.A., Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 43:7 (2010), 2367–2379.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 7
    • 67650263854 scopus 로고    scopus 로고
    • Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis
    • [7] Cetin, M., Musaoglu, N., Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis. Int. J. Remote Sens. 30:7 (2009), 1779–1804.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.7 , pp. 1779-1804
    • Cetin, M.1    Musaoglu, N.2
  • 8
    • 33947362930 scopus 로고    scopus 로고
    • Multi-spectral and hyperspectral image fusion using 3-D wavelet transform
    • [8] Zhang, Y., He, M., Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. Chin. J. Electron. 24:2 (2007), 218–224.
    • (2007) Chin. J. Electron. , vol.24 , Issue.2 , pp. 218-224
    • Zhang, Y.1    He, M.2
  • 9
    • 70350662759 scopus 로고    scopus 로고
    • Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images
    • [9] Zhang, Y., Backer, S. De, Scheunders, P., Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 47:11 (2009), 3834–3842.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3834-3842
    • Zhang, Y.1    Backer, S.D.2    Scheunders, P.3
  • 10
    • 85027933187 scopus 로고    scopus 로고
    • Super-resolution of hyperspectral images: use of optimum wavelet filter coefficients and sparsity regularization
    • [10] Patel, R.C., Joshi, M.V., Super-resolution of hyperspectral images: use of optimum wavelet filter coefficients and sparsity regularization. IEEE Trans. Geosci. Remote Sens. 53:4 (2015), 1728–1736.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1728-1736
    • Patel, R.C.1    Joshi, M.V.2
  • 12
    • 84891555923 scopus 로고    scopus 로고
    • Spatial and spectral image fusion using sparse matrix factorization
    • [12] Huang, B., Song, H., Cui, H., Peng, J., Xu, Z., Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans. Geosci. Remote Sens. 52:3 (2014), 1693–1704.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.3 , pp. 1693-1704
    • Huang, B.1    Song, H.2    Cui, H.3    Peng, J.4    Xu, Z.5
  • 13
    • 84856329450 scopus 로고    scopus 로고
    • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
    • [13] Yokoya, N., Yairi, T., Iwasaki, A., Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50:2 (2012), 528–537.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.2 , pp. 528-537
    • Yokoya, N.1    Yairi, T.2    Iwasaki, A.3
  • 14
    • 84988493111 scopus 로고    scopus 로고
    • Sparse spatio-spectral reconstruction for hyperspectral image super-resolution
    • [14] N. Akhtar, F. Shafait, A. Mian, Sparse spatio-spectral reconstruction for hyperspectral image super-resolution, in: Proceedings of ECCV, 2014.
    • (2014) Proceedings of ECCV
    • Akhtar, N.1    Shafait, F.2    Mian, A.3
  • 16
    • 79957439842 scopus 로고    scopus 로고
    • Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution, IEEE J. Sel. Topics
    • [16] Villa, A., Chanussot, J., Benediktsson, J.A., Jutten, C., Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution, IEEE J. Sel. Topics. Signal Process 5:3 (2011), 521–533.
    • (2011) Signal Process , vol.5 , Issue.3 , pp. 521-533
    • Villa, A.1    Chanussot, J.2    Benediktsson, J.A.3    Jutten, C.4
  • 17
    • 3843116557 scopus 로고    scopus 로고
    • Texture feature analysis using a Gauss–Markov model in hyperspectral image classification
    • [17] Rellier, G., Descombes, X., Falzon, F., Zerubia, J., Texture feature analysis using a Gauss–Markov model in hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 42:7 (2004), 1543–1551.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 18
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • [18] Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 19
    • 84901201294 scopus 로고    scopus 로고
    • Joint collaborative representation with multitask learning for hyperspectral image classification
    • [19] Li, J., Zhang, H., Zhang, L., Huang, X., Zhang, L., Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52:9 (2014), 5923–5936.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5923-5936
    • Li, J.1    Zhang, H.2    Zhang, L.3    Huang, X.4    Zhang, L.5
  • 20
    • 84959422095 scopus 로고    scopus 로고
    • Class-level joint sparse representation for multifeature-based hyperspectral image classification
    • [20] Zhang, E., Jiao, L., Zhang, X., Liu, H., Wang, S., Class-level joint sparse representation for multifeature-based hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2016), 1012–1022.
    • (2016) IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. , vol.7 , Issue.4 , pp. 1012-1022
    • Zhang, E.1    Jiao, L.2    Zhang, X.3    Liu, H.4    Wang, S.5
  • 22
    • 84971290216 scopus 로고    scopus 로고
    • Reconstruction of hyperspectral image using matting model for classification
    • [22] Xie, W., Li, Y., Ge, C., Reconstruction of hyperspectral image using matting model for classification. Opt. Eng., 55(5), 2016, 053104.
    • (2016) Opt. Eng. , vol.55 , Issue.5 , pp. 053104
    • Xie, W.1    Li, Y.2    Ge, C.3
  • 24
    • 84961344134 scopus 로고    scopus 로고
    • Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
    • [24] Zabalza, J., et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185:12 (2016), 1–10.
    • (2016) Neurocomputing , vol.185 , Issue.12 , pp. 1-10
    • Zabalza, J.1
  • 25
    • 84959139728 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on deep auto-encoder
    • [25] Ma, X., Wang, H., Geng, J., Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 99 (2016), 1–13.
    • (2016) IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. , vol.99 , pp. 1-13
    • Ma, X.1    Wang, H.2    Geng, J.3
  • 27
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • [27] Chen, Y., Zhao, X., Jia, X., Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens 8:6 (2015), 2381–2392.
    • (2015) IEEE J. Sel. Top Appl. Earth Obs. Remote Sens , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 28
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • [28] Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 29
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
    • [29] Zhao, W., Du, S., Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4544–4554.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 30
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • [30] Romero, A., Gatta, C., Camps-Valls, G., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:3 (2016), 1349–1362.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 31
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through convolutional neural networks
    • [31] K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in: Proceedings of IGARSS, 2015, pp. 4959–4962.
    • (2015) Proceedings of IGARSS , pp. 4959-4962
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Doulamis, N.4
  • 32
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
    • [32] Tuia, D., Flamary, R., Courty, N., Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Photogramm. Remote Sens. 105 (2015), 272–285.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Flamary, R.2    Courty, N.3
  • 33
    • 0032203257 scopus 로고
    • Gradient-based learning applied to document recognition
    • [33] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1988), 2278–2324.
    • (1988) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 34
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [34] Huang, G.-B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 35
    • 84893703234 scopus 로고    scopus 로고
    • Breast tumor detection in digital mammography based on extreme learning machine
    • [35] Wang, Z.Q., Yu, G., Kang, Y., Zhao, Y.J., Qu, Q.X., Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 128 (2014), 175–184.
    • (2014) Neurocomputing , vol.128 , pp. 175-184
    • Wang, Z.Q.1    Yu, G.2    Kang, Y.3    Zhao, Y.J.4    Qu, Q.X.5
  • 36
    • 80051582164 scopus 로고    scopus 로고
    • Face recognition based on extreme learning machine
    • [36] Zong, W., Huang, G.-B., Face recognition based on extreme learning machine. Neurocomputing 74 (2011), 2541–2551.
    • (2011) Neurocomputing , vol.74 , pp. 2541-2551
    • Zong, W.1    Huang, G.-B.2
  • 37
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • [37] Huang, G., Huang, G.-B., Song, S., You, K., Trends in extreme learning machines: a review. Neural Netw. 61 (2015), 32–48.
    • (2015) Neural Netw. , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.-B.2    Song, S.3    You, K.4
  • 38
    • 84959362418 scopus 로고    scopus 로고
    • Breast mass classification in digital mammography based on Extreme learning machine
    • [38] Xie, W., Li, Y., Ma, Y., Breast mass classification in digital mammography based on Extreme learning machine. Neurocomputing 173 (2016), 930–941.
    • (2016) Neurocomputing , vol.173 , pp. 930-941
    • Xie, W.1    Li, Y.2    Ma, Y.3
  • 39
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-based extreme learning machine for remote sensing image classification
    • [39] Pal, M., Maxwell, A.E., Warner, T.A., Kernel-based extreme learning machine for remote sensing image classification. Remote Sens. Lett. 9:4 (2013), 852–862.
    • (2013) Remote Sens. Lett. , vol.9 , Issue.4 , pp. 852-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 40
    • 84893640041 scopus 로고    scopus 로고
    • Extreme learning machines for soybean classification in remote sensing hyperspectral images
    • [40] Moreno, R., Corona, F., Lendasse, A., Grana, M., Galvao, L.S., Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128:27 (2014), 207–216.
    • (2014) Neurocomputing , vol.128 , Issue.27 , pp. 207-216
    • Moreno, R.1    Corona, F.2    Lendasse, A.3    Grana, M.4    Galvao, L.S.5
  • 41
    • 84894082731 scopus 로고    scopus 로고
    • Differential evolution extreme learning machine for the classification of hyperspectral images
    • [41] Bazi, Y., et al. Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 11:6 (2014), 1066–1070.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.6 , pp. 1066-1070
    • Bazi, Y.1
  • 42
    • 84899896987 scopus 로고    scopus 로고
    • E2LMs: ensemble extreme learning machines for hyperspectral image classification
    • [42] Samat, A., Du, P., Liu, S., Li, J., Cheng, L., E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2014), 1060–1069.
    • (2014) IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. , vol.7 , Issue.4 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Liu, S.3    Li, J.4    Cheng, L.5
  • 43
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning machine for hyperspectral imagery classification
    • [43] Li, W., Chen, C., Su, H., Du, Q., Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53:7 (2015), 3681–3693.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 44
    • 84924082815 scopus 로고    scopus 로고
    • Optimizing extreme learning machine for hyperspectral image classification
    • [44] Li, J., Du, Q., Li, W., Li, Y., Optimizing extreme learning machine for hyperspectral image classification. J. Appl. Remote Sens., 9(1), 2015.
    • (2015) J. Appl. Remote Sens. , vol.9 , Issue.1
    • Li, J.1    Du, Q.2    Li, W.3    Li, Y.4
  • 45
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • [45] Du, Q., Yang, H., Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5:4 (2008), 564–568.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 46
    • 84899785506 scopus 로고    scopus 로고
    • Gabor-filtering based nearest regularized subspace for hyperspectral image classification
    • [46] Li, W., Du, Q., Gabor-filtering based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2014), 1012–1022.
    • (2014) IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. , vol.7 , Issue.4 , pp. 1012-1022
    • Li, W.1    Du, Q.2
  • 47
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • [47] V. Nair, G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of ICML, 2010.
    • (2010) Proceedings of ICML
    • Nair, V.1    Hinton, G.E.2
  • 48
    • 70450177597 scopus 로고    scopus 로고
    • F. Wu. Image hallucination with feature enhancement, in: Proceedings of CVPR, 2009
    • [48] Z. Xiong, X. Sun, F. Wu. Image hallucination with feature enhancement, in: Proceedings of CVPR, 2009.
    • Xiong, Z.1    Sun, X.2
  • 49
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: a review
    • [49] Mountrakis, G., Im, J., Ogole, C., Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66:3 (2011), 247–259.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 50
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • [50] Wright, J., et al. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98:6 (2010), 1031–1044.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.