-
1
-
-
84930239955
-
-
Remote Sensing Digital Image Analysis: An Introduction, New York, 2013.
-
[1] J. A. Richards, Remote Sensing Digital Image Analysis: An Introduction, New York, 2013.
-
-
-
Richards, J.A.1
-
2
-
-
84891584609
-
-
Hyperspectral Data Processing: Algorithm Design and Analysis, New York, 2013.
-
[2] C.-I. Chang, Hyperspectral Data Processing: Algorithm Design and Analysis, New York, 2013.
-
-
-
Chang, C.-I.1
-
3
-
-
84899967600
-
Advances in spectral–spatial classification of hyperspectral images
-
[3] Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C., Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101:3 (2013), 652–675.
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.A.3
Chanussot, J.4
Tilton, J.C.5
-
4
-
-
84896314121
-
Spectral–spatial hyperspectral image classification with edge-preserving filtering
-
[4] Kang, X., Li, S., Benediktsson, J.A., Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52:5 (2014), 2666–2677.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.5
, pp. 2666-2677
-
-
Kang, X.1
Li, S.2
Benediktsson, J.A.3
-
5
-
-
77953764526
-
Segmentation and classification of hyperspectral images using watershed transformation
-
[5] Tarabalka, Y., Chanussot, J., Benediktsson, J.A., Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 43:7 (2010), 2367–2379.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.7
, pp. 2367-2379
-
-
Tarabalka, Y.1
Chanussot, J.2
Benediktsson, J.A.3
-
6
-
-
84888263781
-
Integration of segmentation techniques for classification of hyperspectral images
-
[6] Ghamisi, P., Couceiro, M.S., Ferreira, N.M.F., Benediktsson, J.A., Integration of segmentation techniques for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 11:1 (2014), 342–346.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.1
, pp. 342-346
-
-
Ghamisi, P.1
Couceiro, M.S.2
Ferreira, N.M.F.3
Benediktsson, J.A.4
-
7
-
-
67650263854
-
Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis
-
[7] Cetin, M., Musaoglu, N., Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis. Int. J. Remote Sens. 30:7 (2009), 1779–1804.
-
(2009)
Int. J. Remote Sens.
, vol.30
, Issue.7
, pp. 1779-1804
-
-
Cetin, M.1
Musaoglu, N.2
-
8
-
-
33947362930
-
Multi-spectral and hyperspectral image fusion using 3-D wavelet transform
-
[8] Zhang, Y., He, M., Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. Chin. J. Electron. 24:2 (2007), 218–224.
-
(2007)
Chin. J. Electron.
, vol.24
, Issue.2
, pp. 218-224
-
-
Zhang, Y.1
He, M.2
-
9
-
-
70350662759
-
Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images
-
[9] Zhang, Y., Backer, S. De, Scheunders, P., Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 47:11 (2009), 3834–3842.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.11
, pp. 3834-3842
-
-
Zhang, Y.1
Backer, S.D.2
Scheunders, P.3
-
10
-
-
85027933187
-
Super-resolution of hyperspectral images: use of optimum wavelet filter coefficients and sparsity regularization
-
[10] Patel, R.C., Joshi, M.V., Super-resolution of hyperspectral images: use of optimum wavelet filter coefficients and sparsity regularization. IEEE Trans. Geosci. Remote Sens. 53:4 (2015), 1728–1736.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 1728-1736
-
-
Patel, R.C.1
Joshi, M.V.2
-
11
-
-
80052890819
-
High-resolution hyperspectral imaging via matrix factorization
-
[11] R. Kawakami, J. Wright, Y.-W. Tai, Y. Matsushita, M. Ben-Ezra, K. Ikeuchi, High-resolution hyperspectral imaging via matrix factorization, in: Proceedings of CVPR, 2011.
-
(2011)
Proceedings of CVPR
-
-
Kawakami, R.1
Wright, J.2
Tai, Y.-W.3
Matsushita, Y.4
Ben-Ezra, M.5
Ikeuchi, K.6
-
12
-
-
84891555923
-
Spatial and spectral image fusion using sparse matrix factorization
-
[12] Huang, B., Song, H., Cui, H., Peng, J., Xu, Z., Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans. Geosci. Remote Sens. 52:3 (2014), 1693–1704.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.3
, pp. 1693-1704
-
-
Huang, B.1
Song, H.2
Cui, H.3
Peng, J.4
Xu, Z.5
-
13
-
-
84856329450
-
Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
-
[13] Yokoya, N., Yairi, T., Iwasaki, A., Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50:2 (2012), 528–537.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.2
, pp. 528-537
-
-
Yokoya, N.1
Yairi, T.2
Iwasaki, A.3
-
14
-
-
84988493111
-
Sparse spatio-spectral reconstruction for hyperspectral image super-resolution
-
[14] N. Akhtar, F. Shafait, A. Mian, Sparse spatio-spectral reconstruction for hyperspectral image super-resolution, in: Proceedings of ECCV, 2014.
-
(2014)
Proceedings of ECCV
-
-
Akhtar, N.1
Shafait, F.2
Mian, A.3
-
15
-
-
84943792795
-
Hyperspectral super-resolution of locally low rank images from complementary multisource data
-
[15] Veganzones, M.A., Simões, M., Licciardi, G., Yokoya, N., Bioucas-Dias, J.M., Chanussot, J., Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans. Image Process. 25:1 (2016), 274–288.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.1
, pp. 274-288
-
-
Veganzones, M.A.1
Simões, M.2
Licciardi, G.3
Yokoya, N.4
Bioucas-Dias, J.M.5
Chanussot, J.6
-
16
-
-
79957439842
-
Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution, IEEE J. Sel. Topics
-
[16] Villa, A., Chanussot, J., Benediktsson, J.A., Jutten, C., Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution, IEEE J. Sel. Topics. Signal Process 5:3 (2011), 521–533.
-
(2011)
Signal Process
, vol.5
, Issue.3
, pp. 521-533
-
-
Villa, A.1
Chanussot, J.2
Benediktsson, J.A.3
Jutten, C.4
-
17
-
-
3843116557
-
Texture feature analysis using a Gauss–Markov model in hyperspectral image classification
-
[17] Rellier, G., Descombes, X., Falzon, F., Zerubia, J., Texture feature analysis using a Gauss–Markov model in hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 42:7 (2004), 1543–1551.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.7
, pp. 1543-1551
-
-
Rellier, G.1
Descombes, X.2
Falzon, F.3
Zerubia, J.4
-
18
-
-
80052087210
-
On combining multiple features for hyperspectral remote sensing image classification
-
[18] Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 879-893
-
-
Zhang, L.1
Zhang, L.2
Tao, D.3
Huang, X.4
-
19
-
-
84901201294
-
Joint collaborative representation with multitask learning for hyperspectral image classification
-
[19] Li, J., Zhang, H., Zhang, L., Huang, X., Zhang, L., Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52:9 (2014), 5923–5936.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.9
, pp. 5923-5936
-
-
Li, J.1
Zhang, H.2
Zhang, L.3
Huang, X.4
Zhang, L.5
-
20
-
-
84959422095
-
Class-level joint sparse representation for multifeature-based hyperspectral image classification
-
[20] Zhang, E., Jiao, L., Zhang, X., Liu, H., Wang, S., Class-level joint sparse representation for multifeature-based hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2016), 1012–1022.
-
(2016)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.4
, pp. 1012-1022
-
-
Zhang, E.1
Jiao, L.2
Zhang, X.3
Liu, H.4
Wang, S.5
-
21
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
[21] Dong, C., Loy, C.C., He, K., Tang, X., Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38:2 (2016), 295–307.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
22
-
-
84971290216
-
Reconstruction of hyperspectral image using matting model for classification
-
[22] Xie, W., Li, Y., Ge, C., Reconstruction of hyperspectral image using matting model for classification. Opt. Eng., 55(5), 2016, 053104.
-
(2016)
Opt. Eng.
, vol.55
, Issue.5
, pp. 053104
-
-
Xie, W.1
Li, Y.2
Ge, C.3
-
23
-
-
37549020109
-
A closed-form solution to natural image matting
-
[23] Levin, A., Lischinski, D., Weiss, Y., A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30:2 (2008), 228–242.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.2
, pp. 228-242
-
-
Levin, A.1
Lischinski, D.2
Weiss, Y.3
-
24
-
-
84961344134
-
Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
-
[24] Zabalza, J., et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185:12 (2016), 1–10.
-
(2016)
Neurocomputing
, vol.185
, Issue.12
, pp. 1-10
-
-
Zabalza, J.1
-
25
-
-
84959139728
-
Spectral-spatial classification of hyperspectral image based on deep auto-encoder
-
[25] Ma, X., Wang, H., Geng, J., Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 99 (2016), 1–13.
-
(2016)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.
, vol.99
, pp. 1-13
-
-
Ma, X.1
Wang, H.2
Geng, J.3
-
26
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
[26] Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:6 (2014), 2094–2107.
-
(2014)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
27
-
-
85027942618
-
Spectral-spatial classification of hyperspectral data based on deep belief network
-
[27] Chen, Y., Zhao, X., Jia, X., Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens 8:6 (2015), 2381–2392.
-
(2015)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
28
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
[28] Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
29
-
-
84979492674
-
Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
-
[29] Zhao, W., Du, S., Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4544–4554.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4544-4554
-
-
Zhao, W.1
Du, S.2
-
30
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
[30] Romero, A., Gatta, C., Camps-Valls, G., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:3 (2016), 1349–1362.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-Valls, G.3
-
31
-
-
84962569483
-
Deep supervised learning for hyperspectral data classification through convolutional neural networks
-
[31] K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, in: Proceedings of IGARSS, 2015, pp. 4959–4962.
-
(2015)
Proceedings of IGARSS
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
32
-
-
84929495655
-
Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
-
[32] Tuia, D., Flamary, R., Courty, N., Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Photogramm. Remote Sens. 105 (2015), 272–285.
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.105
, pp. 272-285
-
-
Tuia, D.1
Flamary, R.2
Courty, N.3
-
33
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
[33] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1988), 2278–2324.
-
(1988)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
34
-
-
33745903481
-
Extreme learning machine: theory and applications
-
[34] Huang, G.-B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.Y.2
Siew, C.K.3
-
35
-
-
84893703234
-
Breast tumor detection in digital mammography based on extreme learning machine
-
[35] Wang, Z.Q., Yu, G., Kang, Y., Zhao, Y.J., Qu, Q.X., Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 128 (2014), 175–184.
-
(2014)
Neurocomputing
, vol.128
, pp. 175-184
-
-
Wang, Z.Q.1
Yu, G.2
Kang, Y.3
Zhao, Y.J.4
Qu, Q.X.5
-
36
-
-
80051582164
-
Face recognition based on extreme learning machine
-
[36] Zong, W., Huang, G.-B., Face recognition based on extreme learning machine. Neurocomputing 74 (2011), 2541–2551.
-
(2011)
Neurocomputing
, vol.74
, pp. 2541-2551
-
-
Zong, W.1
Huang, G.-B.2
-
37
-
-
84908682236
-
Trends in extreme learning machines: a review
-
[37] Huang, G., Huang, G.-B., Song, S., You, K., Trends in extreme learning machines: a review. Neural Netw. 61 (2015), 32–48.
-
(2015)
Neural Netw.
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.-B.2
Song, S.3
You, K.4
-
38
-
-
84959362418
-
Breast mass classification in digital mammography based on Extreme learning machine
-
[38] Xie, W., Li, Y., Ma, Y., Breast mass classification in digital mammography based on Extreme learning machine. Neurocomputing 173 (2016), 930–941.
-
(2016)
Neurocomputing
, vol.173
, pp. 930-941
-
-
Xie, W.1
Li, Y.2
Ma, Y.3
-
39
-
-
84880397408
-
Kernel-based extreme learning machine for remote sensing image classification
-
[39] Pal, M., Maxwell, A.E., Warner, T.A., Kernel-based extreme learning machine for remote sensing image classification. Remote Sens. Lett. 9:4 (2013), 852–862.
-
(2013)
Remote Sens. Lett.
, vol.9
, Issue.4
, pp. 852-862
-
-
Pal, M.1
Maxwell, A.E.2
Warner, T.A.3
-
40
-
-
84893640041
-
Extreme learning machines for soybean classification in remote sensing hyperspectral images
-
[40] Moreno, R., Corona, F., Lendasse, A., Grana, M., Galvao, L.S., Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128:27 (2014), 207–216.
-
(2014)
Neurocomputing
, vol.128
, Issue.27
, pp. 207-216
-
-
Moreno, R.1
Corona, F.2
Lendasse, A.3
Grana, M.4
Galvao, L.S.5
-
41
-
-
84894082731
-
Differential evolution extreme learning machine for the classification of hyperspectral images
-
[41] Bazi, Y., et al. Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 11:6 (2014), 1066–1070.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.6
, pp. 1066-1070
-
-
Bazi, Y.1
-
42
-
-
84899896987
-
E2LMs: ensemble extreme learning machines for hyperspectral image classification
-
[42] Samat, A., Du, P., Liu, S., Li, J., Cheng, L., E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2014), 1060–1069.
-
(2014)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.4
, pp. 1060-1069
-
-
Samat, A.1
Du, P.2
Liu, S.3
Li, J.4
Cheng, L.5
-
43
-
-
84925296587
-
Local binary patterns and extreme learning machine for hyperspectral imagery classification
-
[43] Li, W., Chen, C., Su, H., Du, Q., Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53:7 (2015), 3681–3693.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.7
, pp. 3681-3693
-
-
Li, W.1
Chen, C.2
Su, H.3
Du, Q.4
-
44
-
-
84924082815
-
Optimizing extreme learning machine for hyperspectral image classification
-
[44] Li, J., Du, Q., Li, W., Li, Y., Optimizing extreme learning machine for hyperspectral image classification. J. Appl. Remote Sens., 9(1), 2015.
-
(2015)
J. Appl. Remote Sens.
, vol.9
, Issue.1
-
-
Li, J.1
Du, Q.2
Li, W.3
Li, Y.4
-
45
-
-
55649124564
-
Similarity-based unsupervised band selection for hyperspectral image analysis
-
[45] Du, Q., Yang, H., Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5:4 (2008), 564–568.
-
(2008)
IEEE Geosci. Remote Sens. Lett.
, vol.5
, Issue.4
, pp. 564-568
-
-
Du, Q.1
Yang, H.2
-
46
-
-
84899785506
-
Gabor-filtering based nearest regularized subspace for hyperspectral image classification
-
[46] Li, W., Du, Q., Gabor-filtering based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7:4 (2014), 1012–1022.
-
(2014)
IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.4
, pp. 1012-1022
-
-
Li, W.1
Du, Q.2
-
47
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
[47] V. Nair, G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of ICML, 2010.
-
(2010)
Proceedings of ICML
-
-
Nair, V.1
Hinton, G.E.2
-
48
-
-
70450177597
-
-
F. Wu. Image hallucination with feature enhancement, in: Proceedings of CVPR, 2009
-
[48] Z. Xiong, X. Sun, F. Wu. Image hallucination with feature enhancement, in: Proceedings of CVPR, 2009.
-
-
-
Xiong, Z.1
Sun, X.2
-
49
-
-
79951950272
-
Support vector machines in remote sensing: a review
-
[49] Mountrakis, G., Im, J., Ogole, C., Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66:3 (2011), 247–259.
-
(2011)
ISPRS J. Photogramm. Remote Sens.
, vol.66
, Issue.3
, pp. 247-259
-
-
Mountrakis, G.1
Im, J.2
Ogole, C.3
-
50
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
[50] Wright, J., et al. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98:6 (2010), 1031–1044.
-
(2010)
Proc. IEEE
, vol.98
, Issue.6
, pp. 1031-1044
-
-
Wright, J.1
|