메뉴 건너뛰기




Volumn 113, Issue , 2016, Pages 155-165

Learning multiscale and deep representations for classifying remotely sensed imagery

Author keywords

Deep learning; Feature extraction; Multiscale convolutional neural network (MCNN); Remote sensing image classification

Indexed keywords

CONVOLUTION; DATA MINING; FEATURE EXTRACTION; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; NEURAL NETWORKS; REMOTE SENSING;

EID: 84956620231     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.01.004     Document Type: Article
Times cited : (345)

References (37)
  • 1
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Benediktsson J.A., Pesaresi M., Amason K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41(9):1940-1949.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Amason, K.3
  • 3
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Camps-Valls G., Tuia D., Bruzzone L., Atli Benediktsson J. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2014, 31(1):45-54.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 4
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Chen X., Xiang S., Liu C., Chun-Hong P. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2014, 11(10):1797-1801.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.3    Chun-Hong, P.4
  • 5
    • 6344256790 scopus 로고    scopus 로고
    • A multiscale texture analysis procedure for improved forest stand classification
    • Coburn C., Roberts A. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 2004, 25(20):4287-4308.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.20 , pp. 4287-4308
    • Coburn, C.1    Roberts, A.2
  • 7
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?
    • DiCarlo J.J., Zoccolan D., Rust N.C. How does the brain solve visual object recognition?. Neuron 2012, 73(3):415-434.
    • (2012) Neuron , vol.73 , Issue.3 , pp. 415-434
    • DiCarlo, J.J.1    Zoccolan, D.2    Rust, N.C.3
  • 9
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel M., Benediktsson J.A., Chanussot J., Sveinsson J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46(11):3804-3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 10
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • Fauvel M., Chanussot J., Benediktsson J.A. A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recogn. 2012, 45(1):381-392.
    • (2012) Pattern Recogn. , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(57):504-507.
    • (2006) Science , vol.313 , Issue.57 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 84894370515 scopus 로고    scopus 로고
    • A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    • Huang X., Lu Q., Zhang L. A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 90:36-48.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3
  • 15
    • 84863252871 scopus 로고    scopus 로고
    • A multiscale urban complexity index based on 3D wavelet transform for spectral-spatial feature extraction and classification: an evaluation on the 8-channel WorldView-2 imagery
    • Huang X., Zhang L. A multiscale urban complexity index based on 3D wavelet transform for spectral-spatial feature extraction and classification: an evaluation on the 8-channel WorldView-2 imagery. Int. J. Remote Sens. 2012, 33(8):2641-2656.
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.8 , pp. 2641-2656
    • Huang, X.1    Zhang, L.2
  • 16
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Huang X., Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51(1):257-272.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 17
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel D.H., Wiesel T.N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 1959, 148(3):574-591.
    • (1959) J. Physiol. , vol.148 , Issue.3 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 18
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14(1):55-63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 19
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Jackson Q., Landgrebe D.A. Adaptive Bayesian contextual classification based on Markov random fields. IEEE Trans. Geosci. Remote Sens. 2002, 40(11):2454-2463.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 25
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Li J., Bioucas-Dias J.M., Plaza A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50(3):809-823.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 27
    • 0032208694 scopus 로고    scopus 로고
    • Building detection and description from a single intensity image
    • Lin C., Nevatia R. Building detection and description from a single intensity image. Comput. Vis. Image Underst. 1998, 72(2):101-121.
    • (1998) Comput. Vis. Image Underst. , vol.72 , Issue.2 , pp. 101-121
    • Lin, C.1    Nevatia, R.2
  • 29
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images
    • Moser G., Serpico S.B., Benediktsson J.A. Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc. IEEE 2013, 101(3):631-651.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 30
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Plaza A., Martinez P., Plaza J., Perez R. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 2005, 43(3):466-479.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 31
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • Ratle F., Camps-Valls G., Weston J. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48(5):2271-2282.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 33
    • 0022783899 scopus 로고
    • Distributed asynchronous deterministic and stochastic gradient optimization algorithms
    • Tsitsiklis J.N., Bertsekas D.P., Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 1986, 31(9):803-812.
    • (1986) IEEE Trans. Autom. Control , vol.31 , Issue.9 , pp. 803-812
    • Tsitsiklis, J.N.1    Bertsekas, D.P.2    Athans, M.3
  • 34
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
    • Tuia D., Flamary R., Courty N. Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Photogramm. Remote Sens. 2015, 105:272-285.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Flamary, R.2    Courty, N.3
  • 36
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
    • Zhao W., Guo Z., Yue J., Zhang X., Luo L. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 2015, 36(13):3368-3379.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 37
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Zhong P., Wang R. Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 2010, 19(7):1890-1907.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.