-
1
-
-
0023563286
-
A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
-
Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In IEEE 1st International Conference on Neural Networks, San Diego (Vol. 2, pp. 609-618).
-
(1987)
IEEE 1st International Conference on Neural Networks, San Diego
, vol.2
, pp. 609-618
-
-
Almeida, L.B.1
-
2
-
-
0043170587
-
Contrastive learning and neural oscillator
-
Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillator. Neural Computation, 3, 526-545.
-
(1991)
Neural Computation
, vol.3
, pp. 526-545
-
-
Baldi, P.1
Pineda, F.2
-
3
-
-
0000971250
-
Credit assignment through time: Alternatives to backpropagation
-
J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Mateo, CA: Morgan Kaufmann
-
Bengio, Y., & Frasconi, P. (1994). Credit assignment through time: Alternatives to backpropagation. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6 (pp. 75-82). San Mateo, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 75-82
-
-
Bengio, Y.1
Frasconi, P.2
-
4
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
5
-
-
0000111307
-
Finite-state automata and simple recurrent networks
-
Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state automata and simple recurrent networks. Neural Computation, 1, 372-381.
-
(1989)
Neural Computation
, vol.1
, pp. 372-381
-
-
Cleeremans, A.1
Servan-Schreiber, D.2
McClelland, J.L.3
-
6
-
-
0343449995
-
A theory for neural networks with time delays
-
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
-
de Vries, B., & Principe, J. C. (1991). A theory for neural networks with time delays. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems 3, (pp. 162-168). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 162-168
-
-
De Vries, B.1
Principe, J.C.2
-
8
-
-
0024875962
-
Adaptive neural oscillator using continuous-time backpropagation learning
-
Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time backpropagation learning. Neural Networks, 2, 375-385.
-
(1989)
Neural Networks
, vol.2
, pp. 375-385
-
-
Doya, K.1
Yoshizawa, S.2
-
9
-
-
0004262806
-
-
Tech. Rep. No. CRL 8801. San Diego: Center for Research in Language, University of California, San Diego
-
Elman, J. L. (1988). Finding structure in time (Tech. Rep. No. CRL 8801). San Diego: Center for Research in Language, University of California, San Diego.
-
(1988)
Finding Structure in Time
-
-
Elman, J.L.1
-
10
-
-
0001086881
-
The recurrent cascade-correlation learning algorithm
-
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
-
Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems 3 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 190-196
-
-
Fahlman, S.E.1
-
11
-
-
0003575034
-
-
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München.
-
Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. See http://www7.informatik.tu-muenchen.de/∼hochreit.
-
(1991)
Untersuchungen zu Dynamischen Neuronalen Netzen
-
-
Hochreiter, J.1
-
12
-
-
84886287164
-
-
Tech. Rep. No. FKI-207-95. Fakultät für Informatik, Technische Universität München
-
Hochreiter, S., & Schmidhuber, J. (1995). Long short-term memory (Tech. Rep. No. FKI-207-95). Fakultät für Informatik, Technische Universität München.
-
(1995)
Long Short-term Memory
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
13
-
-
0346176694
-
Bridging long time lags by weight guessing and "long short-term memory."
-
F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Amsterdam: IOS Press
-
Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight guessing and "long short-term memory." In F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Spatiotemporal models in biological and artificial systems (pp. 65-72). Amsterdam: IOS Press.
-
(1996)
Spatiotemporal Models in Biological and Artificial Systems
, pp. 65-72
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
15
-
-
0025254722
-
A time-delay neural network architecture for isolated word recognition
-
Lang, K., Waibel, A., & Hinton, G. E. (1990). A time-delay neural network architecture for isolated word recognition. Neural Networks, 3, 23-43.
-
(1990)
Neural Networks
, vol.3
, pp. 23-43
-
-
Lang, K.1
Waibel, A.2
Hinton, G.E.3
-
16
-
-
33646241633
-
Learning long-term dependencies in NARX recurrent neural networks
-
Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7, 1329-1338.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, pp. 1329-1338
-
-
Lin, T.1
Horne, B.G.2
Tino, P.3
Giles, C.L.4
-
17
-
-
0001257629
-
Experimental comparison of the effect of order in recurrent neural networks
-
Miller, C. B., & Giles, C. L. (1993). Experimental comparison of the effect of order in recurrent neural networks. International Journal of Pattern Recognition and Artificial Intelligence, 7(4), 849-872.
-
(1993)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.7
, Issue.4
, pp. 849-872
-
-
Miller, C.B.1
Giles, C.L.2
-
18
-
-
0008554931
-
A focused back-propagation algorithm for temporal sequence recognition
-
Mozer, M. C. (1989). A focused back-propagation algorithm for temporal sequence recognition. Complex Systems, 3, 349-381.
-
(1989)
Complex Systems
, vol.3
, pp. 349-381
-
-
Mozer, M.C.1
-
19
-
-
0005316958
-
Induction of multiscale temporal structure
-
J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), San Mateo, CA: Morgan Kaufmann
-
Mozer, M. C. (1992). Induction of multiscale temporal structure. In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing systems 4 (pp. 275-282). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 275-282
-
-
Mozer, M.C.1
-
20
-
-
0001202597
-
Learning state space trajectories in recurrent neural networks
-
Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural Computation, 1(2), 263-269.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 263-269
-
-
Pearlmutter, B.A.1
-
21
-
-
0029375851
-
Gradient calculations for dynamic recurrent neural networks: A survey
-
Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212-1228.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.5
, pp. 1212-1228
-
-
Pearlmutter, B.A.1
-
22
-
-
0000442791
-
Generalization of back-propagation to recurrent neural networks
-
Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural networks. Physical Review Letters, 19(59), 2229-2232.
-
(1987)
Physical Review Letters
, vol.19
, Issue.59
, pp. 2229-2232
-
-
Pineda, F.J.1
-
23
-
-
0000599735
-
Dynamics and architecture for neural computation
-
Pineda, F. J. (1988). Dynamics and architecture for neural computation. Journal of Complexity, 4, 216-245.
-
(1988)
Journal of Complexity
, vol.4
, pp. 216-245
-
-
Pineda, F.J.1
-
24
-
-
0009382953
-
Holographic recurrent networks
-
S. J. Hanson, J. D. Cowan, & C. L. Giles ( Eds.), San Mateo, CA: Morgan Kaufmann
-
Plate, T. A. (1993). Holographic recurrent networks. In S. J. Hanson, J. D. Cowan, & C. L. Giles ( Eds.), Advances in neural information processing systems 5 (pp. 34-41). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 34-41
-
-
Plate, T.A.1
-
25
-
-
0346807270
-
Language induction by phase transition in dynamical recognizers
-
R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
-
Pollack, J. B. (1991). Language induction by phase transition in dynamical recognizers. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems 3 (pp. 619-626). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 619-626
-
-
Pollack, J.B.1
-
26
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
-
Puskorius, G. V., and Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2), 279-297.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 279-297
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
27
-
-
0007912190
-
Learning sequential tasks by incrementally adding higher orders
-
S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
-
Ring, M. B. (1993). Learning sequential tasks by incrementally adding higher orders. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems 5 (pp. 115-122). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 115-122
-
-
Ring, M.B.1
-
29
-
-
0001623105
-
A local learning algorithm for dynamic feedforward and recurrent networks
-
Schmidhuber, J. (1989). A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science, 1(4), 403-412.
-
(1989)
Connection Science
, vol.1
, Issue.4
, pp. 403-412
-
-
Schmidhuber, J.1
-
30
-
-
0000053463
-
3) time complexity learning algorithm for fully recurrent continually running networks
-
3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation, 4(2), 243-248.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 243-248
-
-
Schmidhuber, J.1
-
31
-
-
0001033889
-
Learning complex, extended sequences using the principle of history compression
-
Schmidhuber, J. (1992b). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2), 234-242.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 234-242
-
-
Schmidhuber, J.1
-
32
-
-
0348068168
-
Learning unambiguous reduced sequence descriptions
-
J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), San Mateo, CA: Morgan Kaufmann
-
Schmidhuber, J. (1992c). Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J. Hanson, & R. P. Lippman (Eds.), Advances in neural information processing systems 4 (pp. 291-298). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 291-298
-
-
Schmidhuber, J.1
-
34
-
-
0043063195
-
-
Tech. Rep. No. IDSIA-19-96. Lugano, Switzerland: Instituto Dalle Molle di Studi sull'Intelligenza Artificiale
-
Schmidhuber, J., & Hochreiter, S. (1996). Guessing can outperform many long time lag algorithms (Tech. Rep. No. IDSIA-19-96). Lugano, Switzerland: Instituto Dalle Molle di Studi sull'Intelligenza Artificiale.
-
(1996)
Guessing Can Outperform Many Long Time Lag Algorithms
-
-
Schmidhuber, J.1
Hochreiter, S.2
-
35
-
-
0348068169
-
Faster training of recurrent networks
-
F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Amsterdam: IOS Press
-
Silva, G. X., Amaral, J. D., Langlois, T., & Almeida, L. B. (1996). Faster training of recurrent networks. In F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Spatiotemporal models in biological and artificial systems (pp. 168-175). Amsterdam: IOS Press.
-
(1996)
Spatiotemporal Models in Biological and Artificial Systems
, pp. 168-175
-
-
Silva, G.X.1
Amaral, J.D.2
Langlois, T.3
Almeida, L.B.4
-
36
-
-
0001274675
-
Learning sequential structures with the real-time recurrent learning algorithm
-
Smith, A. W., & Zipser, D. (1989). Learning sequential structures with the real-time recurrent learning algorithm. International Journal of Neural Systems, 1(2), 125-131.
-
(1989)
International Journal of Neural Systems
, vol.1
, Issue.2
, pp. 125-131
-
-
Smith, A.W.1
Zipser, D.2
-
37
-
-
0000651310
-
Time warping invariant neural networks
-
S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
-
Sun, G., Chen, H., & Lee, Y. (1993). Time warping invariant neural networks. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems 5 (pp. 180-187). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 180-187
-
-
Sun, G.1
Chen, H.2
Lee, Y.3
-
38
-
-
0001601299
-
Induction of finite-state languages using second-order recurrent networks
-
Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state languages using second-order recurrent networks. Neural Computation, 4, 406-414.
-
(1992)
Neural Computation
, vol.4
, pp. 406-414
-
-
Watrous, R.L.1
Kuhn, G.M.2
-
39
-
-
0000903748
-
Generalization of backpropagation with application to a recurrent gas market model
-
Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339-356.
-
(1988)
Neural Networks
, vol.1
, pp. 339-356
-
-
Werbos, P.J.1
-
41
-
-
0001609567
-
An efficient gradient-based algorithm for on-line training of recurrent network trajectories
-
Williams, R. J. & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation, 4, 491-501.
-
(1990)
Neural Computation
, vol.4
, pp. 491-501
-
-
Williams, R.J.1
Peng, J.2
-
42
-
-
0001765578
-
Gradient-based learning algorithms for recurrent networks and their computational complexity
-
Y. Chauvin, & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum
-
Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Y. Chauvin, & D. E. Rumelhart (Eds.), Back-propagation: Theory, architectures and applications. Hillsdale, NJ: Erlbaum.
-
(1992)
Back-propagation: Theory, Architectures and Applications
-
-
Williams, R.J.1
Zipser, D.2
|