메뉴 건너뛰기




Volumn 46, Issue 4, 2008, Pages 1231-1242

An active learning approach to hyperspectral data classification

Author keywords

Active learning; Hierarchical classifier; Multitemporal data; Semisupervised classifiers; Spatially separate data

Indexed keywords

DATA STRUCTURES; HIERARCHICAL SYSTEMS; LEARNING SYSTEMS; REMOTE SENSING;

EID: 41549147912     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2007.910220     Document Type: Article
Times cited : (297)

References (40)
  • 2
    • 34948818161 scopus 로고    scopus 로고
    • An active learning approach to knowledge transfer for hyperspectral data analysis
    • Denver, CO
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to knowledge transfer for hyperspectral data analysis," in Proc. IGARSS, Denver, CO, 2006, pp. 541-544.
    • (2006) Proc. IGARSS , pp. 541-544
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 4
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, 'Transductive inference for text classification using support vector machines," in Proc. 16th ICML, 1999, pp. 200-209.
    • (1999) Proc. 16th ICML , pp. 200-209
    • Joachims, T.1
  • 5
    • 0005977840 scopus 로고    scopus 로고
    • Inst. for Adaptive Neural Comput, Univ. Edinburgh, Edinburgh, U.K, Feb, Tech. Rep
    • M. Seeger, "Learning with labeled and unlabeled data," Inst. for Adaptive Neural Comput., Univ. Edinburgh, Edinburgh, U.K., Feb. 2001. Tech. Rep.
    • (2001) Learning with labeled and unlabeled data
    • Seeger, M.1
  • 6
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Jul
    • D. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, Jul. 1992.
    • (1992) Neural Comput , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 7
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep
    • B. M. Shahslialiani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahslialiani, B.M.1    Landgrebe, D.A.2
  • 9
    • 14644403645 scopus 로고    scopus 로고
    • Foreword to the special issue on advances in techniques for analysis of remotely sensed data
    • Mar
    • J. A. Richards, M. M. Crawford, J. P. Kerkes, S. B. Serpico, and J. C. Tilton, "Foreword to the special issue on advances in techniques for analysis of remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 411-413, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 411-413
    • Richards, J.A.1    Crawford, M.M.2    Kerkes, J.P.3    Serpico, S.B.4    Tilton, J.C.5
  • 10
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2264-2279, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.12 , pp. 2264-2279
    • Jackson, Q.1    Landgrebe, D.A.2
  • 11
    • 1242308803 scopus 로고    scopus 로고
    • A cost-effective semi-supervised classifier approach with kernels
    • Jan
    • M. Dundar and D. A. Landgrebe, "A cost-effective semi-supervised classifier approach with kernels," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 1, pp. 264-270, Jan. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.1 , pp. 264-270
    • Dundar, M.1    Landgrebe, D.A.2
  • 12
    • 0033096971 scopus 로고    scopus 로고
    • Partially supervised classification using weighted unsupervised clustering
    • Mar
    • B. Jeon and D. A. Landgrebe, "Partially supervised classification using weighted unsupervised clustering," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 1073-1079, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.2 , pp. 1073-1079
    • Jeon, B.1    Landgrebe, D.A.2
  • 13
    • 14644402381 scopus 로고    scopus 로고
    • Partially supervised classification of remote sensing images through SVM-based probability density estimation
    • Mar
    • P. Mantero, G. Moser, and S. B. Serpico, "Partially supervised classification of remote sensing images through SVM-based probability density estimation," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 559-570, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 559-570
    • Mantero, P.1    Moser, G.2    Serpico, S.B.3
  • 14
    • 0018155973 scopus 로고
    • Bayesian classification in a time-varying environment
    • Dec
    • P. H. Swain, "Bayesian classification in a time-varying environment," IEEE Tram. Syst., Man, Cybern., vol. SMC-8, no. 12, pp. 879-883, Dec. 1978.
    • (1978) IEEE Tram. Syst., Man, Cybern , vol.SMC-8 , Issue.12 , pp. 879-883
    • Swain, P.H.1
  • 15
    • 15944423969 scopus 로고    scopus 로고
    • An approach to unsupervised change detection in multi-temporal SAR images based on the generalized Gaussian distribution
    • Anchorage, AK
    • Y. Bazi, L. Bruzzone, and F. Melgani, "An approach to unsupervised change detection in multi-temporal SAR images based on the generalized Gaussian distribution," in Proc. IGARSS, Anchorage, AK, 2004, pp. 1402-1405.
    • (2004) Proc. IGARSS , pp. 1402-1405
    • Bazi, Y.1    Bruzzone, L.2    Melgani, F.3
  • 16
    • 0029724018 scopus 로고    scopus 로고
    • An automatic approach for detecting land-cover transitions
    • Lincoln, NE
    • S. B. Serpico, L. Bruzzone, F. Roli, andM. A. Gomarasca, "An automatic approach for detecting land-cover transitions," in Proc. IGARSS, Lincoln, NE, 1996, pp. 1382-1384.
    • (1996) Proc. IGARSS , pp. 1382-1384
    • Serpico, S.B.1    Bruzzone, L.2    Roli, F.3    andM4    Gomarasca, A.5
  • 17
    • 0032657773 scopus 로고    scopus 로고
    • Decision fusion approach for multitemporal classification
    • B. Jeon and D. A. Landgrebe, "Decision fusion approach for multitemporal classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1227-1233, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.3 , pp. 1227-1233
    • Jeon, B.1    Landgrebe, D.A.2
  • 18
    • 0025514763 scopus 로고
    • Spatio temporal contextual classification of remotely sensed multispectral data
    • Los Angeles, CA
    • B. Jeon and D. A. Landgrebe, "Spatio temporal contextual classification of remotely sensed multispectral data," in Proc. IEEE Int. Conf. Syst, Man, Cybern., Los Angeles, CA, 1990, pp. 342-344.
    • (1990) Proc. IEEE Int. Conf. Syst, Man, Cybern , pp. 342-344
    • Jeon, B.1    Landgrebe, D.A.2
  • 19
    • 0025455578 scopus 로고
    • Spatial-temporal autocorrelated model for contextual classification
    • Jul
    • N. Khazenie and M. M. Crawford, "Spatial-temporal autocorrelated model for contextual classification," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 529-539, Jul. 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens , vol.28 , Issue.4 , pp. 529-539
    • Khazenie, N.1    Crawford, M.M.2
  • 20
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • Feb
    • L. Bruzzone and D. F. Prieto, "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 21
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, andM. M. Crawford, "Hierarchical fusion of multiple classifiers for hyperspectral data analysis," Pattern Anal Appl., vol. 5, no. 2, pp. 210-220, 2002.
    • (2002) Pattern Anal Appl , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    andM3    Crawford, M.4
  • 22
    • 0000406788 scopus 로고
    • Solving multi-class learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri, "Solving multi-class learning problems via error-correcting output codes," J. Artif. Intell. Res., vol. 2, pp. 263-286, 1995.
    • (1995) J. Artif. Intell. Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 23
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Jul
    • P. Mitra, B. U. Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recognit Lett, vol. 25, no. 9, pp. 1067-1074, Jul. 2004.
    • (2004) Pattern Recognit Lett , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 24
    • 0029679131 scopus 로고    scopus 로고
    • Active learning with statistical models
    • D. Cohn, Z. Gharamani, and M. Jordan, "Active learning with statistical models," Artif. Intell. Res., vol. 4, pp. 129-145, 1996.
    • (1996) Artif. Intell. Res , vol.4 , pp. 129-145
    • Cohn, D.1    Gharamani, Z.2    Jordan, M.3
  • 26
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. K. McCallum, "Toward optimal active learning through sampling estimation of error reduction," in Proc. 18th ICML, 2001, pp. 441-448.
    • (2001) Proc , vol.18 th , Issue.ICML , pp. 441-448
    • Roy, N.1    McCallum, A.K.2
  • 29
    • 0001025146 scopus 로고    scopus 로고
    • Query learning strategies using boosting and bagging
    • N. Abe and H. Mamitsuka, "Query learning strategies using boosting and bagging," in Proc. 15th ICML, 1998, pp. 1-9.
    • (1998) Proc , vol.15 th , Issue.ICML , pp. 1-9
    • Abe, N.1    Mamitsuka, H.2
  • 32
    • 33646406005 scopus 로고    scopus 로고
    • Active learning for probability estimation using Jensen-Shannon divergence
    • P. Melville, S. M. Yang, M. Saar-Tsechansky, and R. J. Mooney, "Active learning for probability estimation using Jensen-Shannon divergence," in Proc. 16th ECML, 2005, pp. 268-279.
    • (2005) Proc. 16th ECML , pp. 268-279
    • Melville, P.1    Yang, S.M.2    Saar-Tsechansky, M.3    Mooney, R.J.4
  • 33
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM in pool-based active learning for text classification
    • A. K. McCallum and K. Nigam, "Employing EM in pool-based active learning for text classification," in Proc. 15th ICML, 1998, pp. 350-358.
    • (1998) Proc , vol.15 th , Issue.ICML , pp. 350-358
    • McCallum, A.K.1    Nigam, K.2
  • 34
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning = robust muti-view learning
    • Sydney, Australia
    • I. Muslea, S. Minton, and C. Knoblock, "Active + semi-supervised learning = robust muti-view learning," in Proc 19th ICML, Sydney, Australia, 2002, pp. 435-442.
    • (2002) Proc 19th ICML , pp. 435-442
    • Muslea, I.1    Minton, S.2    Knoblock, C.3
  • 36
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification, of hyperspectral data
    • Jul
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification, of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 38
    • 26444522842 scopus 로고    scopus 로고
    • Adaptive hierarchical classifier with limited training data,
    • Ph.D. dissertation, Dept. Mech. Eng, Univ. Texas, Austin, TX
    • J. T. Morgan, "Adaptive hierarchical classifier with limited training data," Ph.D. dissertation, Dept. Mech. Eng., Univ. Texas, Austin, TX, 2002.
    • (2002)
    • Morgan, J.T.1
  • 39
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 40
    • 41549087009 scopus 로고    scopus 로고
    • Available
    • [Online]. Available: www.lans.ece.utexas.edu/~rsuju/hyper.pdf


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.