메뉴 건너뛰기




Volumn 2015, Issue , 2015, Pages

Deep convolutional neural networks for hyperspectral image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; INDEPENDENT COMPONENT ANALYSIS; NEURAL NETWORKS; SPECTROSCOPY; VISION;

EID: 84939141053     PISSN: 1687725X     EISSN: 16877268     Source Type: Journal    
DOI: 10.1155/2015/258619     Document Type: Article
Times cited : (1619)

References (34)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 17-28, 2002.
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation ofmulticlass image classification by support vector machines
    • G. M. Foody and A. Mathur, "A relative evaluation ofmulticlass image classification by support vector machines," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 6, pp. 1335-1343, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 3
    • 67949115614 scopus 로고    scopus 로고
    • Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 8, pp. 2973-2987, 2009.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 4
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • W. Li, S. Prasad, F. James, and B. Lour, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1185-1198, 2012.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    James, F.3    Lour, B.4
  • 5
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778-1790, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 8
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 844-856, 2013.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 10
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • L. Bruzzone and D. F. Prieto, "A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images," IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 1179-1184, 1999.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.F.2
  • 11
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, pp. 2271-2282, 2010.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 12
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • K. Fukushima, "Neocognitron: a hierarchical neural network capable of visual pattern recognition," Neural Networks, vol. 1, no. 2, pp. 119-130, 1988.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 119-130
    • Fukushima, K.1
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2323, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2323
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • I. Sutskever and G. E. Hinton, "Deep, narrow sigmoid belief networks are universal approximators," Neural Computation, vol. 20, no. 11, pp. 2629-2636, 2008.
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 28
    • 0014266913 scopus 로고
    • Receptive fields and functional architecture ofmonkey striate cortex
    • D. H. Hubel and T. N. Wiesel, "Receptive fields and functional architecture ofmonkey striate cortex,"The Journal of Physiology, vol. 195, no. 1, pp. 215-243, 1968.
    • (1968) The Journal of Physiology , vol.195 , Issue.1 , pp. 215-243
    • Hubel, D.H.1    Wiesel, T.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.