-
1
-
-
85032751896
-
Hyperspectral image data analysis
-
D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 17-28, 2002.
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 17-28
-
-
Landgrebe, D.1
-
2
-
-
3042654673
-
A relative evaluation ofmulticlass image classification by support vector machines
-
G. M. Foody and A. Mathur, "A relative evaluation ofmulticlass image classification by support vector machines," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 6, pp. 1335-1343, 2004.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.6
, pp. 1335-1343
-
-
Foody, G.M.1
Mathur, A.2
-
3
-
-
67949115614
-
Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques
-
Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 8, pp. 2973-2987, 2009.
-
(2009)
IEEE Transactions on Geoscience and Remote Sensing
, vol.47
, Issue.8
, pp. 2973-2987
-
-
Tarabalka, Y.1
Benediktsson, J.A.2
Chanussot, J.3
-
4
-
-
84859784358
-
Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
-
W. Li, S. Prasad, F. James, and B. Lour, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1185-1198, 2012.
-
(2012)
IEEE Transactions on Geoscience and Remote Sensing
, vol.50
, Issue.4
, pp. 1185-1198
-
-
Li, W.1
Prasad, S.2
James, F.3
Lour, B.4
-
5
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778-1790, 2004.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
6
-
-
0034546934
-
Support vectormachines for classification of hyperspectral data
-
IEEE, July
-
J. A. Gualtieri and S. Chettri, "Support vectormachines for classification of hyperspectral data," in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 00), vol. 2, pp. 813-815, IEEE, July 2000.
-
(2000)
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 00)
, vol.2
, pp. 813-815
-
-
Gualtieri, J.A.1
Chettri, S.2
-
7
-
-
79951950272
-
Support vector machines in remote sensing: A review
-
G. Mountrakis, J. Im, and C. Ogole, "Support vector machines in remote sensing: a review," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247-259, 2011.
-
(2011)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.66
, Issue.3
, pp. 247-259
-
-
Mountrakis, G.1
Im, J.2
Ogole, C.3
-
8
-
-
84872922940
-
Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
-
J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 844-856, 2013.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, Issue.2
, pp. 844-856
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
9
-
-
0031105739
-
Introduction neural networks in remote sensing
-
P. M. Atkinson and A. R. L. Tatnall, "Introduction neural networks in remote sensing," International Journal of Remote Sensing, vol. 18, no. 4, pp. 699-709, 1997.
-
(1997)
International Journal of Remote Sensing
, vol.18
, Issue.4
, pp. 699-709
-
-
Atkinson, P.M.1
Tatnall, A.R.L.2
-
10
-
-
0033099197
-
A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
-
L. Bruzzone and D. F. Prieto, "A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images," IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 1179-1184, 1999.
-
(1999)
IEEE Transactions on Geoscience and Remote Sensing
, vol.37
, Issue.2
, pp. 1179-1184
-
-
Bruzzone, L.1
Prieto, D.F.2
-
11
-
-
77951295198
-
Semisupervised neural networks for efficient hyperspectral image classification
-
F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, pp. 2271-2282, 2010.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, Issue.5
, pp. 2271-2282
-
-
Ratle, F.1
Camps-Valls, G.2
Weston, J.3
-
12
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
13
-
-
0023846591
-
Neocognitron: A hierarchical neural network capable of visual pattern recognition
-
K. Fukushima, "Neocognitron: a hierarchical neural network capable of visual pattern recognition," Neural Networks, vol. 1, no. 2, pp. 119-130, 1988.
-
(1988)
Neural Networks
, vol.1
, Issue.2
, pp. 119-130
-
-
Fukushima, K.1
-
14
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2323, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2323
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
15
-
-
84881039921
-
Flexible, high performance convolutional neural networks for image classification
-
July
-
D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, "Flexible, high performance convolutional neural networks for image classification," in Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 11), vol. 22, pp. 1237-1242, July 2011.
-
(2011)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 11)
, vol.22
, pp. 1237-1242
-
-
Ciresan, D.C.1
Meier, U.2
Masci, J.3
Gambardella, L.M.4
Schmidhuber, J.5
-
16
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
IEEE Computer Society, Edinburgh, UK, August
-
P. Y. Simard, D. Steinkraus, and J. C. Platt, "Best practices for convolutional neural networks applied to visual document analysis," in Proceedings of the 7th International Conference on Document Analysis and Recognition, vol. 2, pp. 958-963, IEEE Computer Society, Edinburgh, UK, August 2003.
-
(2003)
Proceedings of the 7th International Conference on Document Analysis and Recognition
, vol.2
, pp. 958-963
-
-
Simard, P.Y.1
Steinkraus, D.2
Platt, J.C.3
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12), pp. 1097-1105, 2012.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
IEEE, June
-
D. Ciregan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 12), pp. 3642-3649, IEEE, June 2012.
-
(2012)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 12)
, pp. 3642-3649
-
-
Ciregan, D.1
Meier, U.2
Schmidhuber, J.3
-
20
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
IEEE, June
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 14), pp. 580-587, IEEE, June 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 14)
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
21
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1915-1929, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
22
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classification
-
IEEE, November
-
P. Sermanet, S. Chintala, and Y. LeCun, "Convolutional neural networks applied to house numbers digit classification," in Proceedings of the 21st International Conference on Pattern Recognition (ICPR 12), pp. 3288-3291, IEEE, November 2012.
-
(2012)
Proceedings of the 21st International Conference on Pattern Recognition (ICPR 12)
, pp. 3288-3291
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
23
-
-
84911198048
-
DeepFace: Closing the gap to human-level performance in face verification
-
Columbus, Ohio, USA, June
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "DeepFace: closing the gap to human-level performance in face verification," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 14), pp. 1701-1708, Columbus, Ohio, USA, June 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 14)
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
24
-
-
84890525984
-
Deep convolutional neural networks for LVCSR
-
IEEE, Vancouver, Canada, May
-
T. N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, "Deep convolutional neural networks for LVCSR," in Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 13), pp. 8614-8618, IEEE, Vancouver, Canada, May 2013.
-
(2013)
Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 13)
, pp. 8614-8618
-
-
Sainath, T.N.1
Mohamed, A.-R.2
Kingsbury, B.3
Ramabhadran, B.4
-
25
-
-
84867605836
-
Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
-
IEEE, March
-
O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, "Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition," in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 12), pp. 4277-4280, IEEE, March 2012.
-
(2012)
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 12)
, pp. 4277-4280
-
-
Abdel-Hamid, O.1
Mohamed, A.-R.2
Jiang, H.3
Penn, G.4
-
26
-
-
84905925092
-
Deep learningbased classification of hyperspectral data
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learningbased classification of hyperspectral data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094-2107, 2014.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
27
-
-
55749105263
-
Deep, narrow sigmoid belief networks are universal approximators
-
I. Sutskever and G. E. Hinton, "Deep, narrow sigmoid belief networks are universal approximators," Neural Computation, vol. 20, no. 11, pp. 2629-2636, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.11
, pp. 2629-2636
-
-
Sutskever, I.1
Hinton, G.E.2
-
28
-
-
0014266913
-
Receptive fields and functional architecture ofmonkey striate cortex
-
D. H. Hubel and T. N. Wiesel, "Receptive fields and functional architecture ofmonkey striate cortex,"The Journal of Physiology, vol. 195, no. 1, pp. 215-243, 1968.
-
(1968)
The Journal of Physiology
, vol.195
, Issue.1
, pp. 215-243
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
29
-
-
84872543023
-
Efficient backprop
-
Springer, Berlin, Germany
-
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural Networks: Tricks of the Trade, pp. 9-48, Springer, Berlin, Germany, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
30
-
-
84988352824
-
Theano: Deep learning on GPUS with python
-
Granada, Spain, December
-
J. Bergstra, F. Bastien, O. Breuleux, et al., "Theano: deep learning on GPUs with python," in Proceedings of the NIPS 2011, Big Learning Workshop, pp. 712-721, Granada, Spain, December 2011.
-
(2011)
Proceedings of the NIPS 2011, Big Learning Workshop
, pp. 712-721
-
-
Bergstra, J.1
Bastien, F.2
Breuleux, O.3
-
31
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM, Orland o, Fla, USA, November
-
Y. Jia, E. Shelhamer, J. Donahue, et al., "Caffe: convolutional architecture for fast feature embedding," in Proceedings of the ACM International Conference on Multimedia, pp. 675-678, ACM, Orland o, Fla, USA, November 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
-
33
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
IEEE, June
-
S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 05), vol. 1, pp. 539-546, IEEE, June 2005.
-
(2005)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 05)
, vol.1
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
34
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
|