메뉴 건너뛰기




Volumn 91, Issue , 2016, Pages 566-575

Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning

Author keywords

deep learning; remote sensing image; target recognition

Indexed keywords

DISASTER PREVENTION; DISASTERS; GEOLOGY; IMAGE RECONSTRUCTION; LANDSLIDES;

EID: 84984939548     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2016.07.144     Document Type: Conference Paper
Times cited : (141)

References (31)
  • 3
    • 70449093140 scopus 로고    scopus 로고
    • Indicator System and Techniques of Landslide Monitoring
    • Zhou Pinggen Indicator System and Techniques of Landslide Monitoring Journal of Geomechanics 10 1 2004 19 26
    • (2004) Journal of Geomechanics , vol.10 , Issue.1 , pp. 19-26
    • Pinggen, Z.1
  • 4
    • 84985039487 scopus 로고    scopus 로고
    • Review and the Prospects of Applying the Remote Sensing Technique to Oasis Study in China
    • A. Wang Zhihua Review and the Prospects of Applying the Remote Sensing Technique to Oasis Study in China Remote Sensing for Land & Resources 1 2007 10 15
    • (2007) Remote Sensing for Land & Resources , Issue.1 , pp. 10-15
    • Wang Zhihua, A.1
  • 5
    • 84863163760 scopus 로고    scopus 로고
    • The Application of Remote Sensing Digital Technique in the Investigate of the Tiantai Landslide in Xuanhan County
    • Yang Erhong, Wang Zhihua, and Jia Shaohui The Application of Remote Sensing Digital Technique in the Investigate of the Tiantai Landslide in Xuanhan County Journal of Jilin University (Earth Science Edition) 37 3 2007 557 563
    • (2007) Journal of Jilin University (Earth Science Edition) , vol.37 , Issue.3 , pp. 557-563
    • Erhong, Y.1    Zhihua, W.2    Shaohui, J.3
  • 8
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognitiuon
    • G.E. Dahl, D. Yu, L. Deng, and et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognitiuon Audio, Speech, and Language Processing, IEEE Transactions on 20 1 2012 30 42
    • (2012) Audio, Speech, and Language Processing, IEEE Transactions on , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3
  • 9
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification with deep convolutional neural networks
    • Krizhevsky A, Sutskever I and Hinton G. ImageNet Classification with deep convolutional neural networks. NIPS' 2012.
    • (2012) NIPS'
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 12
    • 84921968344 scopus 로고    scopus 로고
    • Deep learning face representation by joint identification-verification
    • Sun Y, Wang X, Tang X. Deep learning face representation by joint identification-verification. CoRR; 2014.
    • (2014) CoRR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • G.E. Hinton, S. Osinder, and Y.W. The A Fast Learning Algorithm for Deep Belief Nets Neural Computation 18 7 2006 1527 1554
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osinder, S.2    The, Y.W.3
  • 15
    • 0029751523 scopus 로고    scopus 로고
    • Remote Sensing Techniques for Landslide Studies and Disaster Zonation in Europe
    • F. Mantovani, R. Soeters, and C.J. Western Remote Sensing Techniques for Landslide Studies and Disaster Zonation in Europe Geomorphology 15 3-4 1996 213 225
    • (1996) Geomorphology , vol.15 , Issue.3-4 , pp. 213-225
    • Mantovani, F.1    Soeters, R.2    Western, C.J.3
  • 16
    • 79952936748 scopus 로고    scopus 로고
    • Reviewing and Prospecting for Applying Remote Sensing to Landslide and Debrisflow Investigation
    • Wang Zhihua Reviewing and Prospecting for Applying Remote Sensing to Landslide and Debrisflow Investigation Remote Sensing for Land & Resources 41 3 1999 10 15
    • (1999) Remote Sensing for Land & Resources , vol.41 , Issue.3 , pp. 10-15
    • Zhihua, W.1
  • 17
    • 0142060052 scopus 로고    scopus 로고
    • Detecting trans lational lands lide scars using segmentation of Landsat ETM+and DEM data in the northern Cas-cade Mountains, British Columbia
    • J. Barlow, Y. Martin, and S.E. Franlin Detecting trans lational lands lide scars using segmentation of Landsat ETM+and DEM data in the northern Cas-cade Mountains, British Columbia Canadian journ al of remote sensing; 29 2003 510 517
    • (2003) Canadian Journ Al of Remote Sensing , vol.29 , pp. 510-517
    • Barlow, J.1    Martin, Y.2    Franlin, S.E.3
  • 18
    • 18544375163 scopus 로고    scopus 로고
    • Classification of soil-and bed rock-dominated landlsides in British Colunbia using segmentation of satellite imagery and DEM data
    • Y.E. Martin, and S.E. Franklin Classification of soil-and bed rock-dominated landlsides in British Colunbia using segmentation of satellite imagery and DEM data International journal of remote sensing 26 7 2005 1505 1509
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.7 , pp. 1505-1509
    • Martin, Y.E.1    Franklin, S.E.2
  • 21
    • 59849085097 scopus 로고    scopus 로고
    • Modeling the potential distribution of shallow-seated landslides using the weights of evidence method and a logistic regression model: A case study of the Sabae Area, Japan
    • Song Ruhua, D. Hiromu, and Abe Kazutoki Modeling the potential distribution of shallow-seated landslides using the weights of evidence method and a logistic regression model: a case study of the Sabae Area, Japan International Journal of Sediment Research 23 2 2008 106 118
    • (2008) International Journal of Sediment Research , vol.23 , Issue.2 , pp. 106-118
    • Ruhua, S.1    Hiromu, D.2    Kazutokiet, A.3
  • 22
    • 42749090248 scopus 로고    scopus 로고
    • Favorability functions based on kernel density estimation for logistic models: A case study
    • Ana Colubi, and et al. Favorability functions based on kernel density estimation for logistic models: A case study Computational Statistics and Data Analysis 52 9 2008 4533 4543
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.9 , pp. 4533-4543
    • Colubi, A.1
  • 23
    • 41249092382 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea
    • S. Lee Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea International Journal of Remote Sensing 28 21 2007 4763 4783
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.21 , pp. 4763-4783
    • Lee, S.1
  • 24
    • 52949147068 scopus 로고    scopus 로고
    • Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong
    • X. Yao, L.G. Tham, and F.C. Dai Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong China. Geomorphology; 101 4 2008 572 582
    • (2008) China. Geomorphology , vol.101 , Issue.4 , pp. 572-582
    • Yao, X.1    Tham, L.G.2    Dai, F.C.3
  • 25
    • 84984962948 scopus 로고    scopus 로고
    • Research of Unbalance Sentiment Classification Based on Denoising Autoencoders
    • Qin Shengjun, and Lin Zhiping Research of Unbalance Sentiment Classification Based on Denoising Autoencoders Science Technology and Engineering; 14 12 2014 232 235
    • (2014) Science Technology and Engineering , vol.14 , Issue.12 , pp. 232-235
    • Shengjun, Q.1    Zhiping, L.2
  • 26
    • 18844437317 scopus 로고    scopus 로고
    • A novel algorithm for ship detection in SAR imagery based on the wavelet transform
    • M. Tello, and et al. A novel algorithm for ship detection in SAR imagery based on the wavelet transform IEEE Geosci. Remote Sens. Lett 2005 201 205
    • (2005) IEEE Geosci. Remote Sens. Lett , pp. 201-205
    • Tello, M.1
  • 27
    • 0026686049 scopus 로고
    • Singularity Detection and Processing with Wavelets
    • S. Mallat, and et al. Singularity Detection and Processing with Wavelets IEEE Trans. Inf 1992 617 643
    • (1992) IEEE Trans. Inf , pp. 617-643
    • Mallat, S.1
  • 29
    • 85003881943 scopus 로고    scopus 로고
    • DeepLearnToolbox. http://github.com/happynear/DeepLearnToolbox.
    • DeepLearnToolbox


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.