메뉴 건너뛰기




Volumn 10033, Issue , 2016, Pages

Very high resolution images classification by fine tuning deep convolutional neural networks

Author keywords

Classification; Convolutional neural networks; Fine tuning; VHR images

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE PROCESSING; NEURAL NETWORKS; REMOTE SENSING;

EID: 85000501173     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2244339     Document Type: Conference Paper
Times cited : (8)

References (18)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. trends Mach. Learn., vol. 2, no. 1, 1-127 (2009).
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 84869762769 scopus 로고    scopus 로고
    • Deep learning in very h igh resolution remote sensing image information mining communication concept
    • C. Vaduva, I. Gavat, and M. Datcu, "Deep learning in very h igh resolution remote sensing image information mining communication concept," Proc. EUSIPCO 2012, 2506-2510 (2012)
    • (2012) Proc. EUSIPCO 2012 , pp. 2506-2510
    • Vaduva, C.1    Gavat, I.2    Datcu, M.3
  • 4
    • 84983164503 scopus 로고    scopus 로고
    • Classification of hyperspectral image based on deep belief networks
    • T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief networks," Proc. ICIP 2014, 5132-5136 (2014)
    • (2014) Proc. ICIP 2014 , pp. 5132-5136
    • Li, T.1    Zhang, J.2    Zhang, Y.3
  • 6
    • 84965122839 scopus 로고
    • Convolutional networks for images, speech, and time series
    • Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series," Handb. brain theory neural networks, 3361(10), (1995)
    • (1995) Handb. Brain Theory Neural Networks , vol.3361 , Issue.10
    • LeCun, Y.1    Bengio, Y.2
  • 8
    • 0029659966 scopus 로고    scopus 로고
    • Image-based atmospheric corrections-revisited and improved
    • P. S. Chavez, "Image-based atmospheric corrections-revisited and improved," Photogramm. Eng. Remote Sensing, 62(9), 1025-1035 (1996)
    • (1996) Photogramm. Eng. Remote Sensing , vol.62 , Issue.9 , pp. 1025-1035
    • Chavez, P.S.1
  • 9
    • 84959360430 scopus 로고    scopus 로고
    • Improving spatial feature representation from aerial scenes by using convolutional networks
    • K. Nogueira, W. O. Miranda, and J. A. Dos Santos, "Improving Spatial Feature Representation from Aerial Scenes by Using Convolutional Networks," Proc. SIBGRAPI 28th, 289-296 (2015)
    • (2015) Proc. SIBGRAPI 28th , pp. 289-296
    • Nogueira, K.1    Miranda, W.O.2    Dos Santos, J.A.3
  • 12
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • F. Hu, G.-S. Xia, J. Hu, and L. Zhang, "Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery," Remote Sens., 7 (11),14680-14707 (2015).
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 17
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Computer vision-ECCV 2014, Springer, 818-833 (2014)
    • (2014) Computer Vision-ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 18
    • 84989300081 scopus 로고    scopus 로고
    • Convolutional neural networks for v isual recognition
    • A. Karpathy., "Convolutional neural networks for v isual recognition.," In Stanford CS class CS231n. http://cs231n.github.io/transfer-learning/.
    • Stanford CS Class CS231n
    • Karpathy, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.