메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2094-2107

Deep learning-based classification of hyperspectral data

Author keywords

Autoencoder (AE); deep learning; feature extraction; hyperspectral data classification; logistic regression; stacked autoencoder (SAE); support vector machine (SVM)

Indexed keywords

FEATURE EXTRACTION; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84905925092     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2329330     Document Type: Article
Times cited : (2431)

References (47)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 0035573318 scopus 로고    scopus 로고
    • Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia
    • F. M. Lacar, M. M. Lewis, and I. T. Grierson, "Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Sydney, Australia, 2001, vol. 6, pp. 2875-2877. (Pubitemid 34245325)
    • (2001) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.6 , pp. 2875-2877
    • Lacar, F.M.1    Lewis, M.M.2    Grierson, I.T.3
  • 4
    • 1342331476 scopus 로고    scopus 로고
    • Analysis of spectral absorption features in hyperspectral imagery
    • Jan.
    • F. V. D. Meer, "Analysis of spectral absorption features in hyperspectral imagery," Int. J. Appl. Earth Observ. Geoinf., vol. 5, no. 1, pp. 55-68, Jan. 2004.
    • (2004) Int. J. Appl. Earth Observ. Geoinf. , vol.5 , Issue.1 , pp. 55-68
    • Meer, F.V.D.1
  • 5
    • 77957602079 scopus 로고    scopus 로고
    • An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
    • May
    • P. W. Yuen and M. Richardson, "An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition," Imaging Sci. J., vol. 58, no. 5, pp. 241-253, May 2010.
    • (2010) Imaging Sci. J. , vol.58 , Issue.5 , pp. 241-253
    • Yuen, P.W.1    Richardson, M.2
  • 8
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
    • DOI 10.1016/j.tifs.2007.06.001, PII S0924224407002026
    • A. A. Gowen et al., "Hyperspectral imaging-An emerging process analytical tool for food quality and safety control," Trends Food Sci. Technol., vol. 18, no. 12, pp. 590-598, Dec. 2007. (Pubitemid 350017801)
    • (2007) Trends in Food Science and Technology , vol.18 , Issue.12 , pp. 590-598
    • Gowen, A.A.1    O'Donnell, C.P.2    Cullen, P.J.3    Downey, G.4    Frias, J.M.5
  • 9
    • 0042843360 scopus 로고    scopus 로고
    • Remote sensing of the coastal zone: An overview and priorities for future research
    • DOI 10.1080/0143116031000066954
    • T. J. Malthus and P. J. Mumby, "Remote sensing of the coastal zone: An overview and priorities for future research," Int. J. Remote Sens., vol. 24, no. 13, pp. 2805-2815, Nov. 2003. (Pubitemid 36910811)
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.13 , pp. 2805-2815
    • Malthus, T.J.1    Mumby, P.J.2
  • 10
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • Feb.
    • J. Bioucas-Dias et al., "Hyperspectral remote sensing data analysis and future challenges," Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Feb. 2013.
    • (2013) Geosci. Remote Sens. Mag. , vol.1 , Issue.2 , pp. 6-36
    • Bioucas-Dias, J.1
  • 11
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 13
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Jun.
    • G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 14
    • 84905913786 scopus 로고    scopus 로고
    • Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images
    • Jun. 25-28
    • A. Ambikapathi, T.-H. Chan, C.-H. Lin, and C.-Y. Chi, "Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images," in Proc. IEEE Whispers, Gainesville, FL, USA, Jun. 25-28, 2013.
    • (2013) Proc. IEEE Whispers, Gainesville, FL, USA
    • Ambikapathi, A.1    Chan, T.-H.2    Lin, C.-H.3    Chi, C.-Y.4
  • 15
    • 0036821665 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    • Oct.
    • L. M. Bruce, C. H. Koger, and J. Li, "Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2331-2338, Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2331-2338
    • Bruce, L.M.1    Koger, C.H.2    Li, J.3
  • 16
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and supervised feature reduction via projection pursuit
    • DOI 10.1109/36.803413
    • L. O. Jimenez and D. A. Landgrebe, "Hyperspectral data analysis and supervised feature reduction via projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2653-2667, Jun. 1999. (Pubitemid 30519598)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2653-2667
    • Jimenez, L.O.1
  • 17
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul.
    • J. C. Harsanyi and C. I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 18
    • 0033224770 scopus 로고    scopus 로고
    • Joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • DOI 10.1109/36.803411
    • C. I. Chang, Q. Du, T. Sun, and M. L. G. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Jun. 1999. (Pubitemid 30519596)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 19
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • DOI 10.1109/36.934069, PII S0196289201054997
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001. (Pubitemid 32732652)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 20
    • 84865742501 scopus 로고    scopus 로고
    • Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization
    • Mar.
    • F. Samadzadegan, H. Hasani, and T. Schenk, "Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization," Can. J. Remote Sens., vol. 38, no. 2. pp. 139-156, Mar. 2012.
    • (2012) Can. J. Remote Sens. , vol.38 , Issue.2 , pp. 139-156
    • Samadzadegan, F.1    Hasani, H.2    Schenk, T.3
  • 21
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and B. Lorenzo, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Lorenzo, B.2
  • 24
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 25
    • 84879847917 scopus 로고    scopus 로고
    • Deep hierarchies in primate visual cortex what can we learn for computer vision?
    • Aug.
    • N. Kruger et al., "Deep hierarchies in primate visual cortex what can we learn for computer vision?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1847-1871, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1847-1871
    • Kruger, N.1
  • 26
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Lake Tahoe, Nevada, USA
    • A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Neural Inf. Process. Syst. 25, Lake Tahoe, Nevada, USA, 2012, pp. 1106-1114.
    • (2012) Proc. Neural Inf. Process. Syst. , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313. no. 5786, pp. 504-507, Jul. 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 79959858900 scopus 로고    scopus 로고
    • Learning in the deep structured conditional random fields
    • Vancouver, BC, Canada Dec.
    • D. Yu, L. Deng, and S. Wang, "Learning in the deep structured conditional random fields," in Proc. Neural Inf. Process. Syst. Workshop, Vancouver, BC, Canada, Dec. 2009, pp. 1-8.
    • (2009) Proc. Neural Inf. Process. Syst. Workshop , pp. 1-8
    • Yu, D.1    Deng, L.2    Wang, S.3
  • 30
    • 77950918832 scopus 로고    scopus 로고
    • Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data
    • Grenoble, France
    • A. Plaza, J. Plaza, and G. Martin, "Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., Grenoble, France, 2009, pp. 1-6.
    • (2009) Proc. IEEE Int. Workshop Mach. Learn. Signal Process. , pp. 1-6
    • Plaza, A.1    Plaza, J.2    Martin, G.3
  • 31
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 32
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel et al., "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1
  • 33
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 34
    • 84890123096 scopus 로고    scopus 로고
    • Spatial-spectral kernel sparse representation for hyperspectral image classification
    • Jun.
    • J. Liu et al., "Spatial-spectral kernel sparse representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2462-2471, Jun. 2013.
    • (2013) J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.6 , pp. 2462-2471
    • Liu, J.1
  • 35
    • 0024878952 scopus 로고
    • Theory of the backpropagation neural network
    • R. Hecht-Nielsen, "Theory of the backpropagation neural network," in Proc. Int. Joint Conf. IEEE Neural Netw., Washington, DC, USA, 1989, pp. 593-605. (Pubitemid 20642025)
    • (1989) IJCNN Int Jt Conf Neural Network , pp. 593-605
    • Hecht-Nielsen Robert1
  • 36
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • Nov.
    • I. Sutskever and G. E. Hinton, "Deep, narrow sigmoid belief networks are universal approximators," Neural Comput., vol. 20, no. 11, pp. 2629-2636, Nov. 2008.
    • (2008) Neural Comput. , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 37
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • Aug.
    • N. LeRoux and Y. Bengio, "Deep belief networks are compact universal approximators," Neural Comput., vol. 22, no. 8, pp. 2192-2207, Aug. 2010.
    • (2010) Neural Comput. , vol.22 , Issue.8 , pp. 2192-2207
    • Leroux, N.1    Bengio, Y.2
  • 38
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 43
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Apr.
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, Apr. 1989.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • Lecun, Y.1
  • 44
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, Apr. 1980. (Pubitemid 10080678)
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 45
    • 0024207930 scopus 로고
    • Areappraisal of the kappa coefficient
    • Oct.
    • W. D. Thompson and S. D. Walter, "Areappraisal of the kappa coefficient," J. Clin. Epidemiol., vol. 41, no. 10, pp. 949-958, Oct. 1988.
    • (1988) J. Clin. Epidemiol. , vol.41 , Issue.10 , pp. 949-958
    • Thompson, W.D.1    Walter, S.D.2
  • 46
    • 84855430126 scopus 로고    scopus 로고
    • Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
    • Feb.
    • Z. Zhu, C. E. Woodcock, J. Rogan, and J. Kellndorfer, "Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data," Remote Sens. Environ., vol. 117, pp. 72-82, Feb. 2012.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 72-82
    • Zhu, Z.1    Woodcock, C.E.2    Rogan, J.3    Kellndorfer, J.4
  • 47
    • 84902133494 scopus 로고    scopus 로고
    • Learning discriminative hierarchical features for object recognition
    • Sep.
    • Z. Zhen and G. Wang, "Learning discriminative hierarchical features for object recognition," IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1159-1163, Sep. 2014
    • (2014) IEEE Signal Process. Lett. , vol.21 , Issue.9 , pp. 1159-1163
    • Zhen, Z.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.