-
1
-
-
85032751896
-
Hyperspectral image data analysis
-
DOI 10.1109/79.974718
-
D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 17-28
-
-
Landgrebe, D.1
-
3
-
-
0035573318
-
Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia
-
F. M. Lacar, M. M. Lewis, and I. T. Grierson, "Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Sydney, Australia, 2001, vol. 6, pp. 2875-2877. (Pubitemid 34245325)
-
(2001)
International Geoscience and Remote Sensing Symposium (IGARSS)
, vol.6
, pp. 2875-2877
-
-
Lacar, F.M.1
Lewis, M.M.2
Grierson, I.T.3
-
4
-
-
1342331476
-
Analysis of spectral absorption features in hyperspectral imagery
-
Jan.
-
F. V. D. Meer, "Analysis of spectral absorption features in hyperspectral imagery," Int. J. Appl. Earth Observ. Geoinf., vol. 5, no. 1, pp. 55-68, Jan. 2004.
-
(2004)
Int. J. Appl. Earth Observ. Geoinf.
, vol.5
, Issue.1
, pp. 55-68
-
-
Meer, F.V.D.1
-
5
-
-
77957602079
-
An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
-
May
-
P. W. Yuen and M. Richardson, "An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition," Imaging Sci. J., vol. 58, no. 5, pp. 241-253, May 2010.
-
(2010)
Imaging Sci. J.
, vol.58
, Issue.5
, pp. 241-253
-
-
Yuen, P.W.1
Richardson, M.2
-
7
-
-
1942487668
-
Hyperspectral imaging for astronomy and space surveillance
-
E. K. Hege et al., "Hyperspectral imaging for astronomy and space surveillance," in Proc. SPIE's 48th Annu. Meet. Opt. Sci. Technol., San Diego, CA, USA, 2004, pp. 380-391.
-
(2004)
Proc. SPIE's 48th Annu. Meet. Opt. Sci. Technol., San Diego, CA, USA
, pp. 380-391
-
-
Hege, E.K.1
-
8
-
-
35548953824
-
Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
-
DOI 10.1016/j.tifs.2007.06.001, PII S0924224407002026
-
A. A. Gowen et al., "Hyperspectral imaging-An emerging process analytical tool for food quality and safety control," Trends Food Sci. Technol., vol. 18, no. 12, pp. 590-598, Dec. 2007. (Pubitemid 350017801)
-
(2007)
Trends in Food Science and Technology
, vol.18
, Issue.12
, pp. 590-598
-
-
Gowen, A.A.1
O'Donnell, C.P.2
Cullen, P.J.3
Downey, G.4
Frias, J.M.5
-
9
-
-
0042843360
-
Remote sensing of the coastal zone: An overview and priorities for future research
-
DOI 10.1080/0143116031000066954
-
T. J. Malthus and P. J. Mumby, "Remote sensing of the coastal zone: An overview and priorities for future research," Int. J. Remote Sens., vol. 24, no. 13, pp. 2805-2815, Nov. 2003. (Pubitemid 36910811)
-
(2003)
International Journal of Remote Sensing
, vol.24
, Issue.13
, pp. 2805-2815
-
-
Malthus, T.J.1
Mumby, P.J.2
-
10
-
-
84888349041
-
Hyperspectral remote sensing data analysis and future challenges
-
Feb.
-
J. Bioucas-Dias et al., "Hyperspectral remote sensing data analysis and future challenges," Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Feb. 2013.
-
(2013)
Geosci. Remote Sens. Mag.
, vol.1
, Issue.2
, pp. 6-36
-
-
Bioucas-Dias, J.1
-
11
-
-
41549147912
-
An active learning approach to hyperspectral data classification
-
DOI 10.1109/TGRS.2007.910220, 4469868
-
S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing
, vol.46
, Issue.4
, pp. 1231-1242
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
12
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
DOI 10.1109/TGRS.2005.846154
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
13
-
-
3042654673
-
A relative evaluation of multiclass image classification by support vector machines
-
Jun.
-
G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.6
, pp. 1335-1343
-
-
Foody, G.M.1
Mathur, A.2
-
14
-
-
84905913786
-
Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images
-
Jun. 25-28
-
A. Ambikapathi, T.-H. Chan, C.-H. Lin, and C.-Y. Chi, "Convex geometry based outlier-insensitive estimation of number of endmembers in hyperspectral images," in Proc. IEEE Whispers, Gainesville, FL, USA, Jun. 25-28, 2013.
-
(2013)
Proc. IEEE Whispers, Gainesville, FL, USA
-
-
Ambikapathi, A.1
Chan, T.-H.2
Lin, C.-H.3
Chi, C.-Y.4
-
15
-
-
0036821665
-
Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
-
Oct.
-
L. M. Bruce, C. H. Koger, and J. Li, "Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2331-2338, Oct. 2002.
-
(2002)
IEEE Trans. Geosci. Remote Sens.
, vol.40
, Issue.10
, pp. 2331-2338
-
-
Bruce, L.M.1
Koger, C.H.2
Li, J.3
-
16
-
-
0033224771
-
Hyperspectral data analysis and supervised feature reduction via projection pursuit
-
DOI 10.1109/36.803413
-
L. O. Jimenez and D. A. Landgrebe, "Hyperspectral data analysis and supervised feature reduction via projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2653-2667, Jun. 1999. (Pubitemid 30519598)
-
(1999)
IEEE Transactions on Geoscience and Remote Sensing
, vol.37
, Issue.6
, pp. 2653-2667
-
-
Jimenez, L.O.1
-
17
-
-
0028467206
-
Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
-
Jul.
-
J. C. Harsanyi and C. I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.4
, pp. 779-785
-
-
Harsanyi, J.C.1
Chang, C.I.2
-
18
-
-
0033224770
-
Joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
-
DOI 10.1109/36.803411
-
C. I. Chang, Q. Du, T. Sun, and M. L. G. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Jun. 1999. (Pubitemid 30519596)
-
(1999)
IEEE Transactions on Geoscience and Remote Sensing
, vol.37
, Issue.6
, pp. 2631-2641
-
-
Chang, C.-I.1
Du, Q.2
Sun, T.-L.3
Althouse, M.L.G.4
-
19
-
-
0035391615
-
A new search algorithm for feature selection in hyperspectral remote sensing images
-
DOI 10.1109/36.934069, PII S0196289201054997
-
S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001. (Pubitemid 32732652)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.7
, pp. 1360-1367
-
-
Serpico, S.B.1
Bruzzone, L.2
-
20
-
-
84865742501
-
Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization
-
Mar.
-
F. Samadzadegan, H. Hasani, and T. Schenk, "Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization," Can. J. Remote Sens., vol. 38, no. 2. pp. 139-156, Mar. 2012.
-
(2012)
Can. J. Remote Sens.
, vol.38
, Issue.2
, pp. 139-156
-
-
Samadzadegan, F.1
Hasani, H.2
Schenk, T.3
-
21
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug.
-
F. Melgani and B. Lorenzo, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Lorenzo, B.2
-
22
-
-
0034546934
-
Support Vector Machines for classification of hyperspectral data
-
J. A. Gualtieri and S. Chettri, "Support vector machines for classification of hyperspectral data," in Proc. IEEE Geosci. Remote Sens. Symp. (IGARSS), Honolulu, HI, USA, 2000, pp. 813-815. (Pubitemid 32019653)
-
(2000)
International Geoscience and Remote Sensing Symposium (IGARSS)
, vol.2
, pp. 813-815
-
-
Gualtieri, J.A.1
Chettri, S.2
-
24
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug.
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
25
-
-
84879847917
-
Deep hierarchies in primate visual cortex what can we learn for computer vision?
-
Aug.
-
N. Kruger et al., "Deep hierarchies in primate visual cortex what can we learn for computer vision?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1847-1871, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1847-1871
-
-
Kruger, N.1
-
26
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, Nevada, USA
-
A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Neural Inf. Process. Syst. 25, Lake Tahoe, Nevada, USA, 2012, pp. 1106-1114.
-
(2012)
Proc. Neural Inf. Process. Syst.
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
27
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
DOI 10.1126/science.1127647
-
G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313. no. 5786, pp. 504-507, Jul. 2006. (Pubitemid 44148451)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
28
-
-
79959858900
-
Learning in the deep structured conditional random fields
-
Vancouver, BC, Canada Dec.
-
D. Yu, L. Deng, and S. Wang, "Learning in the deep structured conditional random fields," in Proc. Neural Inf. Process. Syst. Workshop, Vancouver, BC, Canada, Dec. 2009, pp. 1-8.
-
(2009)
Proc. Neural Inf. Process. Syst. Workshop
, pp. 1-8
-
-
Yu, D.1
Deng, L.2
Wang, S.3
-
29
-
-
80051654263
-
Deep belief networks using discriminative features for phone recognition
-
A. R. Mohamed, T. N. Sainath, and G. Dahl, "Deep belief networks using discriminative features for phone recognition," in Proc. Acoust. Speech Signal Process. (ICASSP), Prague, Czech Republic, 2011, pp. 5060-5063.
-
(2011)
Proc. Acoust. Speech Signal Process. (ICASSP), Prague, Czech Republic
, pp. 5060-5063
-
-
Mohamed, A.R.1
Sainath, T.N.2
Dahl, G.3
-
30
-
-
77950918832
-
Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data
-
Grenoble, France
-
A. Plaza, J. Plaza, and G. Martin, "Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., Grenoble, France, 2009, pp. 1-6.
-
(2009)
Proc. IEEE Int. Workshop Mach. Learn. Signal Process.
, pp. 1-6
-
-
Plaza, A.1
Plaza, J.2
Martin, G.3
-
31
-
-
67949115614
-
Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
-
Aug.
-
Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.8
, pp. 2973-2987
-
-
Tarabalka, Y.1
Benediktsson, J.A.2
Chanussot, J.3
-
32
-
-
56849127860
-
Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
-
Nov.
-
M. Fauvel et al., "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.11
, pp. 3804-3814
-
-
Fauvel, M.1
-
33
-
-
84872922940
-
Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
-
Feb.
-
J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.2
, pp. 844-856
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
34
-
-
84890123096
-
Spatial-spectral kernel sparse representation for hyperspectral image classification
-
Jun.
-
J. Liu et al., "Spatial-spectral kernel sparse representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2462-2471, Jun. 2013.
-
(2013)
J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.6
, pp. 2462-2471
-
-
Liu, J.1
-
35
-
-
0024878952
-
Theory of the backpropagation neural network
-
R. Hecht-Nielsen, "Theory of the backpropagation neural network," in Proc. Int. Joint Conf. IEEE Neural Netw., Washington, DC, USA, 1989, pp. 593-605. (Pubitemid 20642025)
-
(1989)
IJCNN Int Jt Conf Neural Network
, pp. 593-605
-
-
Hecht-Nielsen Robert1
-
36
-
-
55749105263
-
Deep, narrow sigmoid belief networks are universal approximators
-
Nov.
-
I. Sutskever and G. E. Hinton, "Deep, narrow sigmoid belief networks are universal approximators," Neural Comput., vol. 20, no. 11, pp. 2629-2636, Nov. 2008.
-
(2008)
Neural Comput.
, vol.20
, Issue.11
, pp. 2629-2636
-
-
Sutskever, I.1
Hinton, G.E.2
-
37
-
-
77955997114
-
Deep belief networks are compact universal approximators
-
Aug.
-
N. LeRoux and Y. Bengio, "Deep belief networks are compact universal approximators," Neural Comput., vol. 22, no. 8, pp. 2192-2207, Aug. 2010.
-
(2010)
Neural Comput.
, vol.22
, Issue.8
, pp. 2192-2207
-
-
Leroux, N.1
Bengio, Y.2
-
38
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
39
-
-
84862286946
-
Deep Boltzmann machines
-
R. Salakhutdinov and G. E. Hinton, "Deep Boltzmann machines," in Proc. Int. Conf. Artif. Intell. Statist., Clearwater Beach, FL, USA, 2009, pp. 448-455.
-
(2009)
Proc. Int. Conf. Artif. Intell. Statist., Clearwater Beach, FL, USA
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
40
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Cambridge, MA, USA
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," in Proc. Neural Inf. Process. Syst., Cambridge, MA, USA, 2007, pp. 153-160.
-
(2007)
Proc. Neural Inf. Process. Syst.
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
41
-
-
79551480483
-
Stacked denoising autoencoders
-
Dec.
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, "Stacked denoising autoencoders," J.Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, Issue.12
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
42
-
-
78650474133
-
-
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep. UTML TR2010-003
-
G. E. Hinton, "Apractical guide to training restricted Boltzmann machines," Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep. UTML TR2010-003, 2010.
-
(2010)
Apractical Guide to Training Restricted Boltzmann Machines
-
-
Hinton, G.E.1
-
43
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Apr.
-
Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, Apr. 1989.
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
Lecun, Y.1
-
44
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, Apr. 1980. (Pubitemid 10080678)
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
45
-
-
0024207930
-
Areappraisal of the kappa coefficient
-
Oct.
-
W. D. Thompson and S. D. Walter, "Areappraisal of the kappa coefficient," J. Clin. Epidemiol., vol. 41, no. 10, pp. 949-958, Oct. 1988.
-
(1988)
J. Clin. Epidemiol.
, vol.41
, Issue.10
, pp. 949-958
-
-
Thompson, W.D.1
Walter, S.D.2
-
46
-
-
84855430126
-
Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
-
Feb.
-
Z. Zhu, C. E. Woodcock, J. Rogan, and J. Kellndorfer, "Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data," Remote Sens. Environ., vol. 117, pp. 72-82, Feb. 2012.
-
(2012)
Remote Sens. Environ.
, vol.117
, pp. 72-82
-
-
Zhu, Z.1
Woodcock, C.E.2
Rogan, J.3
Kellndorfer, J.4
-
47
-
-
84902133494
-
Learning discriminative hierarchical features for object recognition
-
Sep.
-
Z. Zhen and G. Wang, "Learning discriminative hierarchical features for object recognition," IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1159-1163, Sep. 2014
-
(2014)
IEEE Signal Process. Lett.
, vol.21
, Issue.9
, pp. 1159-1163
-
-
Zhen, Z.1
Wang, G.2
|