메뉴 건너뛰기




Volumn 19-21-August-2016, Issue , 2016, Pages 268-272

Bands sensitive convolutional network for hyperspectral image classification

Author keywords

Convolutional networks; Hyperspectral image classification; Spectrum analysis

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE MATCHING; SPECTROSCOPY; SPECTRUM ANALYSIS;

EID: 85007610585     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3007669.3007707     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 2
    • 78650860354 scopus 로고    scopus 로고
    • Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains
    • K. L. Bakos and P. Gamba. Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 49(1):388-394, 2011.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing (TGRS) , vol.49 , Issue.1 , pp. 388-394
    • Bakos, K.L.1    Gamba, P.2
  • 6
    • 0034082989 scopus 로고    scopus 로고
    • Using vegetation reectance variability for species level classiffication of hyperspectral data
    • M. Cochrane. Using vegetation reectance variability for species level classiffication of hyperspectral data. International Journal of Remote Sensing (IJRS), 21(10):2075-2087, 2000.
    • (2000) International Journal of Remote Sensing (IJRS) , vol.21 , Issue.10 , pp. 2075-2087
    • Cochrane, M.1
  • 10
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classiffication
    • W. Hu, Y. Y. Huang, L. Wei, F. Zhang, and H. C. Li. Deep convolutional neural networks for hyperspectral image classiffication. Journal of Sensors, page 12, 2015.
    • (2015) Journal of Sensors , pp. 12
    • Hu, W.1    Huang, Y.Y.2    Wei, L.3    Zhang, F.4    Li, H.C.5
  • 11
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for Efficient hyperspectral remote-sensing image display and classiffication
    • X. Jia and J. A. Richards. Segmented principal components transformation for Efficient hyperspectral remote-sensing image display and classiffication. Geoscience and Remote Sensing, IEEE Transactions on, 37(1):538-542, 1999.
    • (1999) Geoscience and Remote Sensing, IEEE Transactions on , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 12
    • 64349105831 scopus 로고    scopus 로고
    • Managing the spectral-spatial mix in context classiffication using markov random fields
    • X. Jia and J. A. Richards. Managing the spectral-spatial mix in context classiffication using markov random fields. Geoscience and Remote Sensing Letters, IEEE, 5(2):311-314, 2008.
    • (2008) Geoscience and Remote Sensing Letters, IEEE , vol.5 , Issue.2 , pp. 311-314
    • Jia, X.1    Richards, J.A.2
  • 15
    • 84962611241 scopus 로고    scopus 로고
    • Hyperspectral imagery classiffication using sparse representations of convolutional neural network features
    • H. M. Liang and Q. Li. Hyperspectral imagery classiffication using sparse representations of convolutional neural network features. Remote Sensing, 8(2):16, 2016.
    • (2016) Remote Sensing , vol.8 , Issue.2 , pp. 16
    • Liang, H.M.1    Li, Q.2
  • 16
    • 84969338344 scopus 로고    scopus 로고
    • Classiffication of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine
    • Q. Lv, X. Niu, Y. Dou, J. Q. Xu, and Y. W. Lei. Classiffication of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geoscience and Remote Sensing Letters, 13(3):434-438, 2016.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.3 , pp. 434-438
    • Lv, Q.1    Niu, X.2    Dou, Y.3    Xu, J.Q.4    Lei, Y.W.5
  • 18
    • 84956648452 scopus 로고    scopus 로고
    • Cannet: Context aware nonlocal convolutional networks for semantic image segmentation
    • IEEE
    • L. Ran, Y. Zhang, and G. Hua. Cannet: Context aware nonlocal convolutional networks for semantic image segmentation. In Image Processing (ICIP), 2015 IEEE International Conference on, pages 4669-4673. IEEE, 2015.
    • (2015) Image Processing (ICIP) 2015 IEEE International Conference on , pp. 4669-4673
    • Ran, L.1    Zhang, Y.2    Hua, G.3
  • 19
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 24
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classiffication of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson. Segmentation and classiffication of hyperspectral images using watershed transformation. Pattern Recognition, 43(7):2367-2379, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 26
    • 84949765821 scopus 로고    scopus 로고
    • Stacked denoise autoencoder based feature extraction and classiffication for hyperspectral images
    • C. Xing, L. Ma, and X. Q. Yang. Stacked denoise autoencoder based feature extraction and classiffication for hyperspectral images. Journal of Sensors, page 10, 2016.
    • (2016) Journal of Sensors , pp. 10
    • Xing, C.1    Ma, L.2    Yang, X.Q.3
  • 27
    • 84961344134 scopus 로고    scopus 로고
    • Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
    • J. Zabalza, J. C. Ren, J. B. Zheng, H. M. Zhao, C. M. Qing, Z. J. Yang, P. J. Du, and S. Marshall. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing, 185:1-10, 2016.
    • (2016) Neurocomputing , vol.185 , pp. 1-10
    • Zabalza, J.1    Ren, J.C.2    Zheng, J.B.3    Zhao, H.M.4    Qing, C.M.5    Yang, Z.J.6    Du, P.J.7    Marshall, S.8
  • 28
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • W. Z. Zhao and S. H. Du. Learning multiscale and deep representations for classifying remotely sensed imagery. Isprs Journal of Photogrammetry and Remote Sensing, 113:155-165, 2016.
    • (2016) Isprs Journal of Photogrammetry and Remote Sensing , vol.113 , pp. 155-165
    • Zhao, W.Z.1    Du, S.H.2
  • 29
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classiffication of hyperspectral remote sensing imagery
    • W. Z. Zhao, Z. Guo, J. Yue, X. Y. Zhang, and L. Q. Luo. On combining multiscale deep learning features for the classiffication of hyperspectral remote sensing imagery. International Journal of Remote Sensing (IJRS), 36(13):3368-3379, 2015.
    • (2015) International Journal of Remote Sensing (IJRS , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.Z.1    Guo, Z.2    Yue, J.3    Zhang, X.Y.4    Luo, L.Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.