-
2
-
-
78650860354
-
Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains
-
K. L. Bakos and P. Gamba. Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 49(1):388-394, 2011.
-
(2011)
IEEE Transactions on Geoscience and Remote Sensing (TGRS)
, vol.49
, Issue.1
, pp. 388-394
-
-
Bakos, K.L.1
Gamba, P.2
-
3
-
-
33747352550
-
Military applications of hyperspectral imagery
-
X. Briottet, Y. Boucher, A. Dimmeler, A. Malaplate, A. Cini, M. Diani, H. Bekman, P. Schwering, T. Skauli, I. Kasen, et al. Military applications of hyperspectral imagery. In Proc. SPIE, volume 6239, page 62390B, 2006.
-
(2006)
Proc. SPIE
, vol.6239
, pp. 62390B
-
-
Briottet, X.1
Boucher, Y.2
Dimmeler, A.3
Malaplate, A.4
Cini, A.5
Diani, M.6
Bekman, H.7
Schwering, P.8
Skauli, T.9
Kasen, I.10
-
4
-
-
84905925092
-
Deep learning-based classiffication of hyperspectral data
-
Y. S. Chen, Z. H. Lin, X. Zhao, G. Wang, and Y. F. Gu. Deep learning-based classiffication of hyperspectral data. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6):2094-2107, 2014.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.S.1
Lin, Z.H.2
Zhao, X.3
Wang, G.4
Gu, Y.F.5
-
5
-
-
85027942618
-
Spectral-spatial classiffication of hyperspectral data based on deep belief network
-
Y. S. Chen, X. Zhao, and X. P. Jia. Spectral-spatial classiffication of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6):2381-2392, 2015.
-
(2015)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.S.1
Zhao, X.2
Jia, X.P.3
-
6
-
-
0034082989
-
Using vegetation reectance variability for species level classiffication of hyperspectral data
-
M. Cochrane. Using vegetation reectance variability for species level classiffication of hyperspectral data. International Journal of Remote Sensing (IJRS), 21(10):2075-2087, 2000.
-
(2000)
International Journal of Remote Sensing (IJRS)
, vol.21
, Issue.10
, pp. 2075-2087
-
-
Cochrane, M.1
-
7
-
-
85007530649
-
-
BigLearn, NIPS Workshop, number EPFL-CONF-192376
-
R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.
-
(2011)
Torch7: A Matlab-like Environment for Machine Learning
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
8
-
-
56849127860
-
Spectral and spatial classiffication of hyperspectral data using svms and morphological profiles
-
M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson. Spectral and spatial classiffication of hyperspectral data using svms and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 46(11):3804-3814, 2008.
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing (TGRS
, vol.46
, Issue.11
, pp. 3804-3814
-
-
Fauvel, M.1
Benediktsson, J.A.2
Chanussot, J.3
Sveinsson, J.R.4
-
9
-
-
84899967600
-
Advances in spectral-spatial classiffication of hyperspectral images
-
M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton. Advances in spectral-spatial classiffication of hyperspectral images. Proceedings of the IEEE, 101(3):652-675, 2013.
-
(2013)
Proceedings of the IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.A.3
Chanussot, J.4
Tilton, J.C.5
-
10
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classiffication
-
W. Hu, Y. Y. Huang, L. Wei, F. Zhang, and H. C. Li. Deep convolutional neural networks for hyperspectral image classiffication. Journal of Sensors, page 12, 2015.
-
(2015)
Journal of Sensors
, pp. 12
-
-
Hu, W.1
Huang, Y.Y.2
Wei, L.3
Zhang, F.4
Li, H.C.5
-
11
-
-
0032737410
-
Segmented principal components transformation for Efficient hyperspectral remote-sensing image display and classiffication
-
X. Jia and J. A. Richards. Segmented principal components transformation for Efficient hyperspectral remote-sensing image display and classiffication. Geoscience and Remote Sensing, IEEE Transactions on, 37(1):538-542, 1999.
-
(1999)
Geoscience and Remote Sensing, IEEE Transactions on
, vol.37
, Issue.1
, pp. 538-542
-
-
Jia, X.1
Richards, J.A.2
-
12
-
-
64349105831
-
Managing the spectral-spatial mix in context classiffication using markov random fields
-
X. Jia and J. A. Richards. Managing the spectral-spatial mix in context classiffication using markov random fields. Geoscience and Remote Sensing Letters, IEEE, 5(2):311-314, 2008.
-
(2008)
Geoscience and Remote Sensing Letters, IEEE
, vol.5
, Issue.2
, pp. 311-314
-
-
Jia, X.1
Richards, J.A.2
-
14
-
-
84983164503
-
Classiffication of hyperspectral image based on deep belief networks
-
New York
-
T. Li, J. P. Zhang, Y. Zhang, and Ieee. Classiffication of hyperspectral image based on deep belief networks. In IEEE International Conference on Image Processing (ICIP), pages 5132-5136, New York, 2014.
-
(2014)
IEEE International Conference on Image Processing (ICIP)
, pp. 5132-5136
-
-
Li, T.1
Zhang, J.P.2
Zhang, Y.3
-
15
-
-
84962611241
-
Hyperspectral imagery classiffication using sparse representations of convolutional neural network features
-
H. M. Liang and Q. Li. Hyperspectral imagery classiffication using sparse representations of convolutional neural network features. Remote Sensing, 8(2):16, 2016.
-
(2016)
Remote Sensing
, vol.8
, Issue.2
, pp. 16
-
-
Liang, H.M.1
Li, Q.2
-
16
-
-
84969338344
-
Classiffication of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine
-
Q. Lv, X. Niu, Y. Dou, J. Q. Xu, and Y. W. Lei. Classiffication of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geoscience and Remote Sensing Letters, 13(3):434-438, 2016.
-
(2016)
IEEE Geoscience and Remote Sensing Letters
, vol.13
, Issue.3
, pp. 434-438
-
-
Lv, Q.1
Niu, X.2
Dou, Y.3
Xu, J.Q.4
Lei, Y.W.5
-
19
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
20
-
-
84962910954
-
Hyperspectral image classiffication with convolutional neural networks
-
ACM
-
V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and R. Van de Walle. Hyperspectral image classiffication with convolutional neural networks. In Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pages 1159-1162. ACM.
-
Proceedings of the 23rd Annual ACM Conference on Multimedia Conference
, pp. 1159-1162
-
-
Slavkovikj, V.1
Verstockt, S.2
De Neve, W.3
Van Hoecke, S.4
De Van Walle, R.5
-
21
-
-
84954523179
-
Unsupervised spectral sub-feature learning for hyperspectral image classiffication
-
V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and R. Van de Walle. Unsupervised spectral sub-feature learning for hyperspectral image classiffication. International Journal of Remote Sensing (IJRS), 37(2):309-326, 2016.
-
(2016)
International Journal of Remote Sensing (IJRS
, vol.37
, Issue.2
, pp. 309-326
-
-
Slavkovikj, V.1
Verstockt, S.2
De Neve, W.3
Van Hoecke, S.4
De Van Walle, R.5
-
22
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
23
-
-
67949115614
-
Spectral-spatial classiffication of hyperspectral imagery based on partitional clustering techniques
-
Y. Tarabalka, J. A. Benediktsson, and J. Chanussot. Spectral-spatial classiffication of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 47(8):2973-2987, 2009.
-
(2009)
IEEE Transactions on Geoscience and Remote Sensing (TGRS)
, vol.47
, Issue.8
, pp. 2973-2987
-
-
Tarabalka, Y.1
Benediktsson, J.A.2
Chanussot, J.3
-
24
-
-
77953764526
-
Segmentation and classiffication of hyperspectral images using watershed transformation
-
Y. Tarabalka, J. Chanussot, and J. A. Benediktsson. Segmentation and classiffication of hyperspectral images using watershed transformation. Pattern Recognition, 43(7):2367-2379, 2010.
-
(2010)
Pattern Recognition
, vol.43
, Issue.7
, pp. 2367-2379
-
-
Tarabalka, Y.1
Chanussot, J.2
Benediktsson, J.A.3
-
25
-
-
84869505872
-
Best merge region-growing segmentation with integrated nonadjacent region object aggregation
-
J. C. Tilton, Y. Tarabalka, P. M. Montesano, and E. Gofman. Best merge region-growing segmentation with integrated nonadjacent region object aggregation. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 50(11):4454-4467, 2012.
-
(2012)
IEEE Transactions on Geoscience and Remote Sensing (TGRS
, vol.50
, Issue.11
, pp. 4454-4467
-
-
Tilton, J.C.1
Tarabalka, Y.2
Montesano, P.M.3
Gofman, E.4
-
26
-
-
84949765821
-
Stacked denoise autoencoder based feature extraction and classiffication for hyperspectral images
-
C. Xing, L. Ma, and X. Q. Yang. Stacked denoise autoencoder based feature extraction and classiffication for hyperspectral images. Journal of Sensors, page 10, 2016.
-
(2016)
Journal of Sensors
, pp. 10
-
-
Xing, C.1
Ma, L.2
Yang, X.Q.3
-
27
-
-
84961344134
-
Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
-
J. Zabalza, J. C. Ren, J. B. Zheng, H. M. Zhao, C. M. Qing, Z. J. Yang, P. J. Du, and S. Marshall. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing, 185:1-10, 2016.
-
(2016)
Neurocomputing
, vol.185
, pp. 1-10
-
-
Zabalza, J.1
Ren, J.C.2
Zheng, J.B.3
Zhao, H.M.4
Qing, C.M.5
Yang, Z.J.6
Du, P.J.7
Marshall, S.8
-
28
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
W. Z. Zhao and S. H. Du. Learning multiscale and deep representations for classifying remotely sensed imagery. Isprs Journal of Photogrammetry and Remote Sensing, 113:155-165, 2016.
-
(2016)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.113
, pp. 155-165
-
-
Zhao, W.Z.1
Du, S.H.2
-
29
-
-
84937137588
-
On combining multiscale deep learning features for the classiffication of hyperspectral remote sensing imagery
-
W. Z. Zhao, Z. Guo, J. Yue, X. Y. Zhang, and L. Q. Luo. On combining multiscale deep learning features for the classiffication of hyperspectral remote sensing imagery. International Journal of Remote Sensing (IJRS), 36(13):3368-3379, 2015.
-
(2015)
International Journal of Remote Sensing (IJRS
, vol.36
, Issue.13
, pp. 3368-3379
-
-
Zhao, W.Z.1
Guo, Z.2
Yue, J.3
Zhang, X.Y.4
Luo, L.Q.5
|