메뉴 건너뛰기




Volumn 9072, Issue , 2014, Pages

Deep learning algorithms for detecting explosive hazards in ground penetrating radar data

Author keywords

Anomaly detection; buried explosive hazard; deep learning; ground penetrating radar; neural networks; signal processing; unsupervised learning

Indexed keywords

ERRORS; EXPLOSIVES; FEATURE EXTRACTION; GEOLOGICAL SURVEYS; GROUND PENETRATING RADAR SYSTEMS; HAZARDS; LEARNING ALGORITHMS; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; SIGNAL PROCESSING; UNSUPERVISED LEARNING;

EID: 84905695247     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2052592     Document Type: Conference Paper
Times cited : (24)

References (25)
  • 3
    • 79960094442 scopus 로고    scopus 로고
    • DynaMax+ ground-tracking algorithm
    • Smock, B., Gader, P., and Wilson, J., "DynaMax+ ground-tracking algorithm," Proc. SPIE 8017, 80171I (2011).
    • (2011) Proc. SPIE , vol.8017
    • Smock, B.1    Gader, P.2    Wilson, J.3
  • 4
    • 79960088408 scopus 로고    scopus 로고
    • Adaptive Gaussian mixture models for pre-screening in GPR data
    • Torrione, P., Morton, K. Jr. and Besaw, L. E., "Adaptive Gaussian mixture models for pre-screening in GPR data," Proc. SPIE 8017, 80171P (2011).
    • (2011) Proc. SPIE , vol.8017
    • Torrione, P.1    Morton Jr., K.2    Besaw, L.E.3
  • 5
    • 60549105876 scopus 로고    scopus 로고
    • Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier
    • Frigui H. and Gader, P., "Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier," Fuzzy Systems, IEEE Transactions on 17(1), pp. 185-199 (2009).
    • (2009) Fuzzy Systems IEEE Transactions on , vol.17 , Issue.1 , pp. 185-199
    • Frigui, H.1    Gader, P.2
  • 6
    • 0037253492 scopus 로고    scopus 로고
    • Texture feature coding method for texture classification
    • Horng, M. H., "Texture feature coding method for texture classification," Optical Engineering, 42(1), pp. 228-238 (2003).
    • (2003) Optical Engineering , vol.42 , Issue.1 , pp. 228-238
    • Horng, M.H.1
  • 10
    • 0036613258 scopus 로고    scopus 로고
    • A linear prediction land mine detector algorithms for handheld ground penetrating radar
    • Ho, K. C. and Gader, P. D., "A linear prediction land mine detector algorithms for handheld ground penetrating radar," IEEE Trans. Geosci. Remote Sensing, 40(6), pp. 1374-1384 (2002).
    • (2002) IEEE Trans. Geosci. Remote Sensing , vol.40 , Issue.6 , pp. 1374-1384
    • Ho, K.C.1    Gader, P.D.2
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. R., "Reducing the dimensionality of data with neural networks", Science 313(5786), 504-507 (2006).
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • Coates, A. and Ng, A. Y., "Selecting Receptive Fields in Deep Networks," NIPS 5, 8 (2011).
    • (2011) NIPS , vol.5 , pp. 8
    • Coates, A.1    Ng, A.Y.2
  • 19
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee, H., Largman, Y., Pham, P. and Ng, A. Y., "Unsupervised feature learning for audio classification using convolutional deep belief networks," NIPS 9, 1096 (2009).
    • (2009) NIPS , vol.9 , pp. 1096
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.Y.4
  • 21
    • 79957967845 scopus 로고    scopus 로고
    • Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
    • Wulsin, D. F., Gupta, J. R., Main, R., Blanco, J. A. and Litt, B., "Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement," Journal of Neural Engineering. 8(3), 036015 (2011).
    • (2011) Journal of Neural Engineering , vol.8 , Issue.3 , pp. 036015
    • Wulsin, D.F.1    Gupta, J.R.2    Main, R.3    Blanco, J.A.4    Litt, B.5
  • 22
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • Salakhutdinov, R. and Hinton, G., "An efficient learning procedure for deep Boltzmann machines," Neural computation, 24(8), 1967-2006 (2012).
    • (2012) Neural Computation , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 23
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. "Training products of experts by minimizing contrastive divergence," Neural computation, 14(8), 1711-1800 (2002).
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1711-1800
    • Hinton, G.E.1
  • 24
    • 84905688131 scopus 로고    scopus 로고
    • Available from
    • Schmidt, M. (2006) minFunc [Software]. Available from http://www.cs.ubc.ca/~schmidtm.
    • (2006) MinFunc Software
    • Schmidt, M.1
  • 25
    • 79960075945 scopus 로고    scopus 로고
    • The viterbi algorithm as an approach for incorporating spatial information into Air/ground interface inference in GPR Data
    • Torrione, P.A., Morton, K. Jr. and Collins, L.M., "The Viterbi Algorithm as an Approach for Incorporating Spatial Information Into Air/Ground Interface Inference in GPR Data," Proc. SPIE 8017, 80171H-1 (2011).
    • (2011) Proc. SPIE , vol.8017
    • Torrione, P.A.1    Morton Jr., K.2    Collins, L.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.