-
1
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
Shun-ichi Amari, Noboru Murata, Klaus-Robert Müller, Michael Finke, and Howard Hua Yang. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks, 8(5):985-996, 1997.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.5
, pp. 985-996
-
-
Amari, S.1
Murata, N.2
Müller, K.-R.3
Finke, M.4
Hua Yang, H.5
-
2
-
-
0022890536
-
Maximum mutual information estimation of hidden markov parameters for speech recognition
-
Tokyo, Japan
-
Lalit Bahl, Peter Brown, Peter deSouza, and Robert Mercer. Maximum mutual information estimation of hidden markov parameters for speech recognition. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 49-52, Tokyo, Japan, 1986.
-
(1986)
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 49-52
-
-
Bahl, L.1
Brown, P.2
Desouza, P.3
Mercer, R.4
-
3
-
-
0001347323
-
Complexity regularization with application to artificial neural networks
-
G. Roussas, editor, Kluwer Academic Publishers
-
Andrew E. Barron. Complexity regularization with application to artificial neural networks. In G. Roussas, editor, Nonparametric Functional Estimation and Related Topics, pages 561-576. Kluwer Academic Publishers, 1991.
-
(1991)
Nonparametric Functional Estimation and Related Topics
, pp. 561-576
-
-
Barron, A.E.1
-
4
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA, MIT Press
-
Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14 (NIPS'01), Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems 14 (NIPS'01)
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
69349090197
-
Learning deep architectures for AI
-
Also published as a book. Now Publishers, 2009
-
Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009. Also published as a book. Now Publishers, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
6
-
-
67651049775
-
Justifying and generalizing contrastive divergence
-
June
-
Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive divergence. Neural Computation, 21(6):1601-1621, June 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.6
, pp. 1601-1621
-
-
Bengio, Y.1
Delalleau, O.2
-
7
-
-
34547975052
-
Scaling learning algorithms towards AI
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, MIT Press
-
Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 321-360. MIT Press, 2007.
-
(2007)
Large Scale Kernel Machines
, pp. 321-360
-
-
Bengio, Y.1
Lecun, Y.2
-
8
-
-
77954662106
-
The curse of highly variable functions for local kernel machines
-
Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
-
Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of highly variable functions for local kernel machines. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18 (NIPS'05), pages 107-114. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18 (NIPS'05)
, pp. 107-114
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
9
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, MIT Press
-
Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks. In Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, Advances in Neural Information Processing Systems 19 (NIPS'06), pages 153-160. MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19 (NIPS'06)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
11
-
-
50649084677
-
Cluster kernels for semi-supervised learning
-
S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA, MIT Press
-
Olivier Chapelle, JasonWeston, and Bernhard Schölkopf. Cluster kernels for semi-supervised learning. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15 (NIPS'02), pages 585-592, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems 15 (NIPS'02)
, pp. 585-592
-
-
Chapelle, O.1
Weston, J.2
Schölkopf, B.3
-
13
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, ACM
-
Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 160-167. ACM, 2008.
-
(2008)
Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
15
-
-
56449119592
-
Memoires associatives distribuees
-
Paris, La Villette
-
Patrick Gallinari, Yann LeCun, Sylvie Thiria, and Francoise Fogelman-Soulie. Memoires associatives distribuees. In Proceedings of COGNITIVA 87, Paris, La Villette, 1987.
-
(1987)
Proceedings of COGNITIVA
, vol.87
-
-
Gallinari, P.1
Lecun, Y.2
Thiria, S.3
Fogelman-Soulie, F.4
-
16
-
-
84860644702
-
Measuring invariances in deep networks
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring invariances in deep networks. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 646-654. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Ng, A.4
-
17
-
-
69549124128
-
Deep belief net learning in a long-range vision system for autonomous off-road driving. in
-
Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, Urs Muller, and Yann LeCun. Deep belief net learning in a long-range vision system for autonomous off-road driving. In Proc. Intelligent Robots and Systems (IROS'08), pages 628-633, 2008.
-
(2008)
Proc. Intelligent Robots and Systems (IROS'08)
, pp. 628-633
-
-
Hadsell, R.1
Erkan, A.2
Sermanet, P.3
Scoffier, M.4
Muller, U.5
Lecun, Y.6
-
19
-
-
0001295178
-
On the power of small-depth threshold circuits
-
Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits. Computational Complexity, 1:113-129, 1991.
-
(1991)
Computational Complexity
, vol.1
, pp. 113-129
-
-
Håstad, J.1
Goldmann, M.2
-
20
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
21
-
-
56449117245
-
To recognize shapes, first learn to generate images
-
Paul Cisek, Trevor Drew, and John Kalaska, editors, Elsevier
-
Geoffrey E. Hinton. To recognize shapes, first learn to generate images. In Paul Cisek, Trevor Drew, and John Kalaska, editors, Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier, 2007.
-
(2007)
Computational Neuroscience: Theoretical Insights into Brain Function
-
-
Hinton, G.E.1
-
22
-
-
33746600649
-
Reducing the dimensionality of data with neural networks.
-
July
-
Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
23
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Goeffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Whye Teh, Y.3
-
24
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, ACM
-
Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted Boltzmann machines. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 536-543. ACM, 2008.
-
(2008)
Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
25
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In Int. Conf. Mach. Learn., pages 473-480, 2007.
-
(2007)
Int. Conf. Mach. Learn.
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
26
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
January
-
Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for training deep neural networks. The Journal of Machine Learning Research, 10:1-40, January 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
27
-
-
33845597672
-
Principled hybrids of generative and discriminative models
-
Washington, DC, USA, IEEE Computer Society
-
Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of generative and discriminative models. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'06), pages 87-94, Washington, DC, USA, 2006. IEEE Computer Society.
-
(2006)
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'06)
, pp. 87-94
-
-
Lasserre, J.A.1
Bishop, C.M.2
Minka, T.P.3
-
29
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
30
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area V2. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS'07), pages 873-880. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20 (NIPS'07)
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng., A.3
-
31
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Léon Bottou and Michael Littman, editors, ACM, Montreal (Qc), Canada
-
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Léon Bottou and Michael Littman, editors, Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09). ACM, Montreal (Qc), Canada, 2009.
-
(2009)
Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
32
-
-
57849102080
-
Training invariant support vector machines using selective sampling
-
Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors, MIT Press, Cambridge, MA
-
Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines using selective sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors, Large Scale Kernel Machines, pages 301-320. MIT Press, Cambridge, MA., 2007.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Loosli, G.1
Canu, S.2
Bottou, L.3
-
33
-
-
71149084945
-
Deep learning from temporal coherence in video
-
Léon Bottou and Michael Littman, editors, Montreal, June, Omnipress
-
Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in video. In Léon Bottou and Michael Littman, editors, Proceedings of the 26th International Conference on Machine Learning, pages 737-744, Montreal, June 2009. Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 737-744
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
-
34
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
-
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors
-
Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14 (NIPS'01), pages 841-848, 2002.
-
(2002)
Advances in Neural Information Processing Systems 14 (NIPS'01)
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
35
-
-
85161976678
-
Modeling image patches with a directed hierarchy of markov random field
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
-
Simon Osindero and Geoffrey E. Hinton. Modeling image patches with a directed hierarchy of markov random field. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS'07), pages 1121-1128, Cambridge, MA, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems 20 (NIPS'07)
, pp. 1121-1128
-
-
Osindero, S.1
Hinton, G.E.2
-
36
-
-
0036296863
-
Minimum phone error and i-smoothing for improved discriminative training
-
Dan Povey and Philip C. Woodland. Minimum phone error and i-smoothing for improved discriminative training. In Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). IEEE International Conference on, volume 1, pages I-105-I-108 vol.1, 2002.
-
(2002)
Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). IEEE International Conference On, Volume 1
, vol.1
-
-
Povey, D.1
Woodland, P.C.2
-
37
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press
-
Marc'Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19 (NIPS'06), pages 1137-1144. MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19 (NIPS'06)
, pp. 1137-1144
-
-
Ranzato, M.A.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
38
-
-
85161966246
-
Sparse feature learning for deep belief networks
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
-
Marc'Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief networks. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS'07), pages 1185-1192, Cambridge, MA, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems 20 (NIPS'07)
, pp. 1185-1192
-
-
Ranzato, M.A.1
Boureau, Y.-L.2
Lecun, Y.3
-
39
-
-
85162037149
-
Using deep belief nets to learn covariance kernels for Gaussian processes
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
-
Ruslan Salakhutdinov and Geoffrey E. Hinton. Using deep belief nets to learn covariance kernels for Gaussian processes. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20 (NIPS'07), pages 1249-1256, Cambridge, MA, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems 20 (NIPS'07)
, pp. 1249-1256
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
41
-
-
34547983260
-
Restricted Boltzmann machines for collaborative filtering
-
Zoubin Ghahramani, editor, New York, NY, USA, ACM
-
Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. Restricted Boltzmann machines for collaborative filtering. In Zoubin Ghahramani, editor, Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML'07), pages 791-798, New York, NY, USA, 2007. ACM.
-
(2007)
Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML'07)
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.E.3
-
42
-
-
0000938157
-
Learning continuous attractors in recurrent networks
-
M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, MIT Press
-
Sebastian H. Seung. Learning continuous attractors in recurrent networks. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10 (NIPS'97), pages 654-660. MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems 10 (NIPS'97)
, pp. 654-660
-
-
Seung, S.H.1
-
43
-
-
0029489722
-
Overtraining, regularization and searching for a minimum, with application to neural networks
-
Jonas Sjöberg and Lennart Ljung. Overtraining, regularization and searching for a minimum, with application to neural networks. International Journal of Control, 62(6):1391-1407, 1995.
-
(1995)
International Journal of Control
, vol.62
, Issue.6
, pp. 1391-1407
-
-
Sjöberg, J.1
Ljung, L.2
-
44
-
-
77949532009
-
Generating facial expressions with deep belief nets
-
V. Kordic, editor, ARS Publishers
-
Joshua M. Susskind, Geoffrey E., Javier R. Movellan, and Adam K. Anderson. Generating facial expressions with deep belief nets. In V. Kordic, editor, Affective Computing, Emotion Modelling, Synthesis and Recognition, pages 421-440. ARS Publishers, 2008.
-
(2008)
Affective Computing, Emotion Modelling, Synthesis and Recognition
, pp. 421-440
-
-
Susskind, J.M.1
Javier, G.E.2
Movellan, R.3
Anderson, A.K.4
-
45
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
December
-
Joshua Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
De Silva, V.2
Langford, J.C.3
-
47
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Andrew McCallum and Sam Roweis, editors, Omnipress
-
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008), pages 1096-1103. Omnipress, 2008.
-
(2008)
Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
48
-
-
84899000641
-
Exponential family harmoniums with an application to information retrieval
-
L.K. Saul, Y. Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
-
Max Welling, Michal Rosen-Zvi, and Geoffrey E. Hinton. Exponential family harmoniums with an application to information retrieval. In L.K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17 (NIPS'04), pages 1481-1488, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems 17 (NIPS'04)
, pp. 1481-1488
-
-
Welling, M.1
Rosen-Zvi, M.2
Hinton, G.E.3
-
49
-
-
56449119888
-
Deep learning via semi-supervised embedding
-
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, New York, NY, USA, ACM
-
Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1168-1175, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)
, pp. 1168-1175
-
-
Weston, J.1
Ratle, F.2
Collobert, R.3
-
51
-
-
57149122432
-
Unsupervised learning of probabilistic grammar-markov models for object categories
-
Long Zhu, Yuanhao Chen, and Alan Yuille. Unsupervised learning of probabilistic grammar-markov models for object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):114-128, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.1
, pp. 114-128
-
-
Zhu, L.1
Chen, Y.2
Yuille, A.3
|