메뉴 건너뛰기




Volumn 27, Issue 1, 2016, Pages 125-138

Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks

Author keywords

Deep learning; image change detection; neural network; synthetic aperture radar (SAR)

Indexed keywords

LEARNING ALGORITHMS; RADAR; SIGNAL DETECTION; SYNTHETIC APERTURE RADAR; TRACKING RADAR;

EID: 84930804691     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2015.2435783     Document Type: Article
Times cited : (606)

References (49)
  • 1
    • 16444377217 scopus 로고    scopus 로고
    • An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
    • Apr
    • Y. Bazi, L. Bruzzone, and F. Melgani, "An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 874-887, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 874-887
    • Bazi, Y.1    Bruzzone, L.2    Melgani, F.3
  • 2
    • 14844339425 scopus 로고    scopus 로고
    • Image change detection algorithms: A systematic survey
    • Mar
    • R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, "Image change detection algorithms: A systematic survey," IEEE Trans. Image Process., vol. 14, no. 3, pp. 294-307, Mar. 2005.
    • (2005) IEEE Trans. Image Process , vol.14 , Issue.3 , pp. 294-307
    • Radke, R.J.1    Andra, S.2    Al-Kofahi, O.3    Roysam, B.4
  • 3
    • 11144354673 scopus 로고    scopus 로고
    • Modeling SAR images with a generalization of the Rayleigh distribution
    • Apr
    • E. E. Kuruoglu and J. Zerubia, "Modeling SAR images with a generalization of the Rayleigh distribution," IEEE Trans. Image Process., vol. 13, no. 4, pp. 527-533, Apr. 2004.
    • (2004) IEEE Trans. Image Process , vol.13 , Issue.4 , pp. 527-533
    • Kuruoglu, E.E.1    Zerubia, J.2
  • 4
    • 82355161021 scopus 로고    scopus 로고
    • Deforestation detection and monitoring in cedar forests of the moroccan Middle-Atlas mountains
    • Barcelona, Spain, Jul
    • D. Haboudane and E.-M. Bahri, "Deforestation detection and monitoring in cedar forests of the moroccan Middle-Atlas mountains," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Barcelona, Spain, Jul. 2007, pp. 4327-4330.
    • (2007) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 4327-4330
    • Haboudane, D.1    Bahri, E.-M.2
  • 5
    • 84859060840 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
    • Apr
    • M. Gong, Z. Zhou, and J. Ma, "Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2141-2151, Apr. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.4 , pp. 2141-2151
    • Gong, M.1    Zhou, Z.2    Ma, J.3
  • 7
    • 7044222718 scopus 로고    scopus 로고
    • Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images
    • Oct
    • F. Bujor, E. Trouvé, L. Valet, J.-M. Nicolas, and J.-P. Rudant, "Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2073-2084, Oct. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.10 , pp. 2073-2084
    • Bujor, F.1    Trouvé, E.2    Valet, L.3    Nicolas, J.-M.4    Rudant, J.-P.5
  • 8
    • 34247495232 scopus 로고    scopus 로고
    • A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
    • May
    • J. Inglada and G. Mercier, "A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1432-1445, May 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.5 , pp. 1432-1445
    • Inglada, J.1    Mercier, G.2
  • 9
    • 0035440214 scopus 로고    scopus 로고
    • A fast algorithm for multilevel thresholding
    • P.-S. Liao, T.-S. Chen, and P.-C. Chung, "A fast algorithm for multilevel thresholding," J. Inf. Sci. Eng., vol. 17, no. 5, pp. 713-727, 2001.
    • (2001) J. Inf. Sci. Eng. , vol.17 , Issue.5 , pp. 713-727
    • Liao, P.-S.1    Chen, T.-S.2    Chung, P.-C.3
  • 10
    • 0022523996 scopus 로고
    • Minimum error thresholding
    • J. Kittler and J. Illingworth, "Minimum error thresholding," Pattern Recognit., vol. 19, no. 1, pp. 41-47, 1986.
    • (1986) Pattern Recognit. , vol.19 , Issue.1 , pp. 41-47
    • Kittler, J.1    Illingworth, J.2
  • 11
    • 84903585183 scopus 로고    scopus 로고
    • Detecting changes of the Yellow River Estuary via SAR images based on a local fit-search model and kernel-induced graph cuts
    • May
    • M. Gong, M. Jia, L. Su, S. Wang, and L. Jiao, "Detecting changes of the Yellow River Estuary via SAR images based on a local fit-search model and kernel-induced graph cuts," Int. J. Remote Sens., vol. 35, nos. 11-12, pp. 4009-4030, May 2014.
    • (2014) Int. J. Remote Sens , vol.35 , Issue.11-12 , pp. 4009-4030
    • Gong, M.1    Jia, M.2    Su, L.3    Wang, S.4    Jiao, L.5
  • 12
    • 84875648585 scopus 로고    scopus 로고
    • Improving urban change detection from multitemporal SAR images using PCA-NLM
    • Apr
    • O. Yousif and Y. Ban, "Improving urban change detection from multitemporal SAR images using PCA-NLM," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2032-2041, Apr. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.4 , pp. 2032-2041
    • Yousif, O.1    Ban, Y.2
  • 13
    • 84885368811 scopus 로고    scopus 로고
    • Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
    • Feb
    • M. Gong, L. Su, M. Jia, and W. Chen, "Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images," IEEE Trans. Fuzzy Syst., vol. 22, no. 1, pp. 98-109, Feb. 2014.
    • (2014) IEEE Trans. Fuzzy Syst. , vol.22 , Issue.1 , pp. 98-109
    • Gong, M.1    Su, L.2    Jia, M.3    Chen, W.4
  • 14
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks
    • Mar
    • S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh, "A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 778-789, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 778-789
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    Ghosh, A.5
  • 15
    • 0032874004 scopus 로고    scopus 로고
    • Remotely sensed change detection based on artificial neural networks
    • X. L. Dai and S. Khorram, "Remotely sensed change detection based on artificial neural networks," Photogram. Eng. Remote Sens., vol. 65, no. 10, pp. 1187-1194, 1999.
    • (1999) Photogram. Eng. Remote Sens , vol.65 , Issue.10 , pp. 1187-1194
    • Dai, X.L.1    Khorram, S.2
  • 18
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-A new frontier in artificial intelligence research [research frontier]
    • Nov
    • I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-A new frontier in artificial intelligence research [research frontier]," IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 19
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 20
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. ICML Workshop Unsupervised Transf. Learn., 2012, pp. 17-36.
    • (2012) Proc. ICML Workshop Unsupervised Transf. Learn , pp. 17-36
    • Bengio, Y.1
  • 21
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • T. N. Wiesel and D. H. Hubel, "Receptive fields of single neurones in the cat's striate cortex," J. Physiol., vol. 148, no. 3, pp. 574-591, 1959.
    • (1959) J. Physiol. , vol.148 , Issue.3 , pp. 574-591
    • Wiesel, T.N.1    Hubel, D.H.2
  • 23
    • 84897756043 scopus 로고    scopus 로고
    • A fast learning algorithm for image segmentation with max-pooling convolutional networks
    • Melbourne, VIC, Australia, Sep
    • J. Masci, A. Giusti, D. C. Cireşan, G. Fricout, and J. Schmidhuber, "A fast learning algorithm for image segmentation with max-pooling convolutional networks," in Proc. Int. Conf. Image Process., Melbourne, VIC, Australia, Sep. 2013, pp. 2713-2717.
    • (2013) Proc. Int. Conf. Image Process , pp. 2713-2717
    • Masci, J.1    Giusti, A.2    Cireşan, D.C.3    Fricout, G.4    Schmidhuber, J.5
  • 24
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 25
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • Helsinki, Finland, Jul
    • H. Larochelle and Y. Bengio, "Classification using discriminative restricted Boltzmann machines," in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, Jul. 2008, pp. 536-543.
    • (2008) Proc. 25th Int. Conf. Mach. Learn , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 27
    • 84897493971 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
    • N. Srivastava, "Improving neural networks with dropout," Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 2013.
    • (2013) Improving Neural Networks with Dropout
    • Srivastava, N.1
  • 30
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Helsinki, Finland, Jul
    • R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, Jul. 2008, pp. 160-167.
    • (2008) Proc. 25th Int. Conf. Mach. Learn , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 31
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Columbus, OH, USA, Jun
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014, pp. 1717-1724.
    • (2014) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Stateline, NV, USA, Dec
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., Stateline, NV, USA, Dec. 2012, pp. 1097-1105.
    • (2012) Proc. Adv. Neural Inf. Process. Syst. , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 36
    • 84876709455 scopus 로고    scopus 로고
    • Feature extraction with deep neural networks by a generalized discriminant analysis
    • Apr
    • A. Stuhlsatz, J. Lippel, and T. Zielke, "Feature extraction with deep neural networks by a generalized discriminant analysis," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4, pp. 596-608, Apr. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.4 , pp. 596-608
    • Stuhlsatz, A.1    Lippel, J.2    Zielke, T.3
  • 37
    • 77951939610 scopus 로고    scopus 로고
    • A convolutional learning system for object classification in 3-D lidar data
    • May
    • D. Prokhorov, "A convolutional learning system for object classification in 3-D lidar data," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 858-863, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 858-863
    • Prokhorov, D.1
  • 38
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. Le Cun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • Le Cun, Y.1
  • 40
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, "Deep, big, simple neural nets for handwritten digit recognition," Neural Comput., vol. 22, no. 12, pp. 3207-3220, 2010.
    • (2010) Neural Comput. , vol.22 , Issue.12 , pp. 3207-3220
    • Cireşan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 41
    • 34047181683 scopus 로고    scopus 로고
    • A pyramidal neural network for visual pattern recognition
    • Mar
    • S. L. Phung and A. Bouzerdoum, "A pyramidal neural network for visual pattern recognition," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 329-343, Mar. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.2 , pp. 329-343
    • Phung, S.L.1    Bouzerdoum, A.2
  • 42
    • 0036543746 scopus 로고    scopus 로고
    • An adaptive semiparametric and contextbased approach to unsupervised change detection in multitemporal remote-sensing images
    • Apr
    • L. Bruzzone and D. F. Prieto, "An adaptive semiparametric and contextbased approach to unsupervised change detection in multitemporal remote-sensing images," IEEE Trans. Image Process., vol. 11, no. 4, pp. 452-466, Apr. 2002.
    • (2002) IEEE Trans. Image Process , vol.11 , Issue.4 , pp. 452-466
    • Bruzzone, L.1    Prieto, D.F.2
  • 43
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 44
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," J. Electron. Imag., vol. 13, no. 1, pp. 146-168, 2004.
    • (2004) J. Electron. Imag. , vol.13 , Issue.1 , pp. 146-168
    • Sezgin, M.1    Sankur, B.2
  • 45
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 47
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 48
    • 0042842434 scopus 로고    scopus 로고
    • Evaluation of global image thresholding for change detection
    • P. L. Rosin and E. Ioannidis, "Evaluation of global image thresholding for change detection," Pattern Recognit. Lett., vol. 24, no. 14, pp. 2345-2356, 2003.
    • (2003) Pattern Recognit. Lett. , vol.24 , Issue.14 , pp. 2345-2356
    • Rosin, P.L.1    Ioannidis, E.2
  • 49
    • 0022927129 scopus 로고
    • A coefficient of agreement as a measure of thematic classification accuracy
    • G. H. Rosenfield and K. Fitzpatrick-Lins, "A coefficient of agreement as a measure of thematic classification accuracy," Photogram. Eng. Remote Sens., vol. 52, no. 2, pp. 223-227, 1986.
    • (1986) Photogram. Eng. Remote Sens , vol.52 , Issue.2 , pp. 223-227
    • Rosenfield, G.H.1    Fitzpatrick-Lins, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.