-
1
-
-
84897544737
-
Theano: New features and speed improvements
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: New features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
3
-
-
84862288320
-
Theano: A CPU and GPU math expression compiler
-
Austin, TX
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math expression compiler. In Scipy, volume 4, page 3. Austin, TX, 2010.
-
(2010)
Scipy
, vol.4
, pp. 3
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
5
-
-
35048833329
-
High accuracy optical flow estimation based on a theory for warping
-
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV, pages 25-36. 2004.
-
(2004)
ECCV
, pp. 25-36
-
-
Brox, T.1
Bruhn, A.2
Papenberg, N.3
Weickert, J.4
-
7
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724-1734, 2014.
-
(2014)
EMNLP
, pp. 1724-1734
-
-
Cho, K.1
Van Merrienboer, B.2
Gulcehre, C.3
Bougares, F.4
Schwenk, H.5
Bengio, Y.6
-
8
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.
-
(2015)
CVPR
-
-
Donahue, J.1
Hendricks, L.A.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
9
-
-
0001854191
-
The stormy weather group (Canada)
-
R. H. Douglas. The stormy weather group (Canada). In Radar in Meteorology, pages 61-68. 1990.
-
(1990)
Radar in Meteorology
, pp. 61-68
-
-
Douglas, R.H.1
-
10
-
-
0036965520
-
Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology
-
Urs Germann and Isztar Zawadzki. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly Weather Review, 130(12):2859-2873, 2002.
-
(2002)
Monthly Weather Review
, vol.130
, Issue.12
, pp. 2859-2873
-
-
Germann, U.1
Zawadzki, I.2
-
13
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Karpathy, A.1
Fei-Fei, L.2
-
14
-
-
84959186411
-
A dynamic convolutional layer for short range weather prediction
-
B. Klein, L. Wolf, and Y. Afek. A dynamic convolutional layer for short range weather prediction. In CVPR, 2015.
-
(2015)
CVPR
-
-
Klein, B.1
Wolf, L.2
Afek, Y.3
-
16
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
17
-
-
84892982833
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, pages 1310-1318, 2013.
-
(2013)
ICML
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
18
-
-
84965108042
-
-
arXiv preprint arXiv:1412.6604
-
M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604, 2014.
-
(2014)
Video (language) Modeling: A Baseline for Generative Models of Natural Videos
-
-
Ranzato, M.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
20
-
-
84884982670
-
Spatio-temporal image pattern prediction method based on a physical model with timevarying optical flow
-
H. Sakaino. Spatio-temporal image pattern prediction method based on a physical model with timevarying optical flow. IEEE Transactions on Geoscience and Remote Sensing, 51(5-2):3023-3036, 2013.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, Issue.2-5
, pp. 3023-3036
-
-
Sakaino, H.1
-
21
-
-
84969544782
-
Unsupervised learning of video representations using lstms
-
N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. In ICML, 2015.
-
(2015)
ICML
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
22
-
-
84900328164
-
Use of NWP for nowcasting convective precipitation: Recent progress and challenges
-
J. Sun, M. Xue, J. W. Wilson, I. Zawadzki, S. P. Ballard, J. Onvlee-Hooimeyer, P. Joe, D. M. Barker, P. W. Li, B. Golding, M. Xu, and J. Pinto. Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bulletin of the American Meteorological Society, 95(3):409-426, 2014.
-
(2014)
Bulletin of the American Meteorological Society
, vol.95
, Issue.3
, pp. 409-426
-
-
Sun, J.1
Xue, M.2
Wilson, J.W.3
Zawadzki, I.4
Ballard, S.P.5
Onvlee-Hooimeyer, J.6
Joe, P.7
Barker, D.M.8
Li, P.W.9
Golding, B.10
Xu, M.11
Pinto, J.12
-
23
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
-
(2014)
NIPS
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
26
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
-
(2015)
ICML
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Courville, A.4
Salakhutdinov, R.5
Zemel, R.6
Bengio, Y.7
|