메뉴 건너뛰기




Volumn 8, Issue 7, 2016, Pages

Pansharpening by convolutional neural networks

Author keywords

Convolutional neural networks; Enhancement; Machine learning; Multiresolution; Segmentation; Super resolution

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; LEARNING SYSTEMS; NEURAL NETWORKS; OPTICAL RESOLVING POWER; REMOTE SENSING;

EID: 84993982662     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8070594     Document Type: Article
Times cited : (911)

References (55)
  • 1
    • 84923195443 scopus 로고    scopus 로고
    • Marker controlled watershed based segmentation of multi-resolution remote sensing images
    • Gaetano, R.; Masi, G.; Poggi, G.; Verdoliva, L.; Giuseppe, S. Marker controlled watershed based segmentation of multi-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1987-3004.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 1987-3004
    • Gaetano, R.1    Masi, G.2    Poggi, G.3    Verdoliva, L.4    Giuseppe, S.5
  • 3
    • 0026610525 scopus 로고
    • A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
    • Shettigara, V. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561-567.
    • (1992) Photogramm. Eng. Remote Sens. , vol.58 , pp. 561-567
    • Shettigara, V.1
  • 4
    • 0035458185 scopus 로고    scopus 로고
    • A new look at IHS-like image fusion methods
    • Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177-186.
    • (2001) Inf. Fusion , vol.2 , pp. 177-186
    • Tu, T.M.1    Su, S.C.2    Shyu, H.C.3    Huang, P.S.4
  • 5
    • 8344221153 scopus 로고    scopus 로고
    • A fast intensity hue-saturation fusion technique with spectral adjustment for IKONOS imagery
    • Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast intensity hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309-312.
    • (2004) IEEE Geosci. Remote Sens. Lett. , vol.1 , pp. 309-312
    • Tu, T.M.1    Huang, P.S.2    Hung, C.L.3    Chang, C.P.4
  • 6
    • 0024471260 scopus 로고
    • Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis
    • Chavez, P.; Kwarteng, A. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339-348.
    • (1989) Photogramm. Eng. Remote Sens. , vol.55 , pp. 339-348
    • Chavez, P.1    Kwarteng, A.2
  • 7
    • 0023399652 scopus 로고
    • Color enhancement of highly correlated images. II. Channel ratio and "chromaticity" transformation techniques
    • Gillespie, A.R.; Kahle, A.B.;Walker, R.E. Color enhancement of highly correlated images. II. Channel ratio and "chromaticity" transformation techniques. Remote Sens. Environ. 1987, 22, 343-365.
    • (1987) Remote Sens. Environ. , vol.22 , pp. 343-365
    • Gillespie, A.R.1    Kahle A.B.2    Walker, R.E.3
  • 8
    • 33244495276 scopus 로고    scopus 로고
    • Process for Enhancing the Spatial Resolution ofMultispectral ImageryUsing Pan-Sharpening
    • 4 January
    • Laben., C.; Brower, B. Process for Enhancing the Spatial Resolution ofMultispectral ImageryUsing Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000.
    • (2000)
    • Laben.1    C.2    Brower, B.3
  • 9
    • 65049091833 scopus 로고    scopus 로고
    • Improving component substitution pansharpening through multivariate regression of MS + Pan data
    • Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230-3239.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 3230-3239
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3
  • 10
    • 78650891876 scopus 로고    scopus 로고
    • A new adaptive component-substitution-based satellite image fusion by using partial replacement
    • Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295-309.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 295-309
    • Choi, J.1    Yu, K.2    Kim, Y.3
  • 11
    • 0025919780 scopus 로고
    • Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
    • Chavez, P.; Anderson, J. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295-303.
    • (1991) Photogramm. Eng. Remote Sens. , vol.57 , pp. 295-303
    • Chavez, P.1    Anderson, J.2
  • 12
    • 0029659962 scopus 로고    scopus 로고
    • Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data
    • Yocky, D. Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data. Photogramm. Eng. Remote Sens. 1996, 62, 1067-1074.
    • (1996) Photogramm. Eng. Remote Sens. , vol.62 , pp. 1067-1074
    • Yocky, D.1
  • 13
    • 0036821708 scopus 로고    scopus 로고
    • Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis
    • Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300-2312.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , pp. 2300-2312
    • Aiazzi, B.1    Alparone, L.2    Baronti, S.3    Garzelli, A.4
  • 14
    • 33846636743 scopus 로고    scopus 로고
    • Remote sensing image fusion using the curvelet transform
    • Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 8, 143-156.
    • (2007) Inf. Fusion , vol.8 , pp. 143-156
    • Alparone, L.1    Baronti, S.2    Garzelli, A.3    Nencini, F.4
  • 15
    • 0033982849 scopus 로고    scopus 로고
    • Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation
    • Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 2000, 66, 49-61.
    • (2000) Photogramm. Eng. Remote Sens. , vol.66 , pp. 49-61
    • Ranchin, T.1    Wald, L.2
  • 17
    • 0034521444 scopus 로고    scopus 로고
    • Smoothing filter based intensity modulation: A spectral preserve image fusion technique for improving spatial details
    • Liu, J. Smoothing filter based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461-3472.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 3461-3472
    • Liu, J.1
  • 18
    • 38349186903 scopus 로고    scopus 로고
    • Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique
    • Khan, M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci. Remote Sens. Lett. 2008, 5, 98-102.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , pp. 98-102
    • Khan, M.1    Chanussot, J.2    Condat, L.3    Montanvert, A.4
  • 20
    • 27844607355 scopus 로고    scopus 로고
    • Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods
    • Otazu, X.; Gonzalez-Audicana, M.; Fors, O.; Nunez, J. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376-2385.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 2376-2385
    • Otazu, X.1    Gonzalez-Audicana, M.2    Fors, O.3    Nunez, J.4
  • 24
    • 73249132546 scopus 로고    scopus 로고
    • Fast and efficient panchromatic sharpening
    • Lee, J.; Lee, C. Fast and efficient panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 2010, 48, 155-163.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 155-163
    • Lee, J.1    Lee, C.2
  • 25
    • 37449034801 scopus 로고    scopus 로고
    • Optimal MMSE pan sharpening of very high resolution multispectral images
    • Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228-236.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 228-236
    • Garzelli, A.1    Nencini, F.2    Capobianco, L.3
  • 26
    • 84908052467 scopus 로고    scopus 로고
    • Pansharpening of multispectral images based on nonlocal parameter optimization
    • Garzelli, A. Pansharpening of multispectral images based on nonlocal parameter optimization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2096-2107.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 2096-2107
    • Garzelli, A.1
  • 29
    • 79151485703 scopus 로고    scopus 로고
    • A new pan-sharpening method using a compressed sensing technique
    • Li, S.; Yang, B. A new pan-sharpening method using a compressed sensing technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 738-746.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 738-746
    • Li, S.1    Yang, B.2
  • 30
    • 84883814326 scopus 로고    scopus 로고
    • Remote sensing image fusion via sparse representations over learned dictionaries
    • Li, S.; Yin, H.; Fang, L. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4779-4789.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 4779-4789
    • Li, S.1    Yin, H.2    Fang, L.3
  • 31
    • 84885018469 scopus 로고    scopus 로고
    • A sparse image fusion algorithm with application to pan-sharpening
    • Zhu, X.; Bamler, R. A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2827-2836.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 2827-2836
    • Zhu, X.1    Bamler, R.2
  • 32
    • 84888211619 scopus 로고    scopus 로고
    • Sparse representation based pansharpening using trained dictionary
    • Cheng, M.; Wang, C.; Li, J. Sparse representation based pansharpening using trained dictionary. IEEE Geosci. Remote Sens. Lett. 2014, 11, 293-297.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , pp. 293-297
    • Cheng, M.1    Wang, C.2    Li, J.3
  • 35
    • 84960959784 scopus 로고    scopus 로고
    • Land Use Classification in Remote Sensing Images by Convolutional Neural Networks
    • (accessed on 13 July)
    • Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. Available online: http://arxiv.org/abs/1508.00092 (accessed on 13 July 2016).
    • (2016)
    • Castelluccio, M.1    Poggi, G.2    Sansone, C.3    Verdoliva, L.4
  • 37
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193-202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 41
    • 0031284883 scopus 로고    scopus 로고
    • Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images
    • Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691-699.
    • (1997) Photogramm. Eng. Remote Sens. , vol.63 , pp. 691-699
    • Wald, L.1    Ranchin, T.2    Mangolini, M.3
  • 42
    • 84905220041 scopus 로고    scopus 로고
    • Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
    • (accessed on 13 July)
    • Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. Available online: http://arxiv.org/abs/1312.6034 (accessed on 13 July 2016).
    • (2016)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 43
    • 84893426265 scopus 로고    scopus 로고
    • High spatial resolution worldview-2 imagery for mapping NDVI and Its relationship to temporal urban landscape evapotranspiration factors
    • Nouri, H.; Beecham, S.; Anderson, S.; Nagler, P. High spatial resolution worldview-2 imagery for mapping NDVI and Its relationship to temporal urban landscape evapotranspiration factors. Remote Sens. 2014, 6, 580-602.
    • (2014) Remote Sens. , vol.6 , pp. 580-602
    • Nouri, H.1    Beecham, S.2    Anderson, S.3    Nagler, P.4
  • 45
    • 0001256711 scopus 로고
    • Discrimination among semi-arid landscape endmembers using the Spectral AngleMapper (SAM) algorithm
    • AVIRIS Workshop: Pasadena, CA, USA
    • Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the Spectral AngleMapper (SAM) algorithm. In Summaries of the Third Annual JPL Airborne Geoscience Workshop; AVIRIS Workshop: Pasadena, CA, USA, 1992; pp. 147-149.
    • (1992) Summaries of the Third Annual JPL Airborne Geoscience Workshop , pp. 147-149
    • Yuhas, R.H.1    Goetz, A.F.H.2    Boardman, J.W.3
  • 46
    • 0037768046 scopus 로고    scopus 로고
    • Data Fusion: Definitions and Architectures-Fusion of Images of Different Spatial Resolutions
    • Presses des Mines: Paris, France
    • Wald, L. Data Fusion: Definitions and Architectures-Fusion of Images of Different Spatial Resolutions; Presses des Mines: Paris, France, 2002.
    • (2002)
    • Wald, L.1
  • 47
    • 0032029701 scopus 로고    scopus 로고
    • A wavelet transform method to merge Landsat TM and SPOT panchromatic data
    • Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743-757.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 743-757
    • Zhou, J.1    Civco, D.L.2    Silander, J.A.3
  • 50
    • 84993984398 scopus 로고    scopus 로고
    • (accessed on 13 July).
    • Open Remote Sensing. Available online: http://openremotesensing.net/ (accessed on 13 July 2016).
    • (2016)
  • 51
    • 84993968329 scopus 로고    scopus 로고
    • (accessed on 13 July).
    • Image Processing Research Group. Available online: http://www.grip.unina.it (accessed on 13 July 2016).
    • (2016)
  • 52
    • 84993984388 scopus 로고    scopus 로고
    • (accessed on 13 July).
    • Caffe. Available online: http://caffe.berkeleyvision.org (accessed on 13 July 2016).
    • (2016)
  • 53
    • 84993968324 scopus 로고    scopus 로고
    • (accessed on 13 July).
    • MatConvNet: CNNs for MATLAB. Available online: http://www.vlfeat.org/matconvnet (accessed on 13 July 2016).
    • (2016)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.