메뉴 건너뛰기




Volumn 6, Issue 6, 2014, Pages 5795-5814

Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine

Author keywords

Gabor filter; Hyperspectral image classification; Kernel extreme learning machine; Multihypothesis (MH) prediction; Spectral spatial analysis

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; FEATURE EXTRACTION; FEEDFORWARD NEURAL NETWORKS; FORECASTING; GABOR FILTERS; IMAGE ANALYSIS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NETWORK LAYERS; NEURAL NETWORKS; PATTERN RECOGNITION; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84912029121     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs6065795     Document Type: Article
Times cited : (231)

References (41)
  • 1
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Harsanyi, J.C.; Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779-785.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 2
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • Ratle, F.; Camps-Valls, G.; Weston, J. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2271-2282.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 3
    • 51849098568 scopus 로고    scopus 로고
    • Parallel Classification of Hyperspectral Images Using Neural Networks
    • Grana, M., Duro, R.J., Eds.; Springer-Verlag: Berlin, Germany
    • Plaza J.; Plaza A.; Perez, R.; Martinez, P. Parallel Classification of Hyperspectral Images Using Neural Networks. In Computational Intelligence for Remote Sensing; Grana, M., Duro, R.J., Eds.; Springer-Verlag: Berlin, Germany, 2008; Volume 133, pp. 193-216.
    • (2008) Computational Intelligence for Remote Sensing , vol.133 , pp. 193-216
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 4
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Bazi, Y; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374-3385.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 5
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 7
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody, G.M.; Ajay, M. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335-1343.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Ajay, M.2
  • 8
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.-B.; Zhu Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 10
    • 84893640041 scopus 로고    scopus 로고
    • Extreme learning machine for soybean classification in remote sensing hyperspectral images
    • Moreno, R.; Corona, F.; Lendasse, A.; Grana, M.; Galvao, L.S. Extreme learning machine for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128, 207-216.
    • (2014) Neurocomputing , vol.128 , pp. 207-216
    • Moreno, R.1    Corona, F.2    Lendasse, A.3    Grana, M.4    Galvao, L.S.5
  • 11
    • 70449409294 scopus 로고    scopus 로고
    • Extreme-learning-machine-based land cover classification
    • Pal, M. Extreme-learning-machine-based land cover classification. Int. J. Remote Sens. 2009, 30, 3835-3841.
    • (2009) Int. J. Remote Sens , vol.30 , pp. 3835-3841
    • Pal, M.1
  • 12
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-based extreme learning machine for remote-sensing image classification
    • Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 2013, 4, 853-862.
    • (2013) Remote Sens. Lett , vol.4 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 14
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257-272.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 15
    • 77956058584 scopus 로고    scopus 로고
    • Hyperspectral region classification using a three-dimensional Gabor filterbank
    • Bau, T.C.; Sarkar, S.; Healey, G. Hyperspectral region classification using a three-dimensional Gabor filterbank. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3457-3464.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 3457-3464
    • Bau, T.C.1    Sarkar, S.2    Healey, G.3
  • 16
    • 82155181590 scopus 로고    scopus 로고
    • Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification
    • Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039-5046.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 17
    • 80955160562 scopus 로고    scopus 로고
    • Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Gabor Textures
    • Vancouver, BC, Canada, 24-29 July
    • Huo, L.-Z.; Tang, P. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Gabor Textures. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24-29 July 2011; pp. 1708-1711.
    • (2011) Proceedings of IEEE International Geoscience and Remote Sensing Symposium , pp. 1708-1711
    • Huo, L.-Z.1    Tang, P.2
  • 18
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Zhang, L; Zhang, L; Tao, D; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879-893.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 19
    • 84899912972 scopus 로고    scopus 로고
    • Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification
    • Chen, C.; Li, W.; Tramel, E.W.; Cui, M.; Prasad, S.; Fowler, J.E. Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1047-1059.
    • (2014) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens , vol.7 , pp. 1047-1059
    • Chen, C.1    Li, W.2    Tramel, E.W.3    Cui, M.4    Prasad, S.5    Fowler, J.E.6
  • 20
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4173-4185.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 21
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • Kettig, R.L.; Landgrebe, D.A. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Trans. Geosci. Electron. 1976, GE-14, 19-26.
    • (1976) IEEE Trans. Geosci. Electron , vol.GE-14 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 22
    • 0019229244 scopus 로고
    • The development of a spectral-spatial classifier for earth observational data
    • Landgrebe, D.A. The development of a spectral-spatial classifier for earth observational data. Pattern Recognit. 1980, 12, 165-175.
    • (1980) Pattern Recognit , vol.12 , pp. 165-175
    • Landgrebe, D.A.1
  • 23
    • 19944365084 scopus 로고    scopus 로고
    • Robust face detection using Gabor filter features
    • Huang, L.L.; Shimizu, A.; Kobatake, H. Robust face detection using Gabor filter features. Pattern Recognit. Lett. 2005, 26, 1641-1649.
    • (2005) Pattern Recognit. Lett , vol.26 , pp. 1641-1649
    • Huang, L.L.1    Shimizu, A.2    Kobatake, H.3
  • 25
    • 0024048781 scopus 로고
    • The generalized Gabor scheme of image representation in biological and machine vision
    • Porat, M.; Zeevi, Y.Y. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 452-468.
    • (1988) IEEE Trans. Pattern Anal. Mach. Intell , vol.10 , pp. 452-468
    • Porat, M.1    Zeevi, Y.Y.2
  • 27
    • 0034333640 scopus 로고    scopus 로고
    • Designing Gabor filters for optimal texture separabilty
    • Clausi, D.A.; Jernigan, M.E. Designing Gabor filters for optimal texture separabilty. Pattern Recognit. 2000, 33, 1835-1849.
    • (2000) Pattern Recognit , vol.33 , pp. 1835-1849
    • Clausi, D.A.1    Jernigan, M.E.2
  • 28
    • 84861314173 scopus 로고    scopus 로고
    • Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions
    • Systems, and Computers, Pacific Grove, CA, USA, 6-9 November
    • Chen, C; Tramel, E.W.; Fowler, J.E. Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions. In Proceedings of the 2011 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 6-9 November 2011; pp. 1193-1198.
    • (2011) Proceedings of the 2011 Asilomar Conference on Signals , pp. 1193-1198
    • Chen, C.1    Tramel, E.W.2    Fowler, J.E.3
  • 29
    • 84876211441 scopus 로고    scopus 로고
    • Single-Image Super-Resolution Using Multihypothesis Prediction
    • Systems, and Computers, Pacific Grove, CA, USA, 4-7 November
    • Chen, C.; Fowler, J.E. Single-Image Super-Resolution Using Multihypothesis Prediction. In Proceedings of the 2012 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 4-7 November 2012; pp. 1193-1198.
    • (2012) Proceedings of the 2012 Asilomar Conference on Signals , pp. 1193-1198
    • Chen, C.1    Fowler, J.E.2
  • 30
    • 84890433804 scopus 로고    scopus 로고
    • Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction
    • Chen, C.; Li, W.; Tramel, E.W.; Fowler, J.E. Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction. IEEE Trans. Geosci. Remote Sens. 2014, 52, 365-374.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 365-374
    • Chen, C.1    Li, W.2    Tramel, E.W.3    Fowler, J.E.4
  • 32
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang, G.-B.; Chen, L.; Siew, C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879-892.
    • (2006) IEEE Trans. Neural Netw , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 34
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Du, Q.; Yang H. Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5, 564-568.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 35
    • 84986875402 scopus 로고    scopus 로고
    • (accessed on 5 March 2014)
    • LIBSVM-A Library for Support Vector Machines. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 5 March 2014).
  • 36
    • 84986919089 scopus 로고    scopus 로고
    • (accessed on 7 March 2014)
    • MATLAB Codes for Extreme Learning Machine (ELM) Algorithm. Available online: http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html (accessed on 7 March 2014).
  • 38
    • 70449433268 scopus 로고    scopus 로고
    • A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City northern Italy
    • Huang, X.; Zhang, L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City northern Italy. Int. J. Remote Sens. 2009, 30, 3205-3221.
    • (2009) Int. J. Remote Sens , vol.30 , pp. 3205-3221
    • Huang, X.1    Zhang, L.2
  • 39
    • 84986893999 scopus 로고    scopus 로고
    • (accessed on 20 December 2013)
    • Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 20 December 2013).
  • 40
    • 0001632418 scopus 로고
    • The use of the L-curve in the regularization of discrete ill-posed problems
    • Hansen, C.; O'Leary, D.P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 14, 1487-1503.
    • (1993) SIAM J. Sci. Comput , vol.14 , pp. 1487-1503
    • Hansen, C.1    O'Leary, D.P.2
  • 41
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectral image classification with independent component discriminant analysis
    • Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4865-4876.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussot, J.3    Jutten, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.