메뉴 건너뛰기




Volumn 7, Issue 12, 2015, Pages 16398-16421

Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data

Author keywords

Artificial neural networks; Biomass; Biophysical parameters; Machine learning; Regression; Remote sensing; Retrieval algorithms; Soil moisture; SVM

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOMASS; LEARNING SYSTEMS; MOISTURE; NEURAL NETWORKS; SOIL MOISTURE; SOIL SURVEYS; SOILS; SPACE OPTICS; SPACE PLATFORMS;

EID: 84962670222     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs71215841     Document Type: Review
Times cited : (347)

References (136)
  • 1
    • 84857941233 scopus 로고    scopus 로고
    • Derivation of biomass information for semi-arid areas using remote-sensing data
    • Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of biomass information for semi-arid areas using remote-sensing data. Int. J. Remote Sens. 2012, 33, 2937-2984.
    • (2012) Int. J. Remote Sens , vol.33 , pp. 2937-2984
    • Eisfelder, C.1    Kuenzer, C.2    Dech, S.3
  • 4
    • 33646702801 scopus 로고    scopus 로고
    • The potential and challenge of remote sensing-based biomass estimation
    • Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297-1328.
    • (2006) Int. J. Remote Sens , vol.27 , pp. 1297-1328
    • Lu, D.1
  • 11
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337-352.
    • (2004) Remote Sens. Environ , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 13
    • 44949287707 scopus 로고
    • PROSPECT: A model of leaf optical properties spectra
    • Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75-91.
    • (1990) Remote Sens. Environ , vol.34 , pp. 75-91
    • Jacquemoud, S.1    Baret, F.2
  • 14
    • 0021644260 scopus 로고
    • Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
    • Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125-141.
    • (1984) Remote Sens. Environ , vol.16 , pp. 125-141
    • Verhoef, W.1
  • 15
    • 0000047587 scopus 로고
    • Vegetation effects on the microwave emission of soils
    • Jackson, T.J.; Schmugge, T.J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203-212.
    • (1991) Remote Sens. Environ , vol.36 , pp. 203-212
    • Jackson, T.J.1    Schmugge, T.J.2
  • 16
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology
    • Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11-29.
    • (2001) J. Hydrol , vol.249 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 17
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18-36.
    • (2006) J. Hydrol , vol.320 , pp. 18-36
    • Beven, K.1
  • 21
    • 4544387641 scopus 로고    scopus 로고
    • An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs
    • Hadjimitsis, D.G.; Clayton, C.R.I.; Hope, V.S. An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Int. J. Remote Sens. 2004, 25, 3651-3674.
    • (2004) Int. J. Remote Sens , vol.25 , pp. 3651-3674
    • Hadjimitsis, D.G.1    Clayton, C.R.I.2    Hope, V.S.3
  • 22
    • 0038606455 scopus 로고    scopus 로고
    • Retrieval of leaf area index in different vegetation types using high resolution satellite data
    • Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120-131.
    • (2003) Remote Sens. Environ , vol.86 , pp. 120-131
    • Colombo, R.1    Bellingeri, D.2    Fasolini, D.3    Marino, C.M.4
  • 23
    • 33744799210 scopus 로고    scopus 로고
    • Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data
    • Heiskanen, J. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int. J. Remote Sens. 2006, 27, 1135-1158.
    • (2006) Int. J. Remote Sens , vol.27 , pp. 1135-1158
    • Heiskanen, J.1
  • 24
    • 34247491224 scopus 로고    scopus 로고
    • Retrieving TSM Concentration From Multispectral Satellite Data by Multiple Regression and Artificial Neural Networks
    • Teodoro, A.; Veloso-Gomes, F.; Goncalves, H. Retrieving TSM Concentration From Multispectral Satellite Data by Multiple Regression and Artificial Neural Networks. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1342-1350.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 1342-1350
    • Teodoro, A.1    Veloso-Gomes, F.2    Goncalves, H.3
  • 26
    • 4143117935 scopus 로고    scopus 로고
    • Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations
    • Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195-206.
    • (2004) Remote Sens. Environ , vol.92 , pp. 195-206
    • Meroni, M.1    Colombo, R.2    Panigada, C.3
  • 27
    • 0026835122 scopus 로고
    • Backscattering from a randomly rough dielectric surface
    • Fung, A.; Li, Z.; Chen, K. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356-369.
    • (1992) IEEE Trans. Geosci. Remote Sens , vol.30 , pp. 356-369
    • Fung, A.1    Li, Z.2    Chen, K.3
  • 29
    • 0029276291 scopus 로고
    • A three-dimensional radar backscatter model of forest canopies
    • Sun, G.; Ranson, K. A three-dimensional radar backscatter model of forest canopies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 372-382.
    • (1995) IEEE Trans. Geosci. Remote Sens , vol.33 , pp. 372-382
    • Sun, G.1    Ranson, K.2
  • 30
    • 0034478693 scopus 로고    scopus 로고
    • Comparison of four radiative transfer models to simulate plant canopies reflectance direct and inverse mode
    • Jacquemoud, S. Comparison of four radiative transfer models to simulate plant canopies reflectance direct and inverse mode. Remote Sens. Environ. 2000, 74, 471-481.
    • (2000) Remote Sens. Environ , vol.74 , pp. 471-481
    • Jacquemoud, S.1
  • 31
    • 2942532259 scopus 로고    scopus 로고
    • Integrating remote sensing and ecosystem process models for landscape-to regional-scale analysis of the carbon cycle
    • Turner, D.P.; Ollinger, S.V.; Kimball, J.S. Integrating remote sensing and ecosystem process models for landscape-to regional-scale analysis of the carbon cycle. BioScience 2004, 54, 573-584.
    • (2004) BioScience , vol.54 , pp. 573-584
    • Turner, D.P.1    Ollinger, S.V.2    Kimball, J.S.3
  • 32
    • 31344449225 scopus 로고    scopus 로고
    • Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
    • Schlerf, M.; Atzberger, C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 2006, 100, 281-294.
    • (2006) Remote Sens. Environ , vol.100 , pp. 281-294
    • Schlerf, M.1    Atzberger, C.2
  • 33
    • 41449108067 scopus 로고    scopus 로고
    • Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
    • Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592-2604.
    • (2008) Remote Sens. Environ , vol.112 , pp. 2592-2604
    • Darvishzadeh, R.1    Skidmore, A.2    Schlerf, M.3    Atzberger, C.4
  • 34
    • 53849118855 scopus 로고    scopus 로고
    • A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images
    • Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274-3284.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 3274-3284
    • Paloscia, S.1    Pampaloni, P.2    Pettinato, S.3    Santi, E.4
  • 35
    • 67349273670 scopus 로고    scopus 로고
    • Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients
    • Song, K.; Zhou, X.; Fan, Y. Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1662-1672.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 1662-1672
    • Song, K.1    Zhou, X.2    Fan, Y.3
  • 37
    • 38349098973 scopus 로고    scopus 로고
    • Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method
    • Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547-557.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 547-557
    • Notarnicola, C.1    Angiulli, M.2    Posa, F.3
  • 38
    • 0037300063 scopus 로고    scopus 로고
    • Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
    • Del Frate, F.; Ferrazzoli, P.; Schiavon, G. Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks. Remote Sens. Environ. 2003, 84, 174-183.
    • (2003) Remote Sens. Environ , vol.84 , pp. 174-183
    • Del Frate, F.1    Ferrazzoli, P.2    Schiavon, G.3
  • 40
    • 33846939265 scopus 로고    scopus 로고
    • Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
    • Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348-361.
    • (2007) Remote Sens. Environ , vol.107 , pp. 348-361
    • Durbha, S.S.1    King, R.L.2    Younan, N.H.3
  • 41
    • 61349168387 scopus 로고    scopus 로고
    • Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data
    • Moser, G.; Serpico, S. Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 909-921.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 909-921
    • Moser, G.1    Serpico, S.2
  • 43
    • 84882741253 scopus 로고    scopus 로고
    • Soil organic carbon in managed pastures of the southeastern United States of America
    • Integrated Crop Management Vol. 11-2010; FAO: Rome, Italy
    • Franzluebbers, A.J. Soil organic carbon in managed pastures of the southeastern United States of America. In Grassland Carbon Sequestration: Management, Policy and Economics; Integrated Crop Management Vol. 11-2010; FAO: Rome, Italy, 2010; Volume 11, pp. 163-175.
    • (2010) Grassland Carbon Sequestration: Management, Policy and Economics , vol.11 , pp. 163-175
    • Franzluebbers, A.J.1
  • 44
    • 84962655274 scopus 로고    scopus 로고
    • Satellite observation of biomass burning
    • Chuvieco, E., Ed.; Springer Netherlands: Dordrecht, The Netherlands
    • Chuvieco, E. Satellite observation of biomass burning. In Earth Observation of Global Change; Chuvieco, E., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 109-142.
    • (2008) Earth Observation of Global Change , pp. 109-142
    • Chuvieco, E.1
  • 47
    • 66149165735 scopus 로고    scopus 로고
    • A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China
    • Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810-1818.
    • (2009) Ecol. Model , vol.220 , pp. 1810-1818
    • Xie, Y.1    Sha, Z.2    Yu, M.3    Bai, Y.4    Zhang, L.5
  • 48
    • 84860650702 scopus 로고    scopus 로고
    • On grass yield remote sensing estimation models of China's northern farming-pastoral ecotone
    • Lee, G., Ed.; Number 142 in Advances in Intelligent and Soft Computing; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany
    • Yang, X.; Xu, B.; Yunxiang, J.; Jinya, L.; Zhu, X. On grass yield remote sensing estimation models of China's northern farming-pastoral ecotone. In Advances in Computational Environment Science; Lee, G., Ed.; Number 142 in Advances in Intelligent and Soft Computing; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; pp. 281-291.
    • (2012) Advances in Computational Environment Science , pp. 281-291
    • Yang, X.1    Xu, B.2    Yunxiang, J.3    Jinya, L.4    Zhu, X.5
  • 49
    • 84911430341 scopus 로고    scopus 로고
    • Application of statistical and machine learning modelds for grassland yield estimation based on a hyper-temporal satellite remote sensing time series
    • Quebec City, QC, Canada, 13-18 July
    • Ali, I.; Cawkwell, F.; Green, S.; Dwyer, E. Application of statistical and machine learning modelds for grassland yield estimation based on a hyper-temporal satellite remote sensing time series. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014), Quebec City, QC, Canada, 13-18 July 2014; pp. 5060-5063.
    • (2014) Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014) , pp. 5060-5063
    • Ali, I.1    Cawkwell, F.2    Green, S.3    Dwyer, E.4
  • 50
    • 84901609512 scopus 로고    scopus 로고
    • ANFIS based land cover/land use mapping of LISS IV imagery using optimized wavelet packet features
    • Rajesh, S.; Arivazhagan, S.; Moses, K.P.; Abisekaraj, R. ANFIS based land cover/land use mapping of LISS IV imagery using optimized wavelet packet features. J. Indian Soc. Remote Sens. 2014, 42, 267-277.
    • (2014) J. Indian Soc. Remote Sens , vol.42 , pp. 267-277
    • Rajesh, S.1    Arivazhagan, S.2    Moses, K.P.3    Abisekaraj, R.4
  • 51
    • 84882853340 scopus 로고    scopus 로고
    • Designing and modeling of ultra low voltage and ultra low power LNA using ANN and ANFIS for Bluetooth applications
    • Karimi, G.; Sedaghat, S.B.; Banitalebi, R. Designing and modeling of ultra low voltage and ultra low power LNA using ANN and ANFIS for Bluetooth applications. Neurocomputing 2013, 120, 504-508.
    • (2013) Neurocomputing , vol.120 , pp. 504-508
    • Karimi, G.1    Sedaghat, S.B.2    Banitalebi, R.3
  • 52
    • 84887072711 scopus 로고    scopus 로고
    • Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS
    • Yuan, Z.;Wang, L.N.; Ji, X. Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS. Adv. Eng. Softw. 2014, 67, 156-163.
    • (2014) Adv. Eng. Softw , vol.67 , pp. 156-163
    • Yuan, Z.1    Wang, L.N.2    Ji, X.3
  • 53
    • 46149126847 scopus 로고    scopus 로고
    • Precision agriculture on grassland: Applications, perspectives and constraints
    • Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59-71.
    • (2008) Eur. J. Agron , vol.29 , pp. 59-71
    • Schellberg, J.1    Hill, M.J.2    Gerhards, R.3    Rothmund, M.4    Braun, M.5
  • 54
    • 0031228124 scopus 로고    scopus 로고
    • Opportunities and limitations for image-based remote sensing in precision crop management
    • Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319-346.
    • (1997) Remote Sens. Environ , vol.61 , pp. 319-346
    • Moran, M.S.1    Inoue, Y.2    Barnes, E.M.3
  • 55
    • 84862200782 scopus 로고    scopus 로고
    • Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions
    • Prasad, R.; Pandey, A.; Singh, K.P.; Singh, V.P.; Mishra, R.K.; Singh, D. Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions. Adv. Space Res. 2012, 50, 363-370.
    • (2012) Adv. Space Res , vol.50 , pp. 363-370
    • Prasad, R.1    Pandey, A.2    Singh, K.P.3    Singh, V.P.4    Mishra, R.K.5    Singh, D.6
  • 56
    • 32644445913 scopus 로고    scopus 로고
    • Application of support vector machine technology for weed and nitrogen stress detection in corn
    • Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput. Electr. Agric. 2006, 51, 99-109.
    • (2006) Comput. Electr. Agric , vol.51 , pp. 99-109
    • Karimi, Y.1    Prasher, S.O.2    Patel, R.M.3    Kim, S.H.4
  • 58
    • 77956892823 scopus 로고    scopus 로고
    • Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance
    • Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.W.; Plümer, L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electr. Agric. 2010, 74, 91-99.
    • (2010) Comput. Electr. Agric , vol.74 , pp. 91-99
    • Rumpf, T.1    Mahlein, A.K.2    Steiner, U.3    Oerke, E.C.4    Dehne, H.W.5    Plümer, L.6
  • 59
    • 80054912956 scopus 로고    scopus 로고
    • Assimilation of remote sensing and crop model for LAI estimation based on ensemble Kaiman Filter
    • Li, R.; Li, C.J.; Dong, Y.Y.; Liu, F.; Wang, J.H.; Yang, X.D.; Pan, Y.C. Assimilation of remote sensing and crop model for LAI estimation based on ensemble Kaiman Filter. Agric. Sci. China 2011, 10, 1595-1602.
    • (2011) Agric. Sci. China , vol.10 , pp. 1595-1602
    • Li, R.1    Li, C.J.2    Dong, Y.Y.3    Liu, F.4    Wang, J.H.5    Yang, X.D.6    Pan, Y.C.7
  • 60
    • 79952825592 scopus 로고    scopus 로고
    • Estimating biophysical parameters of rice with remote sensing data using support vector machines
    • Yang, X.; Huang, J.;Wu, Y.;Wang, J.;Wang, P.;Wang, X.; Huete, A.R. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci. China Life Sci. 2011, 54, 272-281.
    • (2011) Sci. China Life Sci , vol.54 , pp. 272-281
    • Yang, X.1    Huang, J.2    Wu, Y.3    Wang, J.4    Wang, P.5    Wang, X.6    Huete, A.R.7
  • 62
    • 0036613786 scopus 로고    scopus 로고
    • Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures
    • Liu, S.F.; Liou, Y.A.; Wang, W.J.; Wigneron, J.P.; Lee, J.B. Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1260-1268.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , pp. 1260-1268
    • Liu, S.F.1    Liou, Y.A.2    Wang, W.J.3    Wigneron, J.P.4    Lee, J.B.5
  • 63
    • 84908440807 scopus 로고    scopus 로고
    • A support vector machine to identify irrigated crop types using time-series Landsat NDVI data
    • Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103-112.
    • (2015) Int. J. Appl. Earth Obs. Geoinf , vol.34 , pp. 103-112
    • Zheng, B.1    Myint, S.W.2    Thenkabail, P.S.3    Aggarwal, R.M.4
  • 65
    • 84893640041 scopus 로고    scopus 로고
    • Extreme learning machines for soybean classification in remote sensing hyperspectral images
    • Moreno, R.; Corona, F.; Lendasse, A.; Graña, M.; Galvão, L.S. Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128, 207-216.
    • (2014) Neurocomputing , vol.128 , pp. 207-216
    • Moreno, R.1    Corona, F.2    Lendasse, A.3    Graña, M.4    Galvão, L.S.5
  • 66
    • 84884514639 scopus 로고    scopus 로고
    • Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines
    • Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102-119.
    • (2013) ISPRS J. Photogramm. Remote Sens , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 67
    • 84857916067 scopus 로고    scopus 로고
    • Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery
    • Petropoulos, G.P.; Kalaitzidis, C.; Prasad Vadrevu, K. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99-107.
    • (2012) Comput. Geosci , vol.41 , pp. 99-107
    • Petropoulos, G.P.1    Kalaitzidis, C.2    Prasad Vadrevu, K.3
  • 69
    • 80255131087 scopus 로고    scopus 로고
    • Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping
    • Petropoulos, G.P.; Arvanitis, K.; Sigrimis, N. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Exp. Syst. Appl. 2012, 39, 3800-3809.
    • (2012) Exp. Syst. Appl , vol.39 , pp. 3800-3809
    • Petropoulos, G.P.1    Arvanitis, K.2    Sigrimis, N.3
  • 70
    • 79551684301 scopus 로고    scopus 로고
    • Evaluating high resolution SPOT 5 satellite imagery for crop identification
    • Yang, C.; Everitt, J.H.; Murden, D. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput. Electr. Agric. 2011, 75, 347-354.
    • (2011) Comput. Electr. Agric , vol.75 , pp. 347-354
    • Yang, C.1    Everitt, J.H.2    Murden, D.3
  • 71
    • 77449131719 scopus 로고    scopus 로고
    • Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China
    • Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W.A. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301-6315.
    • (2009) Int. J. Remote Sens , vol.30 , pp. 6301-6315
    • Zhang, Y.1    Wang, C.2    Wu, J.3    Qi, J.4    Salas, W.A.5
  • 72
    • 0034655487 scopus 로고    scopus 로고
    • Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America
    • Muchoney, D.; Borak, J.; Chi, H.; Friedl, M.; Gopal, S.; Hodges, J.; Morrow, N.; Strahler, A. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. Int. J. Remote Sens. 2000, 21, 1115-1138.
    • (2000) Int. J. Remote Sens , vol.21 , pp. 1115-1138
    • Muchoney, D.1    Borak, J.2    Chi, H.3    Friedl, M.4    Gopal, S.5    Hodges, J.6    Morrow, N.7    Strahler, A.8
  • 73
    • 84875505078 scopus 로고    scopus 로고
    • Mapping field-scale yield gaps for maize: An example from Bangladesh
    • Schulthess, U.; Timsina, J.; Herrera, J.M.; McDonald, A. Mapping field-scale yield gaps for maize: An example from Bangladesh. Field Crops Res. 2013, 143, 151-156.
    • (2013) Field Crops Res , vol.143 , pp. 151-156
    • Schulthess, U.1    Timsina, J.2    Herrera, J.M.3    McDonald, A.4
  • 75
    • 84887421296 scopus 로고    scopus 로고
    • Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks
    • Jia, M.; Tong, L.; Chen, Y.; Wang, Y.; Zhang, Y. Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks. J. Appl. Remote Sens. 2013, 7, 073509.
    • (2013) J. Appl. Remote Sens , vol.7
    • Jia, M.1    Tong, L.2    Chen, Y.3    Wang, Y.4    Zhang, Y.5
  • 76
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M. An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116-128.
    • (2014) Remote Sens. Environ , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 78
    • 85010540243 scopus 로고    scopus 로고
    • Random forest regression and spectral band selection for stimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data
    • Abdel-Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for stimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2012, 34, 712-728.
    • (2012) Int. J. Remote Sens , vol.34 , pp. 712-728
    • Abdel-Rahman, E.M.1    Ahmed, F.B.2    Ismail, R.3
  • 81
    • 78249231399 scopus 로고    scopus 로고
    • Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
    • Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581-590.
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , pp. 581-590
    • Koch, B.1
  • 82
    • 0037394558 scopus 로고    scopus 로고
    • Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama
    • Chave, J.; Condit, R.; Lao, S.; Caspersen, J.P.; Foster, R.B.; Hubbell, S.P. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J. Ecol. 2003, 91, 240-252.
    • (2003) J. Ecol , vol.91 , pp. 240-252
    • Chave, J.1    Condit, R.2    Lao, S.3    Caspersen, J.P.4    Foster, R.B.5    Hubbell, S.P.6
  • 83
    • 77950924202 scopus 로고    scopus 로고
    • Fusion of ALOS Palsar and Landsat ETM data for land cover classification and biomass modeling using non-linear methods
    • Cape Town, South Africa, 12-17 July
    • Wijaya, A.; Gloaguen, R. Fusion of ALOS Palsar and Landsat ETM data for land cover classification and biomass modeling using non-linear methods. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009), Cape Town, South Africa, 12-17 July 2009; Vol. 3, pp. 581-584.
    • (2009) Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009) , vol.3 , pp. 581-584
    • Wijaya, A.1    Gloaguen, R.2
  • 85
    • 55949135487 scopus 로고    scopus 로고
    • Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning
    • Liu, K.; Li, X.; Shi, X.; Wang, S. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 2008, 28, 336-346.
    • (2008) Wetlands , vol.28 , pp. 336-346
    • Liu, K.1    Li, X.2    Shi, X.3    Wang, S.4
  • 87
    • 84899855654 scopus 로고    scopus 로고
    • Translating criteria of international forest definitions into remote sensing image analysis
    • Magdon, P.; Fischer, C.; Fuchs, H.; Kleinn, C. Translating criteria of international forest definitions into remote sensing image analysis. Remote Sens. Environ. 2014, 149, 252-262.
    • (2014) Remote Sens. Environ , vol.149 , pp. 252-262
    • Magdon, P.1    Fischer, C.2    Fuchs, H.3    Kleinn, C.4
  • 88
    • 84898649754 scopus 로고    scopus 로고
    • Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics
    • Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Kennedy, R. Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS J. Photogramm. Remote Sens. 2014, 92, 137-146.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.92 , pp. 137-146
    • Frazier, R.J.1    Coops, N.C.2    Wulder, M.A.3    Kennedy, R.4
  • 89
    • 84864187384 scopus 로고    scopus 로고
    • Forest biomass estimation from airborne LiDAR data using machine learning approaches
    • Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80-91.
    • (2012) Remote Sens. Environ , vol.125 , pp. 80-91
    • Gleason, C.J.1    Im, J.2
  • 90
    • 84906945992 scopus 로고    scopus 로고
    • Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over huntington wildlife forest in the Adirondack Park
    • Li, M.; Im, J.; Quackenbush, L.; Liu, T. Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over huntington wildlife forest in the Adirondack Park. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3143-3156.
    • (2014) IEEE J. Select. Top. Appl. Earth Obs. Remote Sens , vol.7 , pp. 3143-3156
    • Li, M.1    Im, J.2    Quackenbush, L.3    Liu, T.4
  • 91
    • 79957608914 scopus 로고    scopus 로고
    • Characterizing forest canopy structure with LiDAR composite metrics and machine learning
    • Zhao, K.; Popescu, S.; Meng, X.; Pang, Y.; Agca, M. Characterizing forest canopy structure with LiDAR composite metrics and machine learning. Remote Sens. Environ. 2011, 115, 1978-1996.
    • (2011) Remote Sens. Environ , vol.115 , pp. 1978-1996
    • Zhao, K.1    Popescu, S.2    Meng, X.3    Pang, Y.4    Agca, M.5
  • 93
    • 1242331320 scopus 로고    scopus 로고
    • On neural network algorithms for retrieving forest biomass from SAR data
    • Del Frate, F.; Solimini, D. On neural network algorithms for retrieving forest biomass from SAR data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 24-34.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 24-34
    • Del Frate, F.1    Solimini, D.2
  • 94
    • 84855905962 scopus 로고    scopus 로고
    • Assessing Performance of L-and P-band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass
    • Neumann, M.; Saatchi, S.S.; Ulander, L.M.H.; Fransson, J.E.S. Assessing Performance of L-and P-band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass. IEEE Trans. Geosci. Remote Sens. 2012, 50, 714-726.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 714-726
    • Neumann, M.1    Saatchi, S.S.2    Ulander, L.M.H.3    Fransson, J.E.S.4
  • 95
    • 84894376735 scopus 로고    scopus 로고
    • Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests
    • Tanase, M.A.; Panciera, R.; Lowell, K.; Tian, S.; Hacker, J.M.; Walker, J.P. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests. Remote Sens. Environ. 2014, 145, 93-104.
    • (2014) Remote Sens. Environ , vol.145 , pp. 93-104
    • Tanase, M.A.1    Panciera, R.2    Lowell, K.3    Tian, S.4    Hacker, J.M.5    Walker, J.P.6
  • 96
    • 84904060559 scopus 로고    scopus 로고
    • Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling
    • Güneralp, I˙.; Filippi, A.M.; Randall, J. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 119-126.
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.33 , pp. 119-126
    • Güneralp, I.1    Filippi, A.M.2    Randall, J.3
  • 97
    • 84919824337 scopus 로고    scopus 로고
    • Intra-and-Inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advanced machine learning algorithms
    • Dube, T.; Mutanga, O.; Elhadi, A.; Ismail, R. Intra-and-Inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advanced machine learning algorithms. Sensors 2014, 14, 15348-15370.
    • (2014) Sensors , vol.14 , pp. 15348-15370
    • Dube, T.1    Mutanga, O.2    Elhadi, A.3    Ismail, R.4
  • 98
    • 84880431429 scopus 로고    scopus 로고
    • Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data
    • Carreiras, J.M.B.; Melo, J.B.; Vasconcelos, M.J. Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sens. 2013, 5, 1524-1548.
    • (2013) Remote Sens , vol.5 , pp. 1524-1548
    • Carreiras, J.M.B.1    Melo, J.B.2    Vasconcelos, M.J.3
  • 99
    • 84889632357 scopus 로고    scopus 로고
    • Forest attributes estimation using aerial laser scanner and TM data
    • Joibary, S.S. Forest attributes estimation using aerial laser scanner and TM data. For. Syst. 2013, 22, 484-496.
    • (2013) For. Syst , vol.22 , pp. 484-496
    • Joibary, S.S.1
  • 102
    • 84858716754 scopus 로고    scopus 로고
    • Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa)
    • Carreiras, J.M.B.; Vasconcelos, M.J.; Lucas, R.M. Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 2012, 121, 426-442.
    • (2012) Remote Sens. Environ , vol.121 , pp. 426-442
    • Carreiras, J.M.B.1    Vasconcelos, M.J.2    Lucas, R.M.3
  • 103
    • 84862860392 scopus 로고    scopus 로고
    • A GEOBIA framework to estimate forest parameters from LiDAR transects, Quickbird imagery and machine learning: A case study in Quebec, Canada
    • Chen, G.; Hay, G.J.; St-Onge, B. A GEOBIA framework to estimate forest parameters from LiDAR transects, Quickbird imagery and machine learning: A case study in Quebec, Canada. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 28-37.
    • (2012) Int. J. Appl. Earth Obs. Geoinf , vol.15 , pp. 28-37
    • Chen, G.1    Hay, G.J.2    St-Onge, B.3
  • 105
    • 84864512878 scopus 로고    scopus 로고
    • High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
    • Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399-406.
    • (2012) Int. J. Appl. Earth Obs. Geoinf , vol.18 , pp. 399-406
    • Mutanga, O.1    Adam, E.2    Cho, M.A.3
  • 106
    • 84855435874 scopus 로고    scopus 로고
    • Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
    • Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366-380.
    • (2012) Remote Sens. Environ , vol.117 , pp. 366-380
    • Avitabile, V.1    Baccini, A.2    Friedl, M.A.3    Schmullius, C.4
  • 108
    • 84877298110 scopus 로고    scopus 로고
    • Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms
    • Shataee, S.; Kalbi, S.; Fallah, A.; Pelz, D. Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. Int. J. Remote Sens. 2012, 33, 6254-6280.
    • (2012) Int. J. Remote Sens , vol.33 , pp. 6254-6280
    • Shataee, S.1    Kalbi, S.2    Fallah, A.3    Pelz, D.4
  • 109
    • 76049083444 scopus 로고    scopus 로고
    • Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches
    • Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053-1068.
    • (2010) Remote Sens. Environ , vol.114 , pp. 1053-1068
    • Powell, S.L.1    Cohen, W.B.2    Healey, S.P.3    Kennedy, R.E.4    Moisen, G.G.5    Pierce, K.B.6    Ohmann, J.L.7
  • 110
    • 0033461820 scopus 로고    scopus 로고
    • On the spatial and temporal links between vegetation, climate, and soil moisture
    • Rodriguez-Iturbe, I.; D'Odorico, P.; Porporato, A.; Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 1999, 35, 3709-3722.
    • (1999) Water Resour. Res , vol.35 , pp. 3709-3722
    • Rodriguez-Iturbe, I.1    D'Odorico, P.2    Porporato, A.3    Ridolfi, L.4
  • 112
    • 0036148893 scopus 로고    scopus 로고
    • A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status
    • Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213-224.
    • (2002) Remote Sens. Environ , vol.79 , pp. 213-224
    • Sandholt, I.1    Rasmussen, K.2    Andersen, J.3
  • 113
    • 0141570723 scopus 로고    scopus 로고
    • Assimilation of surface soil moisture to estimate profile soil water content
    • Heathman, G.C.; Starks, P.J.; Ahuja, L.R.; Jackson, T.J. Assimilation of surface soil moisture to estimate profile soil water content. J. Hydrol. 2003, 279, 1-17.
    • (2003) J. Hydrol , vol.279 , pp. 1-17
    • Heathman, G.C.1    Starks, P.J.2    Ahuja, L.R.3    Jackson, T.J.4
  • 114
    • 0019061101 scopus 로고
    • The dielectric properties of soil-water mixtures at microwave frequencies
    • Wang, J.R. The dielectric properties of soil-water mixtures at microwave frequencies. Radio Sci. 1980, 15, 977-985.
    • (1980) Radio Sci , vol.15 , pp. 977-985
    • Wang, J.R.1
  • 115
    • 0032166364 scopus 로고    scopus 로고
    • The effects of topography on mechanisms of radar backscatter from coniferous forest and upland pasture
    • Luckman, A. The effects of topography on mechanisms of radar backscatter from coniferous forest and upland pasture. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1830-1834.
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , pp. 1830-1834
    • Luckman, A.1
  • 117
    • 71649098237 scopus 로고    scopus 로고
    • Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques
    • Barrett, B.W.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sens. 2009, 1, 210-242.
    • (2009) Remote Sens , vol.1 , pp. 210-242
    • Barrett, B.W.1    Dwyer, E.2    Whelan, P.3
  • 119
    • 0030736980 scopus 로고    scopus 로고
    • A robust statistical-based estimator for soil moisture retrieval from radar measurements
    • Dawson, M.; Fung, A.; Manry, M. A robust statistical-based estimator for soil moisture retrieval from radar measurements. IEEE Trans. Geosci. Remote Sens. 1997, 35, 57-67.
    • (1997) IEEE Trans. Geosci. Remote Sens , vol.35 , pp. 57-67
    • Dawson, M.1    Fung, A.2    Manry, M.3
  • 122
    • 84861890165 scopus 로고    scopus 로고
    • Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks
    • Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol. Earth Syst. Sci. 2012, 16, 1607-1621.
    • (2012) Hydrol. Earth Syst. Sci , vol.16 , pp. 1607-1621
    • Baghdadi, N.1    Cresson, R.2    El Hajj, M.3    Ludwig, R.4    La Jeunesse, I.5
  • 123
    • 61849178148 scopus 로고    scopus 로고
    • A radial basis function approach to retrieve soil moistrure and crop variables from Xband scatterometer ovservations
    • Prasad, R.; Kumar, R.; Singh, D. A radial basis function approach to retrieve soil moistrure and crop variables from Xband scatterometer ovservations. Prog. Electromagn. Res. B 2009, 12, 201-217.
    • (2009) Prog. Electromagn. Res. B , vol.12 , pp. 201-217
    • Prasad, R.1    Kumar, R.2    Singh, D.3
  • 124
    • 84893945050 scopus 로고    scopus 로고
    • Soil moisture inversion using AMSR-E remote sensing data: An artificial neural network approach
    • Xie, X.M.; Xu, J.W.; Zhao, J.F.; Liu, S.;Wang, P. Soil moisture inversion using AMSR-E remote sensing data: An artificial neural network approach. Appl. Mech. Mater. 2014, 501-504, 2073-2076.
    • (2014) Appl. Mech. Mater , vol.501-504 , pp. 2073-2076
    • Xie, X.M.1    Xu, J.W.2    Zhao, J.F.3    Liu, S.4    Wang, P.5
  • 125
  • 126
    • 80255137400 scopus 로고    scopus 로고
    • Estimating soil moisture with the support vector regression technique
    • Pasolli, L.; Notarnicola, C.; Bruzzone, L. Estimating soil moisture with the support vector regression technique. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1080-1084.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , pp. 1080-1084
    • Pasolli, L.1    Notarnicola, C.2    Bruzzone, L.3
  • 128
    • 71649099637 scopus 로고    scopus 로고
    • Estimating soil moisture using remote sensing data: A machine learning approach
    • Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69-80.
    • (2010) Adv. Water Resour , vol.33 , pp. 69-80
    • Ahmad, S.1    Kalra, A.2    Stephen, H.3
  • 129
    • 84876952993 scopus 로고    scopus 로고
    • Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application
    • Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour. Manag. 2013, 27, 3127-3144.
    • (2013) Water Resour. Manag , vol.27 , pp. 3127-3144
    • Srivastava, P.K.1    Han, D.2    Ramirez, M.R.3    Islam, T.4
  • 130
    • 84962634653 scopus 로고    scopus 로고
    • Disaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure based models
    • submitted
    • Chakrabarti, S.; Judge, J.; Rangarajan, A.; Ranka, S. Disaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure based models. IEEE Trans. Image Rocess. 2015, submitted.
    • (2015) IEEE Trans. Image Rocess
    • Chakrabarti, S.1    Judge, J.2    Rangarajan, A.3    Ranka, S.4
  • 133
    • 84861846073 scopus 로고    scopus 로고
    • Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines
    • Zaman, B.; McKee, M.; Neale, C.M.U. Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines. Int. J. Remote Sens. 2012, 33, 6516-6552.
    • (2012) Int. J. Remote Sens , vol.33 , pp. 6516-6552
    • Zaman, B.1    McKee, M.2    Neale, C.M.U.3
  • 134
    • 0032712789 scopus 로고    scopus 로고
    • Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer
    • Wagner, W.; Noll, J.; Borgeaud, M.; Rott, H. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 1999, 37, 206-216.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , pp. 206-216
    • Wagner, W.1    Noll, J.2    Borgeaud, M.3    Rott, H.4
  • 136
    • 84897108395 scopus 로고    scopus 로고
    • A multiple criteria active learning method for support vector regression
    • Demir, B.; Bruzzone, L. A multiple criteria active learning method for support vector regression. Pattern Recognit. 2014, 47, 2558-2567.
    • (2014) Pattern Recognit , vol.47 , pp. 2558-2567
    • Demir, B.1    Bruzzone, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.