메뉴 건너뛰기




Volumn 55, Issue 2, 2017, Pages 881-893

Dense semantic labeling of subdecimeter resolution images with convolutional neural networks

Author keywords

Aerial images; classification; convolutional neural networks (CNNs); deconvolution networks; deep learning; semantic labeling; subdecimeter resolution

Indexed keywords

CONVOLUTION; FLIGHT DYNAMICS; IMAGE SEGMENTATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; PIXELS; SEMANTIC WEB; SEMANTICS;

EID: 84994217941     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2016.2616585     Document Type: Article
Times cited : (504)

References (45)
  • 1
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 3
    • 84908028859 scopus 로고    scopus 로고
    • Classifying compound structures in satellite images: A compressed representation for fast queries
    • Apr.
    • L. Gueguen, "Classifying compound structures in satellite images: A compressed representation for fast queries," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1803-1818, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1803-1818
    • Gueguen, L.1
  • 4
    • 33745824267 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," in Proc. Eur. Conf. Comput. Vis., 2006, pp. 1-15.
    • (2006) Proc. Eur. Conf. Comput. Vis. , pp. 1-15
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 5
    • 84901820174 scopus 로고    scopus 로고
    • Automatic feature learning for spatio-spectral image classification with sparse SVM
    • Oct.
    • D. Tuia, M. Volpi, M. D. Mura, A. Rakotomamonjy, and R. Flamary, "Automatic feature learning for spatio-spectral image classification with sparse SVM," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6062-6074, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6062-6074
    • Tuia, D.1    Volpi, M.2    Mura, M.D.3    Rakotomamonjy, A.4    Flamary, R.5
  • 6
    • 84906788402 scopus 로고    scopus 로고
    • Features, color spaces, and boosting: New insights on semantic classification of remote sensing images
    • Jan.
    • P. Tokarczyk, J. D. Wegner, S. Walk, and K. Schindler, "Features, color spaces, and boosting: New insights on semantic classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 280-295, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 280-295
    • Tokarczyk, P.1    Wegner, J.D.2    Walk, S.3    Schindler, K.4
  • 7
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions
    • Jul.
    • D. Tuia, R. Flamary, and N. Courty, "Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions," ISPRS J. Photogram. Remote Sens., vol. 105, pp. 272-285, Jul. 2015.
    • (2015) ISPRS J. Photogram. Remote Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Flamary, R.2    Courty, N.3
  • 11
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 1-8.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 1-8
    • Nair, V.1    Hinton, G.E.2
  • 12
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. E. Hinton, "Learning to label aerial images from noisy data," in Proc. Int. Conf. Mach. Learn., 2012, pp. 1-8.
    • (2012) Proc. Int. Conf. Mach. Learn. , pp. 1-8
    • Mnih, V.1    Hinton, G.E.2
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 15
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-14.
    • (2015) Proc. Int. Conf. Learn. Represent. , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 20
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • Dec.
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit., Dec. 2015, pp. 1026-1034.
    • (2015) Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit. , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 22
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., 2015, pp. 1-11.
    • (2015) Proc. Int. Conf. Mach. Learn. , pp. 1-11
    • Ioffe, S.1    Szegedy, C.2
  • 27
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • Dec.
    • H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1520-1528.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 28
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using ImageNet pretrained networks
    • Jan.
    • D. Marmanis, M. Datcu, T. Esch, and U. Stilla, "Deep learning earth observation classification using ImageNet pretrained networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105-109, Jan. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 32
    • 84919941118 scopus 로고    scopus 로고
    • Representation learning for contextual object and region detection in remote sensing
    • Aug.
    • O. Firat, G. Can, and F. T. Y. Vural, "Representation learning for contextual object and region detection in remote sensing," in Proc. Int. Conf. Pattern Recognit., Aug. 2014, pp. 3708-3713.
    • (2014) Proc. Int. Conf. Pattern Recognit. , pp. 3708-3713
    • Firat, O.1    Can, G.2    Vural, F.T.Y.3
  • 33
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 34
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • C. Romero, A. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, C.1    Gatta, A.2    Camps-Valls, G.3
  • 38
    • 84893676344 scopus 로고    scopus 로고
    • Rectier nonlinearities improve neural network acoustic models
    • A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectier nonlinearities improve neural network acoustic models," in Proc. Int. Conf. Mach. Learn., 2013, pp. 1-6.
    • (2013) Proc. Int. Conf. Mach. Learn. , pp. 1-6
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 39
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • M. D. Zeiler and R. Fergus, "Stochastic pooling for regularization of deep convolutional neural networks," in Proc. Int. Conf. Learn. Represent., 2013, pp. 1-9.
    • (2013) Proc. Int. Conf. Learn. Represent. , pp. 1-9
    • Zeiler, M.D.1    Fergus, R.2
  • 40
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol. 7, no. 1, pp. 108-116, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 44
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sep.
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, Sep. 2004.
    • (2004) Int. J. Comput. Vis. , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.