-
1
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Mar.
-
M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.A.3
Chanussot, J.4
Tilton, J.C.5
-
3
-
-
84908028859
-
Classifying compound structures in satellite images: A compressed representation for fast queries
-
Apr.
-
L. Gueguen, "Classifying compound structures in satellite images: A compressed representation for fast queries," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1803-1818, Apr. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 1803-1818
-
-
Gueguen, L.1
-
4
-
-
33745824267
-
TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," in Proc. Eur. Conf. Comput. Vis., 2006, pp. 1-15.
-
(2006)
Proc. Eur. Conf. Comput. Vis.
, pp. 1-15
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
5
-
-
84901820174
-
Automatic feature learning for spatio-spectral image classification with sparse SVM
-
Oct.
-
D. Tuia, M. Volpi, M. D. Mura, A. Rakotomamonjy, and R. Flamary, "Automatic feature learning for spatio-spectral image classification with sparse SVM," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6062-6074, Oct. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.10
, pp. 6062-6074
-
-
Tuia, D.1
Volpi, M.2
Mura, M.D.3
Rakotomamonjy, A.4
Flamary, R.5
-
6
-
-
84906788402
-
Features, color spaces, and boosting: New insights on semantic classification of remote sensing images
-
Jan.
-
P. Tokarczyk, J. D. Wegner, S. Walk, and K. Schindler, "Features, color spaces, and boosting: New insights on semantic classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 280-295, Jan. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.1
, pp. 280-295
-
-
Tokarczyk, P.1
Wegner, J.D.2
Walk, S.3
Schindler, K.4
-
7
-
-
84929495655
-
Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions
-
Jul.
-
D. Tuia, R. Flamary, and N. Courty, "Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions," ISPRS J. Photogram. Remote Sens., vol. 105, pp. 272-285, Jul. 2015.
-
(2015)
ISPRS J. Photogram. Remote Sens.
, vol.105
, pp. 272-285
-
-
Tuia, D.1
Flamary, R.2
Courty, N.3
-
8
-
-
34547988000
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," in Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 1-8.
-
(2006)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1-8
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
9
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. Int. Conf. Mach. Learn., 2008, pp. 1096-1103.
-
(2008)
Proc. Int. Conf. Mach. Learn.
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
10
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning convolutional feature hierarchies for visual recognition," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1090-1098.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1090-1098
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.-L.3
Gregor, K.4
Mathieu, M.5
LeCun, Y.6
-
11
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 1-8.
-
(2010)
Proc. Int. Conf. Mach. Learn.
, pp. 1-8
-
-
Nair, V.1
Hinton, G.E.2
-
12
-
-
84867136367
-
Learning to label aerial images from noisy data
-
V. Mnih and G. E. Hinton, "Learning to label aerial images from noisy data," in Proc. Int. Conf. Mach. Learn., 2012, pp. 1-8.
-
(2012)
Proc. Int. Conf. Mach. Learn.
, pp. 1-8
-
-
Mnih, V.1
Hinton, G.E.2
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
14
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
15
-
-
84944735469
-
-
Cambridge, MA, USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.org
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-14.
-
(2015)
Proc. Int. Conf. Learn. Represent.
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
20
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
Dec.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit., Dec. 2015, pp. 1026-1034.
-
(2015)
Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
22
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., 2015, pp. 1-11.
-
(2015)
Proc. Int. Conf. Mach. Learn.
, pp. 1-11
-
-
Ioffe, S.1
Szegedy, C.2
-
23
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Sep./Oct.
-
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "What is the best multi-stage architecture for object recognition?" in Proc. IEEE Int. Conf. Comput. Vis., Sep./Oct. 2009, pp. 2146-2153.
-
(2009)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
24
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug.
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
25
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Jun.
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE/CVF Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.
-
(2014)
Proc. IEEE/CVF Comput. Vis. Pattern Recognit.
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
26
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Jun.
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
27
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
Dec.
-
H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1520-1528.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
28
-
-
84949921276
-
Deep learning earth observation classification using ImageNet pretrained networks
-
Jan.
-
D. Marmanis, M. Datcu, T. Esch, and U. Stilla, "Deep learning earth observation classification using ImageNet pretrained networks," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105-109, Jan. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.1
, pp. 105-109
-
-
Marmanis, D.1
Datcu, M.2
Esch, T.3
Stilla, U.4
-
31
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun.
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
32
-
-
84919941118
-
Representation learning for contextual object and region detection in remote sensing
-
Aug.
-
O. Firat, G. Can, and F. T. Y. Vural, "Representation learning for contextual object and region detection in remote sensing," in Proc. Int. Conf. Pattern Recognit., Aug. 2014, pp. 3708-3713.
-
(2014)
Proc. Int. Conf. Pattern Recognit.
, pp. 3708-3713
-
-
Firat, O.1
Can, G.2
Vural, F.T.Y.3
-
33
-
-
84908032942
-
Saliency-guided unsupervised feature learning for scene classification
-
Apr.
-
F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 2175-2184
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
34
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
Mar.
-
C. Romero, A. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, C.1
Gatta, A.2
Camps-Valls, G.3
-
35
-
-
84940417787
-
Effective semantic pixel labelling with convolutional networks and conditional random fields
-
Jun.
-
S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. Van-Den Hengel, "Effective semantic pixel labelling with convolutional networks and conditional random fields," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2015, pp. 36-43.
-
(2015)
Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit. Workshops
, pp. 36-43
-
-
Paisitkriangkrai, S.1
Sherrah, J.2
Janney, P.3
Van-Den Hengel, A.4
-
37
-
-
84960920723
-
Empirical evaluation of rectified activations in convolutional network
-
B. Xu, N. Wang, T. Chen, and M. Li, "Empirical evaluation of rectified activations in convolutional network," in Proc. Int. Conf. Mach. Learn. Workshops, Deep Learn., 2015, pp. 1-5.
-
(2015)
Proc. Int. Conf. Mach. Learn. Workshops, Deep Learn.
, pp. 1-5
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
38
-
-
84893676344
-
Rectier nonlinearities improve neural network acoustic models
-
A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectier nonlinearities improve neural network acoustic models," in Proc. Int. Conf. Mach. Learn., 2013, pp. 1-6.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 1-6
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
39
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
M. D. Zeiler and R. Fergus, "Stochastic pooling for regularization of deep convolutional neural networks," in Proc. Int. Conf. Learn. Represent., 2013, pp. 1-9.
-
(2013)
Proc. Int. Conf. Learn. Represent.
, pp. 1-9
-
-
Zeiler, M.D.1
Fergus, R.2
-
40
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
C. M. Bishop, "Training with noise is equivalent to Tikhonov regularization," Neural Comput., vol. 7, no. 1, pp. 108-116, 1995.
-
(1995)
Neural Comput.
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
41
-
-
84941038243
-
Regionlets for generic object detection
-
Oct.
-
X. Wang, M. Yang, S. Zhu, and Y. Lin, "Regionlets for generic object detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 10, pp. 2071-2084, Oct. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.10
, pp. 2071-2084
-
-
Wang, X.1
Yang, M.2
Zhu, S.3
Lin, Y.4
-
42
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
Jun.
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, "Hypercolumns for object segmentation and fine-grained localization," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 447-456.
-
(2015)
Proc. IEEE/CVF Int. Conf. Comput. Vis. Pattern Recognit.
, pp. 447-456
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
43
-
-
84952050179
-
-
ITC, Univ. Twente, Enschede, The Netherlands, Tech. Rep.
-
M. Gerke, "Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen)," ITC, Univ. Twente, Enschede, The Netherlands, Tech. Rep., 2015, doi: 10.13140/2.1.5015.9683.
-
(2015)
Use of the Stair Vision Library Within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen)
-
-
Gerke, M.1
-
44
-
-
9644254228
-
Efficient graph-based image segmentation
-
Sep.
-
P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, Sep. 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.59
, Issue.2
, pp. 167-181
-
-
Felzenszwalb, P.F.1
Huttenlocher, D.P.2
-
45
-
-
84871294336
-
-
2nd ed, Boca Raton, FL, USA: CRC Press
-
R. G. Congalton and K. Green, Assessing the Accuracy of Remotely Sensed Data, 2nd ed. Boca Raton, FL, USA: CRC Press, 2008.
-
(2008)
Assessing the Accuracy of Remotely Sensed Data
-
-
Congalton, R.G.1
Green, K.2
|