메뉴 건너뛰기




Volumn 37, Issue 10, 2016, Pages 2149-2167

Using convolutional features and a sparse autoencoder for land-use scene classification

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; IMAGE CODING; LAND USE; NEURAL NETWORKS; URANIUM COMPOUNDS;

EID: 84978388572     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1171928     Document Type: Article
Times cited : (165)

References (42)
  • 1
    • 84929954951 scopus 로고    scopus 로고
    • Subset Based Deep Learning for RGB-D Object Recognition
    • J.Bai,, Y.Wu, J.Zhang, and F.Chen. 2015. “Subset Based Deep Learning for RGB-D Object Recognition.” Neurocomputing 165: 280–292. doi:10.1016/j.neucom.2015.03.017.
    • (2015) Neurocomputing , vol.165 , pp. 280-292
    • Bai, J.1    Wu, Y.2    Zhang, J.3    Chen, F.4
  • 2
    • 84920106320 scopus 로고    scopus 로고
    • Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-Resolution 2D and 3D Images
    • T.Brosch,, and R.Tam. 2015. “Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-Resolution 2D and 3D Images.” Neural Computation 27: 211–227. doi:10.1162/NECO_a_00682.
    • (2015) Neural Computation , vol.27 , pp. 211-227
    • Brosch, T.1    Tam, R.2
  • 4
    • 84908027761 scopus 로고    scopus 로고
    • Pyramid of Spatial Relations for Scene-Level Land Use Classification
    • S.Chen,, and Y.Tian. 2015. “Pyramid of Spatial Relations for Scene-Level Land Use Classification.” IEEE Transactions on Geoscience and Remote Sensing 53 (4): 1947–1957. doi:10.1109/TGRS.2014.2351395.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.4 , pp. 1947-1957
    • Chen, S.1    Tian, Y.2
  • 5
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
    • X.Chen,, S.Xiang, C.-L.Liu, and C.-H.Pan. 2014. “Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks.” IEEE Geoscience and Remote Sensing Letters 11 (10): 1797–1801. doi:10.1109/LGRS.2014.2309695.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 8
    • 85028158057 scopus 로고    scopus 로고
    • Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images
    • G.Cheng,, J.Han, L.Guo, Z.Liu, S.Bu, and J.Ren. 2015. “Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 53 (8): 4238–4249. doi:10.1109/TGRS.2015.2393857.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 9
    • 84909977972 scopus 로고    scopus 로고
    • Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors
    • G.Cheng,, J.Han, P.Zhou, and L.Guo. 2014. “Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors.” ISPRS Journal of Photogrammetry and Remote Sensing 98: 119–132. doi:10.1016/j.isprsjprs.2014.10.002.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 13
    • 84862192949 scopus 로고    scopus 로고
    • Domain Adaptation from Multiple Sources: A Domain-Dependent Regularization Approach
    • L.Duan,, D.Xu, and W.Tsang. 2012. “Domain Adaptation from Multiple Sources: A Domain-Dependent Regularization Approach.” IEEE Transactions on Neural Networks and Learning Systems 23 (3): 504–518. doi:10.1109/TNNLS.2011.2178556.
    • (2012) IEEE Transactions on Neural Networks and Learning Systems , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.1    Xu, D.2    Tsang, W.3
  • 15
  • 16
    • 85028166694 scopus 로고    scopus 로고
    • Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning
    • J.Han,, D.Zhang, G.Cheng, L.Guo, and J.Ren. 2015. “Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning.” IEEE Transactions on Geoscience and Remote Sensing 53 (6): 3325–3337. doi:10.1109/TGRS.2014.2374218.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • G.E.Hinton,, S.Osindero, and Y.Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18 (7): 1527–1554. doi:10.1162/neco.2006.18.7.1527.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 20
    • 84894370515 scopus 로고    scopus 로고
    • A Multi-Index Learning Approach for Classification of High-Resolution Remotely Sensed Images over Urban Areas
    • X.Huang,, Q.Lu, and L.Zhang. 2014. “A Multi-Index Learning Approach for Classification of High-Resolution Remotely Sensed Images over Urban Areas.” ISPRS Journal of Photogrammetry and Remote Sensing 90: 36–48. doi:10.1016/j.isprsjprs.2014.01.008.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet Classification with Deep Convolutional Neural Networks
    • A.Krizhevsky,, I.Sutskever, and G.E.Hinton. 2012. “Imagenet Classification with Deep Convolutional Neural Networks.” NIPS 1106–1114.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 33646887390 scopus 로고
    • On the Limited Memory BFGS Method for Large Scale Optimization
    • D.C.Liu,, and J.Nocedal. 1989. “On the Limited Memory BFGS Method for Large Scale Optimization.” Mathematical Programming 45: 503–528. doi:10.1007/BF01589116.
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 27
    • 84949921276 scopus 로고    scopus 로고
    • Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks
    • D.Marmanis,, M.Datcu, T.Esch, and U.Stilla. 2016. “Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks.” IEEE Geoscience and Remote Sensing Letters 13 (1): 105–109. doi:10.1109/LGRS.2015.2499239.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 28
    • 85027941942 scopus 로고    scopus 로고
    • Land-Use Classification with Compressive Sensing Multifeature Fusion
    • M.L.Mekhalfi,, F.Melgani, Y.Bazi, and N.Alajlan. 2015. “Land-Use Classification with Compressive Sensing Multifeature Fusion.” IEEE Geoscience and Remote Sensing Letters 12 (10): 2155–2159. doi:10.1109/LGRS.2015.2453130.
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.10 , pp. 2155-2159
    • Mekhalfi, M.L.1    Melgani, F.2    Bazi, Y.3    Alajlan, N.4
  • 29
    • 84966262179 scopus 로고
    • Updating Quasi-Newton Matrices with Limited Storage
    • J.Nocedal, 1980. “Updating Quasi-Newton Matrices with Limited Storage.” Mathematics of Computation 35: 773–773. doi:10.1090/S0025-5718-1980-0572855-7.
    • (1980) Mathematics of Computation , vol.35 , pp. 773
    • Nocedal, J.1
  • 31
    • 79955119681 scopus 로고    scopus 로고
    • Gabor Descriptors for Aerial Image Classification. Springer Berlin Heidelberg
    • V.Risojević,, S.Momić, and Z.Babić. 2011. “Gabor Descriptors for Aerial Image Classification. Springer Berlin Heidelberg.” Adaptive and Natural Computing Algorithms 6594: 51–60.
    • (2011) Adaptive and Natural Computing Algorithms , vol.6594 , pp. 51-60
    • Risojević, V.1    Momić, S.2    Babić, Z.3
  • 32
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in Neural Networks: An Overview
    • J.Schmidhuber, 2015. “Deep Learning in Neural Networks: An Overview.” Neural Networks 61: 85–117. doi:10.1016/j.neunet.2014.09.003.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 35
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine
    • J.Tang,, C.Deng, G.-B.Huang, and B.Zhao. 2015. “Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine.” IEEE Transactions on Geoscience and Remote Sensing 53 (3): 1174–1185. doi:10.1109/TGRS.2014.2335751.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.3 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.-B.3    Zhao, B.4
  • 40
  • 41
    • 84978391835 scopus 로고    scopus 로고
    • Scene Classification via a Gradient Boosting Random Convolutional Network Framework
    • F.Zhang,, B.Du, and L.Zhang. 2015. “Scene Classification via a Gradient Boosting Random Convolutional Network Framework.” IEEE Transactions Geoscience and Remote Sensing PP (99): 1–10.
    • (2015) IEEE Transactions Geoscience and Remote Sensing , vol.PP , Issue.99 , pp. 1-10
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 42
    • 85028163050 scopus 로고    scopus 로고
    • Land-Use Scene Classification Using a Concentric Circle-Structured Multiscale Bag-Of-Visual-Words Model
    • L.Zhao,, P.Tang, and L.Huo. 2014. “Land-Use Scene Classification Using a Concentric Circle-Structured Multiscale Bag-Of-Visual-Words Model.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (12): 4620–4631. doi:10.1109/JSTARS.2014.2339842.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.12 , pp. 4620-4631
    • Zhao, L.1    Tang, P.2    Huo, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.