메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Survey of geometric and statistical unmixing algorithms for hyperspectral images

Author keywords

Hyperspectral imaging; Spectral mixture analysis; Statistical versus geometric unmixing

Indexed keywords

COMPUTATIONAL APPROACH; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGING; IMAGING INSTRUMENTS; IMAGING SPECTROSCOPY; NATURAL ENVIRONMENTS; QUANTITATIVE ASSESSMENTS; SPATIAL EXTENT; SPATIAL RESOLUTION; SPECTRAL MIXTURE ANALYSIS; SPECTRAL SIGNATURE; SPECTRAL UNMIXING; STATISTICAL APPROACH; UNMIXING;

EID: 78649261132     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WHISPERS.2010.5594929     Document Type: Conference Paper
Times cited : (91)

References (53)
  • 2
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site
    • J. B. Adams, M. O. Smith, and P. E. Johnson, "Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site," Journal of Geophysical Research, vol. 91, pp. 8098-8112, 1986.
    • (1986) Journal of Geophysical Research , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 8
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • K. J. Guilfoyle, M. L. Althouse, and C.-I Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 2314-2318, 2001.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 2314-2318
    • Guilfoyle, K.J.1    Althouse, M.L.2    Chang, C.-I.3
  • 9
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez, "On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images," Pattern Recognition, vol. 42, pp. 3032-3045, 2009.
    • (2009) Pattern Recognition , vol.42 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 10
    • 0033686694 scopus 로고    scopus 로고
    • An algorithm taxonomy for hyperspectral unmixing
    • May
    • N. Keshava, J. Kerekes, D. Manolakis, and G. Shaw, "An algorithm taxonomy for hyperspectral unmixing," Proceedings of SPIE, vol. 4049, pp. 42-63, May 2000.
    • (2000) Proceedings of SPIE , vol.4049 , pp. 42-63
    • Keshava, N.1    Kerekes, J.2    Manolakis, D.3    Shaw, G.4
  • 11
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 650-663, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 12
    • 33644523401 scopus 로고    scopus 로고
    • Performance comparison of geometric and statistical methods for endmembers extraction in hyperspectral imagery
    • N. Dobigeon and V. Achard, "Performance comparison of geometric and statistical methods for endmembers extraction in hyperspectral imagery," Proceedings of SPIE, vol. 5982, pp. 598213-1, 2005.
    • (2005) Proceedings of SPIE , vol.5982 , pp. 598213-598221
    • Dobigeon, N.1    Achard, V.2
  • 13
    • 60749110419 scopus 로고    scopus 로고
    • End-member extraction for hyperspectral image analysis
    • Q. Du, N. Raksuntorn, N.H. Younan, and R.L. King, "End-member extraction for hyperspectral image analysis," Applied Optics, vol. 47, no. 28, pp. 77-84, 2008.
    • (2008) Applied Optics , vol.47 , Issue.28 , pp. 77-84
    • Du, Q.1    Raksuntorn, N.2    Younan, N.H.3    King, R.L.4
  • 16
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
    • D. Heinz and C.-I Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 529-545, 2001.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 529-545
    • Heinz, D.1    Chang, C.-I.2
  • 17
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • M.D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 3, pp. 542-552, 1994.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 19
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • Jun
    • C.A Bateson, G.P Asner, and C.A Wessman, "Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 2, pp. 1083-1094, Jun 2000.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.2 , pp. 1083-1094
    • Bateson, C.A.1    Asner, G.P.2    Wessman, C.A.3
  • 21
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E.Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," Proceedings of SPIE, vol. 3753, pp. 266-277, 1999.
    • (1999) Proceedings of SPIE , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 22
    • 70350335345 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of different implementations of N-FINDR: A fast endmember extraction algorithm
    • M. Zortea and A. Plaza, "A quantitative and comparative analysis of different implementations of N-FINDR: A fast endmember extraction algorithm," IEEE Geoscience and Remote Sensing Letters, vol. 6, pp. 787-791, 2009.
    • (2009) IEEE Geoscience and Remote Sensing Letters , vol.6 , pp. 787-791
    • Zortea, M.1    Plaza, A.2
  • 26
    • 64149126207 scopus 로고    scopus 로고
    • Hyperspectral band selection and endmember detection using sparsity promoting priors
    • A. Zare and P. Gader, "Hyperspectral band selection and endmember detection using sparsity promoting priors," IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 2, pp. 256-260, 2008.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.2 , pp. 256-260
    • Zare, A.1    Gader, P.2
  • 27
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 3, pp. 765-777, 2007.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 28
    • 70049093838 scopus 로고    scopus 로고
    • Spectral unmixing for mineral identification in pancam images of soils in gusev crater, mars
    • M. Parente, J.L. Bishop, and J.F. Bell, "Spectral unmixing for mineral identification in pancam images of soils in gusev crater, mars," Icarus, vol. 203, no. 2, pp. 421-436, 2009.
    • (2009) Icarus , vol.203 , Issue.2 , pp. 421-436
    • Parente, M.1    Bishop, J.L.2    Bell, J.F.3
  • 31
    • 38049053680 scopus 로고    scopus 로고
    • A new approach to decomposition of mixed pixels based on orthogonal bases of data space
    • X. Tao, B.Wang, and L. Zhang, "A new approach to decomposition of mixed pixels based on orthogonal bases of data space," Lecture notes in computer science, vol. 4681, pp. 1029, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4681 , pp. 1029
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 32
    • 65749095401 scopus 로고    scopus 로고
    • A new approach based on orthogonal bases of data space to decomposition of mixed pixels for hyperspectral imagery
    • May
    • X. Tao, B. Wang, and L. Zhang, "A new approach based on orthogonal bases of data space to decomposition of mixed pixels for hyperspectral imagery," Sci. China Ser. F-Inf. Sci., vol. 52, no. 5, pp. 843-857, May 2009.
    • (2009) Sci. China Ser. F-Inf. Sci. , vol.52 , Issue.5 , pp. 843-857
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 33
    • 10444268147 scopus 로고    scopus 로고
    • The sequential maximum angle convex cone (smacc) endmember model
    • J. Gruninger, A. Ratkowski, and M. Hoke, "The sequential maximum angle convex cone (smacc) endmember model," Proceedings of SPIE, vol. 5425, 2004.
    • (2004) Proceedings of SPIE , vol.5425
    • Gruninger, J.1    Ratkowski, A.2    Hoke, M.3
  • 36
    • 12344323601 scopus 로고    scopus 로고
    • Stochastic spectral unmixing with enhanced endmember class separation
    • M.T. Eismann and R.C. Hardie, "Stochastic spectral unmixing with enhanced endmember class separation," Applied Optics, vol. 43, no. 36, pp. 6596-6608, 2004.
    • (2004) Applied Optics , vol.43 , Issue.36 , pp. 6596-6608
    • Eismann, M.T.1    Hardie, R.C.2
  • 38
    • 65649107707 scopus 로고    scopus 로고
    • Decomposition of mixed pixels based on bayesian self-organizing map and gaussian mixture model
    • Jan
    • L. Liu, B. Wang, and L. Zhang, "Decomposition of mixed pixels based on bayesian self-organizing map and gaussian mixture model," Pattern Recognition Letters, vol. 30, no. 9, pp. 820-826, Jan 2009.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.9 , pp. 820-826
    • Liu, L.1    Wang, B.2    Zhang, L.3
  • 39
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Aug
    • J. Wang and C.-I Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2601- 2616, Aug 2006.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 42
    • 34548572915 scopus 로고    scopus 로고
    • Blind spectral unmixing by local maximization of non-gaussianity
    • C.F. Caiafa, E. Salerno, A.N. Proto, and L. Fiumi, "Blind spectral unmixing by local maximization of non-gaussianity," Signal Processing, vol. 88, no. 1, pp. 50-68, 2008.
    • (2008) Signal Processing , vol.88 , Issue.1 , pp. 50-68
    • Caiafa, C.F.1    Salerno, E.2    Proto, A.N.3    Fiumi, L.4
  • 44
    • 73949106180 scopus 로고    scopus 로고
    • Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE)
    • Jan
    • A. Filippi, R. Archibald, B. Bhaduri, and E. Bright, "Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE)," Optics Express, vol. 17, no. 26, pp. 23823-23842, Jan 2009.
    • (2009) Optics Express , vol.17 , Issue.26 , pp. 23823-23842
    • Filippi, A.1    Archibald, R.2    Bhaduri, B.3    Bright, E.4
  • 45
    • 76649106095 scopus 로고    scopus 로고
    • Decomposition mixed pixels of remote sensing image based on 2-dwt and kernel ica
    • H Xia and P Guo, "Decomposition mixed pixels of remote sensing image based on 2-dwt and kernel ica," Lecture notes in computer science, vol. 5863, pp. 373-380, 2009.
    • (2009) Lecture Notes in Computer Science , vol.5863 , pp. 373-380
    • Xia, H.1    Guo, P.2
  • 47
    • 39749167939 scopus 로고    scopus 로고
    • Spectral mixture analysis for mapping abundance of urban surface components from the terra/aster data
    • R. Pu, P. Gong, R. Michishita, and T. Sasagawa, "Spectral mixture analysis for mapping abundance of urban surface components from the terra/aster data," Remote Sensing of Environment, vol. 112, no. 3, pp. 939-954, 2008.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.3 , pp. 939-954
    • Pu, R.1    Gong, P.2    Michishita, R.3    Sasagawa, T.4
  • 48
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 9, pp. 2025-2041, 2002.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 49
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial - Spectral information for the improved extraction of endmembers
    • D.M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial - spectral information for the improved extraction of endmembers," Remote Sensing of Environment, vol. 110, no. 3, pp. 287-303, 2007.
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 50
    • 0035391620 scopus 로고    scopus 로고
    • A spectral mixture process conditioned by gibbs-based partitioning
    • R.S. Rand and D.M. Keenan, "A spectral mixture process conditioned by gibbs-based partitioning," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1421-1434, 2001.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1421-1434
    • Rand, R.S.1    Keenan, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.