메뉴 건너뛰기




Volumn 120, Issue , 2016, Pages 99-107

Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning

Author keywords

Deep learning; Hyperspectral image; Semisupervised classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); SAMPLING; SPECTROSCOPY;

EID: 84988038682     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.09.001     Document Type: Article
Times cited : (110)

References (40)
  • 3
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: earth monitoring with statistical learning methods
    • Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J., Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31:1 (2014), 45–54.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 5
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Chen, Y., Nasrabadi, N.M., Tran, T.D., Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51:1 (2013), 217–231.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 6
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • Di, W., Crawford, M., View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 50:5 (2012), 1942–1954.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.2
  • 8
    • 84906949283 scopus 로고    scopus 로고
    • Subspace-based support vector machines for hyperspectral image classification
    • Gao, L., Li, J., Mahdi, K., Plaza, A., Zhang, B., He, Z., Yan, H., Subspace-based support vector machines for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 12:2 (2015), 349–353.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 349-353
    • Gao, L.1    Li, J.2    Mahdi, K.3    Plaza, A.4    Zhang, B.5    He, Z.6    Yan, H.7
  • 9
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • Ghamisi, P., Mura, M.D., Benediktsson, J.A., A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 53:5 (2015), 2335–2353.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 10
    • 84894370515 scopus 로고    scopus 로고
    • A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    • Huang, X., Lu, Q., Zhang, L., A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 90 (2014), 36–48.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3
  • 11
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14:1 (1968), 55–63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 12
    • 85027953866 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image classification via neighborhood graph learning
    • Im, D.J., Taylor, G.W., Semisupervised hyperspectral image classification via neighborhood graph learning. IEEE Geosci. Remote Sens. Lett. 12:9 (2015), 1913–1917.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.9 , pp. 1913-1917
    • Im, D.J.1    Taylor, G.W.2
  • 14
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
    • Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X., Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens. 52:10 (2014), 6298–6314.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1    Li, J.2    Plaza, A.3    Ghassemian, H.4    Bioucas-Dias, J.M.5    Li, X.6
  • 15
    • 84920121030 scopus 로고    scopus 로고
    • A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps
    • Li, J., Gamba, P., Plaza, A., A novel semi-supervised method for obtaining finer resolution urban extents exploiting coarser resolution maps. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 7:10 (2014), 4276–4287.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.10 , pp. 4276-4287
    • Li, J.1    Gamba, P.2    Plaza, A.3
  • 16
    • 84938339675 scopus 로고    scopus 로고
    • Hyperspectral image classification via contextual deep learning
    • Ma, X., Geng, J., Wang, H., Hyperspectral image classification via contextual deep learning. EURASIP J. Image Video Process. 2015:1 (2015), 1–12.
    • (2015) EURASIP J. Image Video Process. , vol.2015 , Issue.1 , pp. 1-12
    • Ma, X.1    Geng, J.2    Wang, H.3
  • 17
    • 84903513301 scopus 로고    scopus 로고
    • A subspace-based multinomial logistic regression for hyperspectral image classification
    • J.M.B.-D.
    • Mahdi, K., Li, J., Plaza, A., A subspace-based multinomial logistic regression for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 11:12 (2014), 2105–2109 J.M.B.-D.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.12 , pp. 2105-2109
    • Mahdi, K.1    Li, J.2    Plaza, A.3
  • 18
    • 84873130855 scopus 로고    scopus 로고
    • Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery
    • Maulik, U., Chakraborty, D., Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 77:0 (2013), 66–78.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.77 , pp. 66-78
    • Maulik, U.1    Chakraborty, D.2
  • 19
    • 84905924390 scopus 로고    scopus 로고
    • Improving the dynamic clustering of hyperspectral data based on the integration of swarm optimization and decision analysis
    • Naeini, A.A., Homayouni, S., Saadatseresht, M., Improving the dynamic clustering of hyperspectral data based on the integration of swarm optimization and decision analysis. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 7:6 (2014), 2161–2173.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.6 , pp. 2161-2173
    • Naeini, A.A.1    Homayouni, S.2    Saadatseresht, M.3
  • 21
    • 84902080705 scopus 로고    scopus 로고
    • Active and semisupervised learning for the classification of remote sensing images
    • Persello, C., Bruzzone, L., Active and semisupervised learning for the classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 52:11 (2014), 6937–6956.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6937-6956
    • Persello, C.1    Bruzzone, L.2
  • 22
    • 84902072726 scopus 로고    scopus 로고
    • A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery
    • Pu, H., Chen, Z., Wang, B., Jiang, G.-M., A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 52:11 (2014), 7008–7022.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7008-7022
    • Pu, H.1    Chen, Z.2    Wang, B.3    Jiang, G.-M.4
  • 23
    • 84899919914 scopus 로고    scopus 로고
    • A novel hierarchical semisupervised SVM for classification of hyperspectral images
    • Shao, Z., Zhang, L., Zhou, X., Ding, L., A novel hierarchical semisupervised SVM for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 11:9 (2014), 1609–1613.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.9 , pp. 1609-1613
    • Shao, Z.1    Zhang, L.2    Zhou, X.3    Ding, L.4
  • 24
    • 84927624381 scopus 로고    scopus 로고
    • A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination
    • Tan, K., Hu, J., Li, J., Du, P., A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination. ISPRS J. Photogramm. Remote Sens. 105:0 (2015), 19–29.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 19-29
    • Tan, K.1    Hu, J.2    Li, J.3    Du, P.4
  • 25
    • 85027923554 scopus 로고    scopus 로고
    • Semisupervised discriminant analysis for hyperspectral imagery with block-sparse graph
    • Tan, K., Zhou, S., Du, Q., Semisupervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci. Remote Sens. Lett. 12:8 (2015), 176–1769.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.8 , pp. 176-1769
    • Tan, K.1    Zhou, S.2    Du, Q.3
  • 26
    • 84903270810 scopus 로고    scopus 로고
    • Manifold-based sparse representation for hyperspectral image classification
    • Tang, Y., Yuan, H., Li, L., Manifold-based sparse representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52:12 (2014), 7606–7618.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7606-7618
    • Tang, Y.1    Yuan, H.2    Li, L.3
  • 27
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
    • Tuia, D., Flamary, R., Courty, N., Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Photogramm. Remote Sens. 105 (2015), 272–285.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Flamary, R.2    Courty, N.3
  • 29
    • 84907507036 scopus 로고    scopus 로고
    • Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
    • Wang, L., Hao, S., Wang, Q., Wang, Y., Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogramm. Remote Sens. 97:0 (2014), 123–137.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.97 , pp. 123-137
    • Wang, L.1    Hao, S.2    Wang, Q.3    Wang, Y.4
  • 30
    • 85032751606 scopus 로고    scopus 로고
    • Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection
    • Willett, R.M., Duarte, M.F., Davenport, M.A., Baraniuk, R.G., Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag. 31:1 (2014), 116–126.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 116-126
    • Willett, R.M.1    Duarte, M.F.2    Davenport, M.A.3    Baraniuk, R.G.4
  • 31
    • 84883080198 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine
    • Yang, L., Yang, S., Jin, P., Zhang, R., Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci. Remote Sens. Lett. 11:3 (2014), 651–655.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.3 , pp. 651-655
    • Yang, L.1    Yang, S.2    Jin, P.3    Zhang, R.4
  • 33
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: a technical tutorial on the state of the art
    • Zhang, L., Zhang, L., Du, B., Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 4:2 (2016), 22–40.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 34
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 35
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Zhang, L., Zhang, Q., Zhang, L., Tao, D., Huang, X., Du, B., Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recogn. 48:10 (2015), 3102–3112.
    • (2015) Pattern Recogn. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 36
    • 84905913722 scopus 로고    scopus 로고
    • Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification
    • Zhang, X., Song, Q., Liu, R., Wang, W., Jiao, L., Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 7:6 (2014), 2044–2055.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.6 , pp. 2044-2055
    • Zhang, X.1    Song, Q.2    Liu, R.3    Wang, W.4    Jiao, L.5
  • 37
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 38
    • 84899940849 scopus 로고    scopus 로고
    • An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery
    • Zhong, Y., Ma, A., Zhang, L., An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 7:4 (2014), 1235–1248.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.4 , pp. 1235-1248
    • Zhong, Y.1    Ma, A.2    Zhang, L.3
  • 39
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • Zhong, Y., Zhang, L., Huang, B., Li, P., An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 44:2 (2006), 420–431.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 420-431
    • Zhong, Y.1    Zhang, L.2    Huang, B.3    Li, P.4
  • 40
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Tech. Rep. 1530, Computer Sciences, University of Wisconsin-Madison.
    • Zhu, X., 2005. Semi-supervised learning literature survey. Tech. Rep. 1530, Computer Sciences, University of Wisconsin-Madison.
    • (2005)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.