-
1
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:5429-33
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
2
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:1565-75
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
3
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-21
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
4
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579-86
-
(2012)
PNAS
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
5
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, CoxD, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-23
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
-
6
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823-26
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
-
7
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 2013. RNA-programmed genome editing in human cells. ELife 2:e00471
-
(2013)
ELife
, vol.2
, pp. e00471
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
8
-
-
84884856342
-
Cas9 as a versatile tool for engineering biology
-
Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957-63
-
(2013)
Nat. Methods
, vol.10
, pp. 957-963
-
-
Mali, P.1
Esvelt, K.M.2
Church, G.M.3
-
9
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-78
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
10
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
11
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
-
Mojica FJ, Diez-Villaseñor C, Soria E, Juez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36:244-46
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
Diez-Villaseñor, C.2
Soria, E.3
Juez, G.4
-
12
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-12
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
-
13
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, DupuisME, VillionM, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67-71
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
-
14
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-7
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
-
15
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
Rouet P, Smih F, Jasin M. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096-106
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 8096-8106
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
16
-
-
0028237305
-
Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells
-
Rouet P, Smih F, Jasin M. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. PNAS 91:6064-68
-
(1994)
PNAS
, vol.91
, pp. 6064-6068
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
17
-
-
0024693555
-
Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
-
Rudin N, Sugarman E, Haber JE. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519-34
-
(1989)
Genetics
, vol.122
, pp. 519-534
-
-
Rudin, N.1
Sugarman, E.2
Haber, J.E.3
-
18
-
-
0026573892
-
Site-specific recombination determined by I-SceI, a mitochondrial group i intron-encoded endonuclease expressed in the yeast nucleus
-
Plessis A, Perrin A, Haber JE, Dujon B. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451-60
-
(1992)
Genetics
, vol.130
, pp. 451-460
-
-
Plessis, A.1
Perrin, A.2
Haber, J.E.3
Dujon, B.4
-
19
-
-
0028919608
-
Induction of homologous recombination inmammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
-
Choulika A, Perrin A, Dujon B, Nicolas JF. 1995. Induction of homologous recombination inmammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1968-73
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 1968-1973
-
-
Choulika, A.1
Perrin, A.2
Dujon, B.3
Nicolas, J.F.4
-
20
-
-
84954140058
-
Genome editing: A new approach to human therapeutics
-
PorteusM. 2016. Genome editing: A new approach to human therapeutics. Annu. Rev. Pharmacol. Toxicol. 56:163-90
-
(2016)
Annu. Rev. Pharmacol. Toxicol.
, vol.56
, pp. 163-190
-
-
Porteus, M.1
-
21
-
-
79951694132
-
Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy
-
SilvaG, Poirot L, Galetto R, Smith J, Montoya G, et al. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11:11-27
-
(2011)
Curr. Gene Ther.
, vol.11
, pp. 11-27
-
-
Silva, G.1
Poirot, L.2
Galetto, R.3
Smith, J.4
Montoya, G.5
-
22
-
-
77951234910
-
Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds
-
Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, et al. 2010. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res. 38:2006-18
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 2006-2018
-
-
Grizot, S.1
Epinat, J.C.2
Thomas, S.3
Duclert, A.4
Rolland, S.5
-
23
-
-
0040215628
-
Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes
-
Miller J, McLachlan AD, Klug A. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609-14
-
(1985)
EMBO J.
, vol.4
, pp. 1609-1614
-
-
Miller, J.1
McLachlan, A.D.2
Klug, A.3
-
24
-
-
0030032063
-
Hybrid restriction enzymes: Zinc finger fusions to Fok i cleavage domain
-
Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93:1156-60
-
(1996)
PNAS
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
25
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636-46
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
26
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509-12
-
(2009)
Science
, vol.326
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
Landgraf, A.4
Hahn, S.5
-
27
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757-61
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
Cermak, T.2
Doyle, E.L.3
Schmidt, C.4
Zhang, F.5
-
28
-
-
84871519181
-
TALENs: A widely applicable technology for targeted genome editing
-
Joung JK, Sander JD. 2013. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49-55
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 49-55
-
-
Joung, J.K.1
Sander, J.D.2
-
29
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843-45
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
30
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551-61
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
31
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:233-39
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
32
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41:4336-43
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
33
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-91
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
-
34
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691-93
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.4
Kamoun, S.5
-
35
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347-55
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
36
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910-18
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
-
37
-
-
84880571335
-
CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes
-
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, et al. 2013. CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes. Cell 154:442-51
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
-
38
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510-17
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
-
39
-
-
84928924333
-
Functional annotation of native enhancers with a Cas9-histone demethylase fusion
-
Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:401-3
-
(2015)
Nat. Methods
, vol.12
, pp. 401-403
-
-
Kearns, N.A.1
Pham, H.2
Tabak, B.3
Genga, R.M.4
Silverstein, N.J.5
-
40
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert LA, HorlbeckMA, AdamsonB, Villalta JE, Chen Y, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647-61
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
-
41
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173-83
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
-
42
-
-
34548809113
-
Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins
-
Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ. 2007. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res. 35:e107
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. e107
-
-
Lindhout, B.I.1
Fransz, P.2
Tessadori, F.3
Meckel, T.4
Hooykaas, P.J.5
Van Der Zaal, B.J.6
-
44
-
-
84891363606
-
Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors
-
Ma H, Reyes-Gutierrez P, Pederson T. 2013. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. PNAS 110:21048-53
-
(2013)
PNAS
, vol.110
, pp. 21048-21053
-
-
Ma, H.1
Reyes-Gutierrez, P.2
Pederson, T.3
-
45
-
-
84898970293
-
Targeting and tracing of specific DNA sequences with dTALEs in living cells
-
Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, et al. 2014. Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res. 42:e38
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e38
-
-
Thanisch, K.1
Schneider, K.2
Morbitzer, R.3
Solovei, I.4
Lahaye, T.5
-
46
-
-
84897502408
-
Repeated TALEs: VisualizingDNA sequence localization and chromosome dynamics in live cells
-
Pederson T. 2014. Repeated TALEs: visualizingDNA sequence localization and chromosome dynamics in live cells. Nucleus 5:28-31
-
(2014)
Nucleus
, vol.5
, pp. 28-31
-
-
Pederson, T.1
-
47
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479-91
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
Zhang, W.5
-
48
-
-
84904662792
-
Identification of proteins associated with an IFN responsive promoter by a retroviral expression system for enChIP using CRISPR
-
Fujita T, Fujii H. 2014. Identification of proteins associated with an IFN responsive promoter by a retroviral expression system for enChIP using CRISPR. PLOS ONE 9:e103084
-
(2014)
PLOS ONE
, vol.9
, pp. e103084
-
-
Fujita, T.1
Fujii, H.2
-
49
-
-
84883799821
-
Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR
-
Fujita T, Fujii H. 2013. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439:132-36
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.439
, pp. 132-136
-
-
Fujita, T.1
Fujii, H.2
-
50
-
-
84929206935
-
Cas9-mediated targeting of viral RNA in eukaryotic cells
-
Price AA, Sampson TR, Ratner HK, Grakoui A, WeissDS. 2015. Cas9-mediated targeting of viral RNA in eukaryotic cells. PNAS 112:6164-69
-
(2015)
PNAS
, vol.112
, pp. 6164-6169
-
-
Price, A.A.1
Sampson, T.R.2
Ratner, H.K.3
Grakoui, A.4
Weiss, D.S.5
-
51
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263-66
-
(2014)
Nature
, vol.516
, pp. 263-266
-
-
O'Connell, M.R.1
Oakes, B.L.2
Sternberg, S.H.3
East-Seletsky, A.4
Kaplan, M.5
Doudna, J.A.6
-
52
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174-82
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
53
-
-
84942079449
-
The CRISPR-Cas immune system: Biology, mechanisms and applications
-
Rath D, Amlinger L, Rath A, Lundgren M. 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119-28
-
(2015)
Biochimie
, vol.117
, pp. 119-128
-
-
Rath, D.1
Amlinger, L.2
Rath, A.3
Lundgren, M.4
-
54
-
-
84923640664
-
Evolution of adaptive immunity from transposable elements combined with innate immune systems
-
Koonin EV, Krupovic M. 2015. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16:184-92
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 184-192
-
-
Koonin, E.V.1
Krupovic, M.2
-
55
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653-63
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
56
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960-64
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
-
57
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722-36
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
-
58
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759-71
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
-
59
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
Shmakov S, AbudayyehOO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60:385-97
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
-
60
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331-38
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
61
-
-
84899134190
-
CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
-
Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54:234-44
-
(2014)
Mol. Cell
, vol.54
, pp. 234-244
-
-
Barrangou, R.1
Marraffini, L.A.2
-
62
-
-
84897440729
-
To acquire or resist: The complex biological effects of CRISPRCas systems
-
Bondy-Denomy J, Davidson AR. 2014. To acquire or resist: The complex biological effects of CRISPRCas systems. Trends Microbiol. 22:218-25
-
(2014)
Trends Microbiol.
, vol.22
, pp. 218-225
-
-
Bondy-Denomy, J.1
Davidson, A.R.2
-
64
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390-400
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
-
65
-
-
84879026965
-
Protospacer recognition motifs: Mixed identities and functional diversity
-
Shah SA, Erdmann S, Mojica FJ, Garrett RA. 2013. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10:891-99
-
(2013)
RNA Biol.
, vol.10
, pp. 891-899
-
-
Shah, S.A.1
Erdmann, S.2
Mojica, F.J.3
Garrett, R.A.4
-
66
-
-
70449753811
-
RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009. RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex. Cell 139:945-56
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
-
67
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42:2577-90
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
Le Rhun, A.2
Chylinski, K.3
Makarova, K.S.4
Lecrivain, A.L.5
-
68
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827-32
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
-
69
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, YanWX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186-91
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
-
70
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
NishimasuH, Cong L, Yan WX, Ran FA, Zetsche B, et al. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell 162:1113-26
-
(2015)
Cell
, vol.162
, pp. 1113-1126
-
-
Nishimasu, H.1
Cong, L.2
Yan, W.X.3
Ran, F.A.4
Zetsche, B.5
-
71
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:1116-21
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
72
-
-
84924347318
-
MulticolorCRISPR labeling of chromosomal loci in human cells
-
MaH, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. 2015. MulticolorCRISPR labeling of chromosomal loci in human cells. PNAS 112:3002-7
-
(2015)
PNAS
, vol.112
, pp. 3002-3007
-
-
Naseri, A.1
Reyes-Gutierrez, P.2
Wolfe, S.A.3
Zhang, S.4
Pederson, T.5
-
73
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, et al. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190:1401-12
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coute-Monvoisin, A.C.3
Richards, M.4
Deveau, H.5
-
74
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50:488-503
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
Heidrich, N.2
Ampattu, B.J.3
Gunderson, C.W.4
Seifert, H.S.5
-
75
-
-
84922322005
-
Guide RNA functional modules direct Cas9 activity and orthogonality
-
Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, et al. 2014. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56:333-39
-
(2014)
Mol. Cell
, vol.56
, pp. 333-339
-
-
Briner, A.E.1
Donohoue, P.D.2
Gomaa, A.A.3
Selle, K.4
Slorach, E.M.5
-
76
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833-38
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
Esvelt, K.M.4
Moosburner, M.5
-
77
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-89
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
-
78
-
-
84897954175
-
Efficient genome modification by CRISPRCas9 nickase with minimal off-target effects
-
Shen B, Zhang W, Zhang J, Zhou J, Wang J, et al. 2014. Efficient genome modification by CRISPRCas9 nickase with minimal off-target effects. Nat. Methods 11:399-402
-
(2014)
Nat. Methods
, vol.11
, pp. 399-402
-
-
Shen, B.1
Zhang, W.2
Zhang, J.3
Zhou, J.4
Wang, J.5
-
79
-
-
84925427919
-
Genome editing using Cas9 nickases
-
Trevino AE, Zhang F. 2014. Genome editing using Cas9 nickases. Methods Enzymol. 546:161-74
-
(2014)
Methods Enzymol.
, vol.546
, pp. 161-174
-
-
Trevino, A.E.1
Zhang, F.2
-
80
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Casderived RNA-guided endonucleases and nickases
-
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, et al. 2014. Analysis of off-target effects of CRISPR/Casderived RNA-guided endonucleases and nickases. Genome Res. 24:132-41
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
Kweon, J.4
Kim, H.S.5
-
81
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
-
82
-
-
84933574487
-
A Cas9-guide RNA complex preorganized for target DNA recognition
-
Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477-81
-
(2015)
Science
, vol.348
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.A.5
-
83
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935-49
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
-
84
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569-73
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
85
-
-
84923279931
-
The structural biology of CRISPR-Cas systems
-
Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100-11
-
(2015)
Curr. Opin. Struct. Biol.
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
86
-
-
84946215320
-
Conformational control ofDNAtarget cleavage by CRISPR-Cas9
-
Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control ofDNAtarget cleavage by CRISPR-Cas9. Nature 527:110-13
-
(2015)
Nature
, vol.527
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
87
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62-67
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
88
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:9798-803
-
(2014)
PNAS
, vol.111
, pp. 9798-9803
-
-
Szczelkun, M.D.1
Tikhomirova, M.S.2
Sinkunas, T.3
Gasiunas, G.4
Karvelis, T.5
-
89
-
-
84938836171
-
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
-
O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. 2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43:3389-404
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 3389-3404
-
-
O'Geen, H.1
Henry, I.M.2
Bhakta, M.S.3
Meckler, J.F.4
Segal, D.J.5
-
90
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
-
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:670-76
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 670-676
-
-
Wu, X.1
Scott, D.A.2
Kriz, A.J.3
Chiu, A.C.4
Hsu, P.D.5
-
91
-
-
84955569035
-
Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage
-
Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res. 43:8924-41
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 8924-8941
-
-
Josephs, E.A.1
Kocak, D.D.2
Fitzgibbon, C.J.3
McMenemy, J.4
Gersbach, C.A.5
Marszalek, P.E.6
-
92
-
-
84946919064
-
Dynamics of CRISPR-Cas9 genome interrogation in living cells
-
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823-26
-
(2015)
Science
, vol.350
, pp. 823-826
-
-
Knight, S.C.1
Xie, L.2
Deng, W.3
Guglielmi, B.4
Witkowsky, L.B.5
-
93
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181-211
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
94
-
-
84930634481
-
CRISPR-Cas9: A new and promising player in gene therapy
-
Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. 2015. CRISPR-Cas9: A new and promising player in gene therapy. J. Med. Genet. 52:289-96
-
(2015)
J. Med. Genet.
, vol.52
, pp. 289-296
-
-
Xiao-Jie, L.1
Hui-Ying, X.2
Zun-Ping, K.3
Jin-Lian, C.4
Li-Juan, J.5
-
95
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 bymodifying PAMrecognition
-
Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 bymodifying PAMrecognition. Nat. Biotechnol. 33:1293-98
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
-
96
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481-85
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
-
97
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR-Cas system
-
Xie K, Yang Y. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant 6:1975-83
-
(2013)
Mol. Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
98
-
-
84886926151
-
Demonstration ofCRISPR/Cas9/sgRNAmediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
JiangW, ZhouH, BiH, FrommM, Yang B, WeeksDP. 2013. Demonstration ofCRISPR/Cas9/sgRNAmediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41:e188
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. e188
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
99
-
-
84894081986
-
Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
-
Niu Y, Shen B, Cui Y, Chen Y, Wang J, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836-43
-
(2014)
Cell
, vol.156
, pp. 836-843
-
-
Niu, Y.1
Shen, B.2
Cui, Y.3
Chen, Y.4
Wang, J.5
-
100
-
-
84880088705
-
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
-
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, et al. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029-35
-
(2013)
Genetics
, vol.194
, pp. 1029-1035
-
-
Gratz, S.J.1
Cummings, A.M.2
Nguyen, J.N.3
Hamm, D.C.4
Donohue, L.K.5
-
101
-
-
84903818736
-
Heritable/conditional genome editing in C. Elegans using a CRISPR-Cas9 feeding system
-
Liu P, Long L, Xiong K, Yu B, Chang N, et al. 2014. Heritable/conditional genome editing in C. Elegans using a CRISPR-Cas9 feeding system. Cell Res. 24:886-89
-
(2014)
Cell Res.
, vol.24
, pp. 886-889
-
-
Liu, P.1
Long, L.2
Xiong, K.3
Yu, B.4
Chang, N.5
-
102
-
-
84881475586
-
Heritable genome editing in C. Elegans via a CRISPR-Cas9 system
-
Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. Elegans via a CRISPR-Cas9 system. Nat. Methods 10:741-43
-
(2013)
Nat. Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
Tzur, Y.B.2
Esvelt, K.M.3
Colaiacovo, M.P.4
Church, G.M.5
Calarco, J.A.6
-
103
-
-
84942515505
-
Modeling disease in vivo with CRISPR/Cas9
-
Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21:609-21
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 609-621
-
-
Dow, L.E.1
-
104
-
-
84912078930
-
Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
-
Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, et al. 2014. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9:1219-27
-
(2014)
Cell Rep.
, vol.9
, pp. 1219-1227
-
-
Blasco, R.B.1
Karaca, E.2
Ambrogio, C.3
Cheong, T.C.4
Karayol, E.5
-
105
-
-
84905388288
-
Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells
-
Canver MC, Bauer DE, Dass A, Yien YY, Chung J, et al. 2014. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289:21312-24
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21312-21324
-
-
Canver, M.C.1
Bauer, D.E.2
Dass, A.3
Yien, Y.Y.4
Chung, J.5
-
106
-
-
84925636366
-
Highly efficient targeted chromosome deletions using CRISPR/Cas9
-
HeZ, Proudfoot C, Mileham AJ, McLarenDG, Whitelaw CB, Lillico SG. 2015. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol. Bioeng. 112:1060-64
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1060-1064
-
-
Proudfoot, C.1
Mileham, A.J.2
McLaren, D.G.3
Whitelaw, C.B.4
Lillico, S.G.5
-
107
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology
-
Choi PS, Meyerson M. 2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5:3728
-
(2014)
Nat. Commun.
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
108
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012-19
-
(2014)
Genome Res.
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
109
-
-
84923384373
-
Deletions, inversions, duplications: Engineering of structural variants using CRISPR/Cas in mice
-
pii: S2211-47
-
Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, et al. 2015. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in micE. Cell Rep. pii:S2211-47
-
(2015)
Cell Rep.
-
-
Kraft, K.1
Geuer, S.2
Will, A.J.3
Chan, W.L.4
Paliou, C.5
-
110
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423-27
-
(2014)
Nature
, vol.516
, pp. 423-427
-
-
Maddalo, D.1
Manchado, E.2
Concepcion, C.P.3
Bonetti, C.4
Vidigal, J.A.5
-
111
-
-
84901951241
-
Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system
-
Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S. 2014. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun. 5:3964
-
(2014)
Nat. Commun.
, vol.5
, pp. 3964
-
-
Torres, R.1
Martin, M.C.2
Garcia, A.3
Cigudosa, J.C.4
Ramirez, J.C.5
Rodriguez-Perales, S.6
-
112
-
-
84923107960
-
Unraveling the potential of CRISPR-Cas9 for gene therapy
-
Barrangou R, May AP. 2015. Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin. Biol. Ther. 15:311-14
-
(2015)
Expert Opin. Biol. Ther.
, vol.15
, pp. 311-314
-
-
Barrangou, R.1
May, A.P.2
-
113
-
-
84883305437
-
Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus
-
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510
-
(2013)
Sci. Rep.
, vol.3
, pp. 2510
-
-
Ebina, H.1
Misawa, N.2
Kanemura, Y.3
Koyanagi, Y.4
-
114
-
-
84905643812
-
RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection
-
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:11461-66
-
(2014)
PNAS
, vol.111
, pp. 11461-11466
-
-
Hu, W.1
Kaminski, R.2
Yang, F.3
Zhang, Y.4
Cosentino, L.5
-
115
-
-
84937614537
-
Inhibition of hepatitis B virus by CRISPR/Cas9 system via targeting the conserved regions of viral genome
-
Liu X, Hao R, Chen S, Guo D, Chen Y. 2015. Inhibition of hepatitis B virus by CRISPR/Cas9 system via targeting the conserved regions of viral genome. J. Gen. Virol. 96:2252-61
-
(2015)
J. Gen. Virol.
, vol.96
, pp. 2252-2261
-
-
Liu, X.1
Hao, R.2
Chen, S.3
Guo, D.4
Chen, Y.5
-
116
-
-
84927513847
-
Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication
-
Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir. Res. 118:110-17
-
(2015)
Antivir. Res.
, vol.118
, pp. 110-117
-
-
Dong, C.1
Qu, L.2
Wang, H.3
Wei, L.4
Dong, Y.5
Xiong, S.6
-
117
-
-
84927935415
-
Targeting hepatitis B virus with CRISPR/Cas9
-
Seeger C, Sohn JA. 2014. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3:e216
-
(2014)
Mol. Ther. Nucleic Acids
, vol.3
, pp. e216
-
-
Seeger, C.1
Sohn, J.A.2
-
118
-
-
84906083667
-
In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9
-
Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. 2014. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 450:1422-16
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.450
, pp. 1422-1516
-
-
Zhen, S.1
Hua, L.2
Takahashi, Y.3
Narita, S.4
Liu, Y.H.5
Li, Y.6
-
119
-
-
84906969257
-
RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
-
Wang J, Quake SR. 2014. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. PNAS 111:13157-62
-
(2014)
PNAS
, vol.111
, pp. 13157-13162
-
-
Wang, J.1
Quake, S.R.2
-
120
-
-
84903729497
-
Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5-32 mutation confers resistance to HIV infection
-
Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5-32 mutation confers resistance to HIV infection. PNAS 111:9591-96
-
(2014)
PNAS
, vol.111
, pp. 9591-9596
-
-
Ye, L.1
Wang, J.2
Beyer, A.I.3
Teque, F.4
Cradick, T.J.5
-
121
-
-
84940203001
-
Inhibition of HIV-1 infection of primary CD4+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9
-
Li C, Guan X, Du T, JinW, Wu B, et al. 2015. Inhibition of HIV-1 infection of primary CD4+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96:2381-93
-
(2015)
J. Gen. Virol.
, vol.96
, pp. 2381-2393
-
-
Li, C.1
Guan, X.2
Du, T.3
Jin, W.4
Wu, B.5
-
122
-
-
84895487305
-
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
-
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901-10
-
(2014)
N. Engl. J. Med.
, vol.370
, pp. 901-910
-
-
Tebas, P.1
Stein, D.2
Tang, W.W.3
Frank, I.4
Wang, S.Q.5
-
123
-
-
84923339481
-
CCR5 gene editing of resting CD4+ T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice
-
Yi G, Choi JG, Bharaj P, Abraham S, Dang Y, et al. 2014. CCR5 gene editing of resting CD4+ T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice. Mol. Ther. Nucleic Acids 3:e198
-
(2014)
Mol. Ther. Nucleic Acids
, vol.3
, pp. e198
-
-
Yi, G.1
Choi, J.G.2
Bharaj, P.3
Abraham, S.4
Dang, Y.5
-
124
-
-
84902440146
-
Gene editing using a zinc-finger nuclease mimicking the CCR5-32 mutation induces resistance to CCR5-using HIV-1
-
Badia R, Riveira-Munoz E, Clotet B, Este JA, Ballana E. 2014. Gene editing using a zinc-finger nuclease mimicking the CCR5-32 mutation induces resistance to CCR5-using HIV-1. J. Antimicrob. Chemother. 69:1755-59
-
(2014)
J. Antimicrob. Chemother.
, vol.69
, pp. 1755-1759
-
-
Badia, R.1
Riveira-Munoz, E.2
Clotet, B.3
Este, J.A.4
Ballana, E.5
-
125
-
-
84902095353
-
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
-
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, et al. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32:551-53
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 551-553
-
-
Yin, H.1
Xue, W.2
Chen, S.3
Bogorad, R.L.4
Benedetti, E.5
-
126
-
-
84907200149
-
Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
-
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345:1184-88
-
(2014)
Science
, vol.345
, pp. 1184-1188
-
-
Long, C.1
McAnally, J.R.2
Shelton, J.M.3
Mireault, A.A.4
Bassel-Duby, R.5
Olson, E.N.6
-
127
-
-
84920269807
-
Correction of a genetic disease by CRISPRCas9-mediated gene editing in mouse spermatogonial stem cells
-
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, et al. 2015. Correction of a genetic disease by CRISPRCas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25:67-79
-
(2015)
Cell Res.
, vol.25
, pp. 67-79
-
-
Wu, Y.1
Zhou, H.2
Fan, X.3
Zhang, Y.4
Zhang, M.5
-
128
-
-
84890050551
-
Correction of a genetic disease in mouse via use of CRISPR-Cas9
-
Wu Y, Liang D, Wang Y, Bai M, Tang W, et al. 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659-62
-
(2013)
Cell Stem Cell
, vol.13
, pp. 659-662
-
-
Wu, Y.1
Liang, D.2
Wang, Y.3
Bai, M.4
Tang, W.5
-
129
-
-
84890033064
-
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
-
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653-58
-
(2013)
Cell Stem Cell
, vol.13
, pp. 653-658
-
-
Schwank, G.1
Koo, B.K.2
Sasselli, V.3
Dekkers, J.F.4
Heo, I.5
-
130
-
-
84964610090
-
Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system
-
pii: S1046-2023
-
Li HL, Gee P, Ishida K, Hotta A. 2015. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods pii:S1046-2023
-
(2015)
Methods
-
-
Li, H.L.1
Gee, P.2
Ishida, K.3
Hotta, A.4
-
131
-
-
84938751866
-
Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9
-
Park CY, Kim DH, Son JS, Sung JJ, Lee J, et al. 2015. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213-20
-
(2015)
Cell Stem Cell
, vol.17
, pp. 213-220
-
-
Park, C.Y.1
Kim, D.H.2
Son, J.S.3
Sung, J.J.4
Lee, J.5
-
132
-
-
84907219050
-
Seamless gene correction of thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac
-
Xie F, Ye L, Chang JC, Beyer AI, Wang J, et al. 2014. Seamless gene correction of thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526-33
-
(2014)
Genome Res.
, vol.24
, pp. 1526-1533
-
-
Xie, F.1
Ye, L.2
Chang, J.C.3
Beyer, A.I.4
Wang, J.5
-
133
-
-
84920853711
-
Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPRCas9
-
Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, et al. 2015. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPRCas9. Stem Cell Rep. 4:143-54
-
(2015)
Stem Cell Rep.
, vol.4
, pp. 143-154
-
-
Li, H.L.1
Fujimoto, N.2
Sasakawa, N.3
Shirai, S.4
Ohkame, T.5
-
134
-
-
84934285785
-
Improved hematopoietic differentiation efficiency of gene-corrected thalassemia induced pluripotent stem cells by CRISPR/Cas9 system
-
Song B, Fan Y, HeW, Zhu D, Niu X, et al. 2015. Improved hematopoietic differentiation efficiency of gene-corrected thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 24:1053-65
-
(2015)
Stem Cells Dev.
, vol.24
, pp. 1053-1065
-
-
Song, B.1
Fan, Y.2
He, W.3
Zhu, D.4
Niu, X.5
-
135
-
-
84937019827
-
Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in thalassemia-derived iPSCs
-
Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, et al. 2015. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in thalassemia-derived iPSCs. Sci. Rep. 5:12065
-
(2015)
Sci. Rep.
, vol.5
, pp. 12065
-
-
Xu, P.1
Tong, Y.2
Liu, X.Z.3
Wang, T.T.4
Cheng, L.5
-
136
-
-
84924033062
-
Efficient and allele-specific genome editing of disease loci in human iPSCs
-
Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, et al. 2015. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol. Ther. 23:570-77
-
(2015)
Mol. Ther.
, vol.23
, pp. 570-577
-
-
Smith, C.1
Abalde-Atristain, L.2
He, C.3
Brodsky, B.R.4
Braunstein, E.M.5
-
137
-
-
84939857195
-
Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9
-
LaFountaine JS, Fathe K, Smyth HD. 2015. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494:180-94
-
(2015)
Int. J. Pharm.
, vol.494
, pp. 180-194
-
-
LaFountaine, J.S.1
Fathe, K.2
Smyth, H.D.3
-
138
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang T, Wei JJ, Sabatini DM, LanderES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
139
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84-87
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
-
140
-
-
84900861730
-
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
-
Zhou Y, Zhu S, Cai C, Yuan P, Li C, et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487-91
-
(2014)
Nature
, vol.509
, pp. 487-491
-
-
Zhou, Y.1
Zhu, S.2
Cai, C.3
Yuan, P.4
Li, C.5
-
141
-
-
84905262730
-
Improved vectors and genome-wide libraries for CRISPR screening
-
Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11:783-84
-
(2014)
Nat. Methods
, vol.11
, pp. 783-784
-
-
Sanjana, N.E.1
Shalem, O.2
Zhang, F.3
-
142
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32:1262-67
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
Hegde, M.5
-
143
-
-
84934833507
-
The impact of CRISPR-Cas9 on target identification and validation
-
Moore JD. 2015. The impact of CRISPR-Cas9 on target identification and validation. Drug Discov. Today 20:450-57
-
(2015)
Drug Discov. Today
, vol.20
, pp. 450-457
-
-
Moore, J.D.1
-
144
-
-
84938744950
-
A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
-
Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675-86
-
(2015)
Cell
, vol.162
, pp. 675-686
-
-
Parnas, O.1
Jovanovic, M.2
Eisenhaure, T.M.3
Herbst, R.H.4
Dixit, A.5
-
145
-
-
84898665052
-
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
-
Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:267-73
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 267-273
-
-
Koike-Yusa, H.1
Li, Y.2
Tan, E.P.3
Velasco-Herrera Mdel, C.4
Yusa, K.5
-
146
-
-
0032545933
-
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
-
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-11
-
(1998)
Nature
, vol.391
, pp. 806-811
-
-
Fire, A.1
Xu, S.2
Montgomery, M.K.3
Kostas, S.A.4
Driver, S.E.5
Mello, C.C.6
-
147
-
-
84939784406
-
A perspective on the future of high-throughput RNAi screening: Will CRISPR cut out the competition or can RNAi help guide the way?
-
Taylor J, Woodcock S. 2015. A perspective on the future of high-throughput RNAi screening: Will CRISPR cut out the competition or can RNAi help guide the way? J. Biomol. Screen. 20:1040-51
-
(2015)
J. Biomol. Screen.
, vol.20
, pp. 1040-1051
-
-
Taylor, J.1
Woodcock, S.2
-
148
-
-
14544280255
-
The silent revolution: RNA interference as basic biology, research tool, and therapeutic
-
Dykxhoorn DM, Lieberman J. 2005. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56:401-23
-
(2005)
Annu. Rev. Med.
, vol.56
, pp. 401-423
-
-
Dykxhoorn, D.M.1
Lieberman, J.2
-
149
-
-
84962978225
-
Potential pitfalls of CRISPR/Cas9-mediated genome editing
-
Peng R, Lin G, Li J. 2016. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283:1218-31
-
(2016)
FEBS J.
, vol.283
, pp. 1218-1231
-
-
Peng, R.1
Lin, G.2
Li, J.3
-
150
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822-26
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
-
152
-
-
84943820923
-
CRISPR-Cas9-mediated genome editing and guide RNA design
-
Wiles MV, Qin W, Cheng AW, Wang H. 2015. CRISPR-Cas9-mediated genome editing and guide RNA design. Mamm. Genome 26:501-10
-
(2015)
Mamm. Genome
, vol.26
, pp. 501-510
-
-
Wiles, M.V.1
Qin, W.2
Cheng, A.W.3
Wang, H.4
-
153
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577-82
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
154
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32:569-76
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
-
155
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84-88
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
156
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:279-84
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
157
-
-
84923846574
-
Digenome-seq: Genome-wide profiling ofCRISPR-Cas9 off-target effects in human cells
-
Kim D, Bae S, Park J, Kim E, Kim S, et al. 2015. Digenome-seq: genome-wide profiling ofCRISPR-Cas9 off-target effects in human cells. Nat. Methods 12:237-43
-
(2015)
Nat. Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
Kim, S.5
-
158
-
-
84937764361
-
Small molecule-triggered Cas9 protein with improved genome-editing specificity
-
Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11:316-18
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 316-318
-
-
Davis, K.M.1
Pattanayak, V.2
Thompson, D.B.3
Zuris, J.A.4
Liu, D.R.5
-
159
-
-
84929147435
-
Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
-
Chu VT, Weber T, Wefers B, Wurst W, Sander S, et al. 2015. Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33:543-48
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 543-548
-
-
Chu, V.T.1
Weber, T.2
Wefers, B.3
Wurst, W.4
Sander, S.5
-
160
-
-
84929166074
-
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
-
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33:538-42
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 538-542
-
-
Maruyama, T.1
Dougan, S.K.2
Truttmann, M.C.3
Bilate, A.M.4
Ingram, J.R.5
Ploegh, H.L.6
-
161
-
-
84983792922
-
Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
-
Lin S, Staahl B, Alla RK, Doudna JA. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. ELife 3:e04766
-
(2014)
ELife
, vol.3
, pp. e04766
-
-
Lin, S.1
Staahl, B.2
Alla, R.K.3
Doudna, J.A.4
-
162
-
-
38049155945
-
Regulation of DNA double-strand break repair pathway choice
-
ShrivastavM, DeHaro LP, Nickoloff JA. 2008. Regulation of DNA double-strand break repair pathway choicE. Cell Res. 18:134-47
-
(2008)
Cell Res.
, vol.18
, pp. 134-147
-
-
Shrivastav, M.1
DeHaro, L.P.2
Nickoloff, J.A.3
-
163
-
-
84924911665
-
Small molecules enhance CRISPR genome editing in pluripotent stem cells
-
Yu C, Liu Y, Ma T, Liu K, Xu S, et al. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16:142-47
-
(2015)
Cell Stem Cell
, vol.16
, pp. 142-147
-
-
Yu, C.1
Liu, Y.2
Ma, T.3
Liu, K.4
Xu, S.5
-
164
-
-
84930618439
-
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
-
Liang P, Xu Y, Zhang X, Ding C, Huang R, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363-72
-
(2015)
Protein Cell
, vol.6
, pp. 363-372
-
-
Liang, P.1
Xu, Y.2
Zhang, X.3
Ding, C.4
Huang, R.5
-
165
-
-
84928775846
-
A prudent path forward for genomic engineering and germline gene modification
-
Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, et al. 2015. A prudent path forward for genomic engineering and germline gene modification. Science 348:36-38
-
(2015)
Science
, vol.348
, pp. 36-38
-
-
Baltimore, D.1
Berg, P.2
Botchan, M.3
Carroll, D.4
Charo, R.A.5
-
166
-
-
84928775204
-
Don't edit the human germ line
-
Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. 2015. Don't edit the human germ line. Nature 519:410-11
-
(2015)
Nature
, vol.519
, pp. 410-411
-
-
Lanphier, E.1
Urnov, F.2
Haecker, S.E.3
Werner, M.4
Smolenski, J.5
-
167
-
-
84925321827
-
Embryo engineering alarm
-
Vogel G. 2015. Embryo engineering alarm. Science 347:1301
-
(2015)
Science
, vol.347
, pp. 1301
-
-
Vogel, G.1
-
168
-
-
84929507584
-
Embryo engineering study splits scientific community
-
Kaiser J, Normile D. 2015. Embryo engineering study splits scientific community. Science 348:486-87
-
(2015)
Science
, vol.348
, pp. 486-487
-
-
Kaiser, J.1
Normile, D.2
-
169
-
-
84929939964
-
Eugenics lurk in the shadow of CRISPR
-
Pollack R. 2015. Eugenics lurk in the shadow of CRISPR. Science 348:871
-
(2015)
Science
, vol.348
, pp. 871
-
-
Pollack, R.1
-
170
-
-
84929160074
-
CRISPR germline engineering-the community speaks
-
Bosley KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, et al. 2015. CRISPR germline engineering-the community speaks. Nat. Biotechnol. 33:478-86
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 478-486
-
-
Bosley, K.S.1
Botchan, M.2
Bredenoord, A.L.3
Carroll, D.4
Charo, R.A.5
-
171
-
-
84946903362
-
CRISPR: A path through the thicket
-
Mathews DJ, Chan S, Donovan PJ, Douglas T, Gyngell C, et al. 2015. CRISPR: A path through the thicket. Nature 527:159-61
-
(2015)
Nature
, vol.527
, pp. 159-161
-
-
Mathews, D.J.1
Chan, S.2
Donovan, P.J.3
Douglas, T.4
Gyngell, C.5
-
172
-
-
84924410016
-
Concerning RNA-guided gene drives for the alteration of wild populations
-
Esvelt KM, Smidler AL, Catteruccia F, Church GM. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. ELife 3:e03401
-
(2014)
ELife
, vol.3
, pp. e03401
-
-
Esvelt, K.M.1
Smidler, A.L.2
Catteruccia, F.3
Church, G.M.4
-
173
-
-
33646882131
-
Gene drive systems for insect disease vectors
-
Sinkins SP, Gould F. 2006. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 7:427-35
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 427-435
-
-
Sinkins, S.P.1
Gould, F.2
-
174
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8:2180-96
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
Qi, L.S.6
-
175
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera P, Kocak DD, VockleyCM, AdlerAF, KabadiAM, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10:973-76
-
(2013)
Nat. Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
Kabadi, A.M.5
-
176
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41:7429-37
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
177
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states
-
Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472-76
-
(2013)
Nature
, vol.500
, pp. 472-476
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Hsu, P.D.4
Heidenreich, M.5
-
178
-
-
84941285455
-
Bacterial CRISPR: Accomplishments and prospects
-
Peters JM, Silvis MR, ZhaoD, Hawkins JS, Gross CA, Qi LS. 2015. Bacterial CRISPR: Accomplishments and prospects. Curr. Opin. Microbiol. 27:121-26
-
(2015)
Curr. Opin. Microbiol.
, vol.27
, pp. 121-126
-
-
Peters, J.M.1
Silvis, M.R.2
Zhao, D.3
Hawkins, J.S.4
Gross, C.A.5
Qi, L.S.6
-
179
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan JG, LeeME, Almeida R, Gilbert LA, Whitehead EH, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339-50
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
Lee, M.E.2
Almeida, R.3
Gilbert, L.A.4
Whitehead, E.H.5
-
180
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583-88
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Joung, J.4
Abudayyeh, O.O.5
-
181
-
-
84934267574
-
Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display
-
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. 2015. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12:664-70
-
(2015)
Nat. Methods
, vol.12
, pp. 664-670
-
-
Shechner, D.M.1
Hacisuleyman, E.2
Younger, S.T.3
Rinn, J.L.4
-
182
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:977-79
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
Linder, S.J.2
Cascio, V.M.3
Fu, Y.4
Ho, Q.H.5
Joung, J.K.6
-
183
-
-
84885180675
-
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
-
Cheng AW, Wang H, Yang H, Shi L, Katz Y, et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23:1163-71
-
(2013)
Cell Res.
, vol.23
, pp. 1163-1171
-
-
Cheng, A.W.1
Wang, H.2
Yang, H.3
Shi, L.4
Katz, Y.5
-
184
-
-
84926521955
-
Highly efficient Cas9-mediated transcriptional programming
-
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:326-28
-
(2015)
Nat. Methods
, vol.12
, pp. 326-328
-
-
Chavez, A.1
Scheiman, J.2
Vora, S.3
Pruitt, B.W.4
Tuttle, M.5
-
185
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
TanenbaumME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635-46
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
Weissman, J.S.4
Vale, R.D.5
-
186
-
-
0031893016
-
Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo
-
He S, Weintraub SJ. 1998. Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo. Mol. Cell. Biol. 18:2876-83
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 2876-2883
-
-
He, S.1
Weintraub, S.J.2
-
187
-
-
20744437261
-
Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo
-
Govind CK, Yoon S, QiuH, Govind S, Hinnebusch AG. 2005. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol. Cell. Biol. 25:5626-38
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 5626-5638
-
-
Govind, C.K.1
Yoon, S.2
Qiu, H.3
Govind, S.4
Hinnebusch, A.G.5
-
188
-
-
84929627714
-
Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi)
-
Hawkins JS, Wong S, Peters JM, Almeida R, Qi LS. 2015. Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi). Methods Mol. Biol. 1311:349-62
-
(2015)
Methods Mol. Biol.
, vol.1311
, pp. 349-362
-
-
Hawkins, J.S.1
Wong, S.2
Peters, J.M.3
Almeida, R.4
Qi, L.S.5
-
189
-
-
84938857368
-
Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators
-
Polstein L, Perez-Pinera P, Kocak D, Vockley C, Bledsoe P, et al. 2015. Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators. Genome Res. 25:1158-69
-
(2015)
Genome Res.
, vol.25
, pp. 1158-1169
-
-
Polstein, L.1
Perez-Pinera, P.2
Kocak, D.3
Vockley, C.4
Bledsoe, P.5
-
190
-
-
84893819419
-
Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
-
Zhao Y, Dai Z, Liang Y, Yin M, Ma K, et al. 2014. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 4:3943
-
(2014)
Sci. Rep.
, vol.4
, pp. 3943
-
-
Zhao, Y.1
Dai, Z.2
Liang, Y.3
Yin, M.4
Ma, K.5
-
191
-
-
84944632276
-
The new state of the art: Cas9 for gene activation and repression
-
La Russa MF, Qi LS. 2015. The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 35:3800-9
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 3800-3809
-
-
La Russa, M.F.1
Qi, L.S.2
-
192
-
-
84952639685
-
Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation
-
Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17:5-15
-
(2016)
Nat. Rev. Mol. Cell Biol.
, vol.17
, pp. 5-15
-
-
Dominguez, A.A.1
Lim, W.A.2
Qi, L.S.3
-
193
-
-
84943638166
-
In vivo transcriptional activation using CRISPR/Cas9 in Drosophila
-
Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N. 2015. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics 201:433-42
-
(2015)
Genetics
, vol.201
, pp. 433-442
-
-
Lin, S.1
Ewen-Campen, B.2
Ni, X.3
Housden, B.E.4
Perrimon, N.5
-
194
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, et al. 2015. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13:578-89
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 578-589
-
-
Piatek, A.1
Ali, Z.2
Baazim, H.3
Li, L.4
Abulfaraj, A.5
-
195
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, et al. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169:971-85
-
(2015)
Plant Physiol.
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
Zhang, D.2
Baltes, N.J.3
Paul, J.W.4
Tang, X.5
-
196
-
-
84947078456
-
CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs
-
Zhang Y, Yin C, Zhang T, Li F, Yang W, et al. 2015. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci. Rep. 5:16277
-
(2015)
Sci. Rep.
, vol.5
, pp. 16277
-
-
Zhang, Y.1
Yin, C.2
Zhang, T.3
Li, F.4
Yang, W.5
-
197
-
-
84886084801
-
Locus-specific editing of histone modifications at endogenous enhancers
-
Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, et al. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31:1133-36
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 1133-1136
-
-
Mendenhall, E.M.1
Williamson, K.E.2
Reyon, D.3
Zou, J.Y.4
Ram, O.5
-
198
-
-
0037164741
-
Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo
-
Snowden AW, Gregory PD, Case CC, Pabo CO. 2002. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12:2159-66
-
(2002)
Curr. Biol.
, vol.12
, pp. 2159-2166
-
-
Snowden, A.W.1
Gregory, P.D.2
Case, C.C.3
Pabo, C.O.4
-
199
-
-
84890048526
-
Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
-
Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, et al. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31:1137-42
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 1137-1142
-
-
Maeder, M.L.1
Angstman, J.F.2
Richardson, M.E.3
Linder, S.J.4
Cascio, V.M.5
-
200
-
-
84860561774
-
Epigenetic reprogramming of cancer cells via targeted DNA methylation
-
Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, et al. 2012. Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350-60
-
(2012)
Epigenetics
, vol.7
, pp. 350-360
-
-
Rivenbark, A.G.1
Stolzenburg, S.2
Beltran, A.S.3
Yuan, X.4
Rots, M.G.5
-
201
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states
-
Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472-76
-
(2013)
Nature
, vol.500
, pp. 472-476
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Hsu, P.D.4
Heidenreich, M.5
-
202
-
-
84903942172
-
Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation
-
Keung AJ, Bashor CJ, Kiriakov S, Collins JJ, Khalil AS. 2014. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110-20
-
(2014)
Cell
, vol.158
, pp. 110-120
-
-
Keung, A.J.1
Bashor, C.J.2
Kiriakov, S.3
Collins, J.J.4
Khalil, A.S.5
-
203
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, et al. 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12:1143-49
-
(2015)
Nat. Methods
, vol.12
, pp. 1143-1149
-
-
Thakore, P.I.1
D'Ippolito, A.M.2
Song, L.3
Safi, A.4
Shivakumar, N.K.5
-
204
-
-
33846283384
-
Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions
-
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. 2007. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8:104-15
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 104-115
-
-
Lanctôt, C.1
Cheutin, T.2
Cremer, M.3
Cavalli, G.4
Cremer, T.5
-
205
-
-
36849074774
-
Dynamics and interplay of nuclear architecture, genome organization, and gene expression
-
Schneider R, Grosschedl R. 2007. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21:3027-43
-
(2007)
Genes Dev.
, vol.21
, pp. 3027-3043
-
-
Schneider, R.1
Grosschedl, R.2
-
206
-
-
84923366733
-
Chromatin architecture reorganization during stem cell differentiation
-
Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, et al. 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518:331-36
-
(2015)
Nature
, vol.518
, pp. 331-336
-
-
Dixon, J.R.1
Jung, I.2
Selvaraj, S.3
Shen, Y.4
Antosiewicz-Bourget, J.E.5
-
207
-
-
77952576224
-
Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
-
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, et al. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38:603-13
-
(2010)
Mol. Cell
, vol.38
, pp. 603-613
-
-
Peric-Hupkes, D.1
Meuleman, W.2
Pagie, L.3
Bruggeman, S.W.4
Solovei, I.5
-
208
-
-
0014525545
-
Formation and detection of RNA-DNA hybrid molecules in cytological preparations
-
Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63:378-83
-
(1969)
PNAS
, vol.63
, pp. 378-383
-
-
Gall, J.G.1
Pardue, M.L.2
-
209
-
-
0014668983
-
RNA-DNAhybrids at the cytological level
-
John HA, Birnstiel ML, JonesKW. 1969. RNA-DNAhybrids at the cytological level. Nature 223:582-87
-
(1969)
Nature
, vol.223
, pp. 582-587
-
-
John, H.A.1
Birnstiel, M.L.2
Jones, K.W.3
-
210
-
-
0014585882
-
Molecular hybridization of radioactive DNA to the DNA of cytological preparations
-
Pardue ML, Gall JG. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. PNAS 64:600-4
-
(1969)
PNAS
, vol.64
, pp. 600-604
-
-
Pardue, M.L.1
Gall, J.G.2
-
211
-
-
0022446922
-
Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization
-
Pinkel D, Straume T, Gray JW. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. PNAS 83:2934-38
-
(1986)
PNAS
, vol.83
, pp. 2934-2938
-
-
Pinkel, D.1
Straume, T.2
Gray, J.W.3
-
212
-
-
0023027515
-
Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes
-
Pinkel D, Gray JW, Trask B, van den Engh G, Fuscoe J, van Dekken H. 1986. Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb. Symp. Quant. Biol. 51(Pt 1):151-57
-
(1986)
Cold Spring Harb. Symp. Quant. Biol.
, vol.51
, pp. 151-157
-
-
Pinkel, D.1
Gray, J.W.2
Trask, B.3
Van Den Engh, G.4
Fuscoe, J.5
Van Dekken, H.6
-
213
-
-
0029912473
-
Karyotyping human chromosomes by combinatorial multi-fluor FISH
-
Speicher MR, Gwyn Ballard S, Ward DC. 1996. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12:368-75
-
(1996)
Nat. Genet.
, vol.12
, pp. 368-375
-
-
Speicher, M.R.1
Gwyn Ballard, S.2
Ward, D.C.3
-
214
-
-
77649292704
-
Human interphase chromosomes: A review of available molecular cytogenetic technologies
-
Vorsanova SG, Yurov YB, Iourov IY. 2010. Human interphase chromosomes: A review of available molecular cytogenetic technologies. Mol. Cytogenet. 3:1
-
(2010)
Mol. Cytogenet.
, vol.3
, pp. 1
-
-
Vorsanova, S.G.1
Yurov, Y.B.2
Iourov, I.Y.3
-
215
-
-
84901670973
-
Human molecular cytogenetics: From cells to nucleotides
-
Riegel M. 2014. Human molecular cytogenetics: from cells to nucleotides. Genet. Mol. Biol. 37:194-209
-
(2014)
Genet. Mol. Biol.
, vol.37
, pp. 194-209
-
-
Riegel, M.1
-
217
-
-
0020398267
-
In situ hybridization at the electron microscope level: Hybrid detection by autoradiography and colloidal gold
-
Hutchison NJ, Langer-Safer PR, Ward DC, Hamkalo BA. 1982. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold. J. Cell Biol. 95:609-18
-
(1982)
J. Cell Biol.
, vol.95
, pp. 609-618
-
-
Hutchison, N.J.1
Langer-Safer, P.R.2
Ward, D.C.3
Hamkalo, B.A.4
-
218
-
-
0346993718
-
Visualizing telomere dynamics in living mammalian cells using PNA probes
-
Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, et al. 2003. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 22:6631-41
-
(2003)
EMBO J.
, vol.22
, pp. 6631-6641
-
-
Molenaar, C.1
Wiesmeijer, K.2
Verwoerd, N.P.3
Khazen, S.4
Eils, R.5
-
219
-
-
0030461543
-
In vivo localization ofDNAsequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
-
Robinett CC, Straight A, Li G, WillhelmC, Sudlow G, et al. 1996. In vivo localization ofDNAsequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685-700
-
(1996)
J. Cell Biol.
, vol.135
, pp. 1685-1700
-
-
Robinett, C.C.1
Straight, A.2
Li, G.3
Willhelm, C.4
Sudlow, G.5
-
220
-
-
0031457326
-
Interphase chromosomes undergo constrained diffusional motion in living cells
-
Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, et al. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7:930-39
-
(1997)
Curr. Biol.
, vol.7
, pp. 930-939
-
-
Marshall, W.F.1
Straight, A.2
Marko, J.F.3
Swedlow, J.4
Dernburg, A.5
-
221
-
-
82955213040
-
Tracking chromosome dynamics in live yeast cells: Coordinated movement of rDNA homologs and anaphase disassembly of the nucleolus during meiosis
-
Li P, Jin H, Hoang ML, Yu HG. 2011. Tracking chromosome dynamics in live yeast cells: coordinated movement of rDNA homologs and anaphase disassembly of the nucleolus during meiosis. Chromosome Res. 19:1013-26
-
(2011)
Chromosome Res.
, vol.19
, pp. 1013-1026
-
-
Li, P.1
Jin, H.2
Hoang, M.L.3
Yu, H.G.4
-
222
-
-
62849108417
-
Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy
-
Wang X, Kam Z, Carlton PM, Xu L, Sedat JW, Blackburn EH. 2008. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenetics Chromatin 1:4
-
(2008)
Epigenetics Chromatin
, vol.1
, pp. 4
-
-
Wang, X.1
Kam, Z.2
Carlton, P.M.3
Xu, L.4
Sedat, J.W.5
Blackburn, E.H.6
-
223
-
-
0029829004
-
Dynamic elastic behavior of satellite DNA domains visualized in situ in living human cells
-
Shelby RD, Hahn KM, Sullivan KF. 1996. Dynamic elastic behavior of satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135:545-57
-
(1996)
J. Cell Biol.
, vol.135
, pp. 545-557
-
-
Shelby, R.D.1
Hahn, K.M.2
Sullivan, K.F.3
-
224
-
-
68849112331
-
Transient anomalous diffusion of telomeres in the nucleus of mammalian cells
-
Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, et al. 2009. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103:018102
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 018102
-
-
Bronstein, I.1
Israel, Y.2
Kepten, E.3
Mai, S.4
Shav-Tal, Y.5
-
225
-
-
84897532001
-
Visualization of specificDNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
-
Anton T, Bultmann S, LeonhardtH, Markaki Y. 2014. Visualization of specificDNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163-72
-
(2014)
Nucleus
, vol.5
, pp. 163-172
-
-
Anton, T.1
Bultmann, S.2
Leonhardt, H.3
Markaki, Y.4
-
226
-
-
84942845731
-
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
-
Deng W, Shi X, Tjian R, Lionnet T, Singer RH. 2015. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. PNAS 112:11870-75
-
(2015)
PNAS
, vol.112
, pp. 11870-11875
-
-
Deng, W.1
Shi, X.2
Tjian, R.3
Lionnet, T.4
Singer, R.H.5
-
227
-
-
84903545084
-
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
-
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677-83
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 677-683
-
-
Kuscu, C.1
Arslan, S.2
Singh, R.3
Thorpe, J.4
Adli, M.5
-
228
-
-
84905592408
-
Genome-wide identification ofCRISPR/Cas9 off-targets in human genome
-
Duan J, Lu G, Xie Z, Lou M, Luo J, et al. 2014. Genome-wide identification ofCRISPR/Cas9 off-targets in human genomE. Cell Res. 24:1009-12
-
(2014)
Cell Res.
, vol.24
, pp. 1009-1012
-
-
Duan, J.1
Lu, G.2
Xie, Z.3
Lou, M.4
Luo, J.5
-
229
-
-
84926652112
-
Inducible in vivo genome editing with CRISPR-Cas9
-
Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33:390-94
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 390-394
-
-
Dow, L.E.1
Fisher, J.2
O'Rourke, K.P.3
Muley, A.4
Kastenhuber, E.R.5
-
230
-
-
84905905141
-
An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells
-
Gonzalez F, Zhu Z, Shi ZD, Lelli K, VermaN, et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215-26
-
(2014)
Cell Stem Cell
, vol.15
, pp. 215-226
-
-
Gonzalez, F.1
Zhu, Z.2
Shi, Z.D.3
Lelli, K.4
Verma, N.5
-
231
-
-
84923141668
-
CRISPR-Cas9-based photoactivatable transcription system
-
Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. 2015. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol. 22:169-74
-
(2015)
Chem. Biol.
, vol.22
, pp. 169-174
-
-
Nihongaki, Y.1
Yamamoto, S.2
Kawano, F.3
Suzuki, H.4
Sato, M.5
-
232
-
-
84925534357
-
A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
-
Polstein LR, Gersbach CA. 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:198-200
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 198-200
-
-
Polstein, L.R.1
Gersbach, C.A.2
-
233
-
-
84923297110
-
A split-Cas9 architecture for inducible genome editing and transcription modulation
-
Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:139-42
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 139-142
-
-
Zetsche, B.1
Volz, S.E.2
Zhang, F.3
-
234
-
-
84924322574
-
Rational design of a split-Cas9 enzyme complex
-
Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, et al. 2015. Rational design of a split-Cas9 enzyme complex. PNAS 112:2984-89
-
(2015)
PNAS
, vol.112
, pp. 2984-2989
-
-
Wright, A.V.1
Sternberg, S.H.2
Taylor, D.W.3
Staahl, B.T.4
Bardales, J.A.5
-
236
-
-
84939630169
-
Development of an intein-mediated split-Cas9 system for gene therapy
-
Truong DJ, Kuhner K, Kuhn R, Werfel S, Engelhardt S, et al. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43:6450-58
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 6450-6458
-
-
Truong, D.J.1
Kuhner, K.2
Kuhn, R.3
Werfel, S.4
Engelhardt, S.5
-
237
-
-
84887931623
-
Cas9-dependent endogenous gene regulation is required for bacterial virulence
-
Sampson TR, Weiss DS. 2013. Cas9-dependent endogenous gene regulation is required for bacterial virulence. Biochem. Soc. Trans. 41:1407-11
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1407-1411
-
-
Sampson, T.R.1
Weiss, D.S.2
-
238
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254-57
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.L.4
Weiss, D.S.5
-
239
-
-
84931957166
-
Applications of Cas9 as an RNA-programmed RNAbinding protein
-
Nelles DA, Fang MY, Aigner S, Yeo GW. 2015. Applications of Cas9 as an RNA-programmed RNAbinding protein. BioEssays 37:732-39
-
(2015)
BioEssays
, vol.37
, pp. 732-739
-
-
Nelles, D.A.1
Fang, M.Y.2
Aigner, S.3
Yeo, G.W.4
-
240
-
-
84901233875
-
Pol III promoters to express small RNAs: Delineation of transcription initiation
-
Ma H, Wu Y, Dang Y, Choi JG, Zhang J, Wu H. 2014. Pol III promoters to express small RNAs: delineation of transcription initiation. Mol. Ther. Nucleic Acids 3:e161
-
(2014)
Mol. Ther. Nucleic Acids
, vol.3
, pp. e161
-
-
Ma, H.1
Wu, Y.2
Dang, Y.3
Choi, J.G.4
Zhang, J.5
Wu, H.6
-
241
-
-
84879949311
-
Heritable and precise zebrafish genome editing using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, et al. 2013. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLOS ONE 8:e68708
-
(2013)
PLOS ONE
, vol.8
, pp. e68708
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Kaini, P.5
-
242
-
-
84879641784
-
Mechanism of eukaryotic RNA polymerase III transcription termination
-
Nielsen S, Yuzenkova Y, Zenkin N. 2013. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340:1577-80
-
(2013)
Science
, vol.340
, pp. 1577-1580
-
-
Nielsen, S.1
Yuzenkova, Y.2
Zenkin, N.3
-
243
-
-
0029665242
-
Krüppel-associated box-mediated repression ofRNApolymerase II promoters is influenced by the arrangement of basal promoter elements
-
Pengue G, Lania L. 1996. Krüppel-associated box-mediated repression ofRNApolymerase II promoters is influenced by the arrangement of basal promoter elements. PNAS 93:1015-20
-
(1996)
PNAS
, vol.93
, pp. 1015-1020
-
-
Pengue, G.1
Lania, L.2
-
244
-
-
77950421703
-
KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading
-
Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, et al. 2010. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLOS Genet. 6:e1000869
-
(2010)
PLOS Genet.
, vol.6
, pp. e1000869
-
-
Groner, A.C.1
Meylan, S.2
Ciuffi, A.3
Zangger, N.4
Ambrosini, G.5
-
245
-
-
0346993714
-
A novel docking site on Mediator is critical for activation by VP16 in mammalian cells
-
Mittler G, Stühler T, Santolin L, Uhlmann T, Kremmer E, et al. 2003. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22:6494-504
-
(2003)
EMBO J.
, vol.22
, pp. 6494-6504
-
-
Mittler, G.1
Stühler, T.2
Santolin, L.3
Uhlmann, T.4
Kremmer, E.5
-
246
-
-
84960366869
-
Genome engineering using adeno-associated virus: Basic and clinical research applications
-
Gaj T, Epstein BE, Schaffer DV. 2016. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol. Ther. 24:458-64
-
(2016)
Mol. Ther.
, vol.24
, pp. 458-464
-
-
Gaj, T.1
Epstein, B.E.2
Schaffer, D.V.3
-
247
-
-
84947714470
-
Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
-
Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, et al. 2015. Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16:257
-
(2015)
Genome Biol.
, vol.16
, pp. 257
-
-
Friedland, A.E.1
Baral, R.2
Singhal, P.3
Loveluck, K.4
Shen, S.5
-
248
-
-
84942887576
-
Efficient generation of myostatin knockout sheep using CRISPR/Cas9 technology and microinjection into zygotes
-
Crispo M, MuletAP, TessonL, Barrera N, Cuadro F, et al. 2015. Efficient generation of myostatin knockout sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE 10:e0136690
-
(2015)
PLOS ONE
, vol.10
, pp. e0136690
-
-
Crispo, M.1
Mulet, A.P.2
Tesson, L.3
Barrera, N.4
Cuadro, F.5
-
249
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4:220-28
-
(2013)
Cell Rep.
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
Tibbit, C.2
Ponting, C.P.3
Liu, J.L.4
-
250
-
-
84908190503
-
CRISPR-mediated direct mutation of cancer genes in the mouse liver
-
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380-84
-
(2014)
Nature
, vol.514
, pp. 380-384
-
-
Xue, W.1
Chen, S.2
Yin, H.3
Tammela, T.4
Papagiannakopoulos, T.5
-
251
-
-
84884911076
-
Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins
-
Cho SW, Lee J, Carroll D, Kim JS. 2013. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177-80
-
(2013)
Genetics
, vol.195
, pp. 1177-1180
-
-
Cho, S.W.1
Lee, J.2
Carroll, D.3
Kim, J.S.4
-
252
-
-
84891704542
-
Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases
-
Sung YH, Kim JM, Kim HT, Lee J, Jeon J, et al. 2014. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res. 24:125-31
-
(2014)
Genome Res.
, vol.24
, pp. 125-131
-
-
Sung, Y.H.1
Kim, J.M.2
Kim, H.T.3
Lee, J.4
Jeon, J.5
-
253
-
-
84965190468
-
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
-
Liu J, Gaj T, Yang Y, Wang N, Shui S, et al. 2015. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10:1842-59
-
(2015)
Nat. Protoc.
, vol.10
, pp. 1842-1859
-
-
Liu, J.1
Gaj, T.2
Yang, Y.3
Wang, N.4
Shui, S.5
-
254
-
-
84940184252
-
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
-
Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:10437-42
-
(2015)
PNAS
, vol.112
, pp. 10437-10442
-
-
Schumann, K.1
Lin, S.2
Boyer, E.3
Simeonov, D.R.4
Subramaniam, M.5
-
255
-
-
84937905397
-
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
-
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985-89
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 985-989
-
-
Hendel, A.1
Bak, R.O.2
Clark, J.T.3
Kennedy, A.B.4
Ryan, D.E.5
-
256
-
-
84930943161
-
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
-
Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208:44-53
-
(2015)
J. Biotechnol.
, vol.208
, pp. 44-53
-
-
Liang, X.1
Potter, J.2
Kumar, S.3
Zou, Y.4
Quintanilla, R.5
-
257
-
-
84961288301
-
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
-
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73-80
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 73-80
-
-
Zuris, J.A.1
Thompson, D.B.2
Shu, Y.3
Guilinger, J.P.4
Bessen, J.L.5
-
258
-
-
84901843996
-
Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
-
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24:1020-27
-
(2014)
Genome Res.
, vol.24
, pp. 1020-1027
-
-
Ramakrishna, S.1
Kwaku Dad, A.B.2
Beloor, J.3
Gopalappa, R.4
Lee, S.K.5
Kim, H.6
-
259
-
-
84928393912
-
Efficient intracellular delivery of native proteins
-
D'Astolfo DS, Pagliero RJ, Pras A, KarthausWR, Clevers H, et al. 2015. Efficient intracellular delivery of native proteins. Cell 161:674-90
-
(2015)
Cell
, vol.161
, pp. 674-690
-
-
D'Astolfo, D.S.1
Pagliero, R.J.2
Pras, A.3
Karthaus, W.R.4
Clevers, H.5
-
260
-
-
84942821644
-
Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
-
Sun W, Ji W, Hall JM, Hu Q, Wang C, et al. 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. 54:12029-33
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 12029-12033
-
-
Sun, W.1
Ji, W.2
Hall, J.M.3
Hu, Q.4
Wang, C.5
|