메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 227-264

CRISPR/Cas9 in Genome Editing and beyond

Author keywords

Cas9 structure; CRISPR applications; DCas9; Epigenetic regulation; Gene regulation; Genomic imaging

Indexed keywords

CRISPR ASSOCIATED PROTEIN; CRISPR ASSOCIATED PROTEIN 9; DEOXYRIBONUCLEASE; DNA; ENDONUCLEASE; GUIDE RNA; SHORT HAIRPIN RNA; SMALL INTERFERING RNA; UNCLASSIFIED DRUG; BACTERIAL PROTEIN; CAS9 ENDONUCLEASE STREPTOCOCCUS PYOGENES;

EID: 84974717567     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014607     Document Type: Article
Times cited : (883)

References (260)
  • 1
    • 0023600057 scopus 로고
    • Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
    • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:5429-33
    • (1987) J. Bacteriol. , vol.169 , pp. 5429-5433
    • Ishino, Y.1    Shinagawa, H.2    Makino, K.3    Amemura, M.4    Nakata, A.5
  • 2
    • 0036267740 scopus 로고    scopus 로고
    • Identification of genes that are associated with DNA repeats in prokaryotes
    • Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:1565-75
    • (2002) Mol. Microbiol. , vol.43 , pp. 1565-1575
    • Jansen, R.1    Embden, J.D.2    Gaastra, W.3    Schouls, L.M.4
  • 4
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579-86
    • (2012) PNAS , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 5
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, CoxD, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-23
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3    Lin, S.4    Barretto, R.5
  • 6
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823-26
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1    Yang, L.2    Esvelt, K.M.3    Aach, J.4    Guell, M.5
  • 8
    • 84884856342 scopus 로고    scopus 로고
    • Cas9 as a versatile tool for engineering biology
    • Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957-63
    • (2013) Nat. Methods , vol.10 , pp. 957-963
    • Mali, P.1    Esvelt, K.M.2    Church, G.M.3
  • 9
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-78
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 10
    • 84913594397 scopus 로고    scopus 로고
    • The new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 11
    • 0034034401 scopus 로고    scopus 로고
    • Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
    • Mojica FJ, Diez-Villaseñor C, Soria E, Juez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36:244-46
    • (2000) Mol. Microbiol. , vol.36 , pp. 244-246
    • Mojica, F.J.1    Diez-Villaseñor, C.2    Soria, E.3    Juez, G.4
  • 12
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-12
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1    Fremaux, C.2    Deveau, H.3    Richards, M.4    Boyaval, P.5
  • 13
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau JE, DupuisME, VillionM, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67-71
    • (2010) Nature , vol.468 , pp. 67-71
    • Garneau, J.E.1    Dupuis, M.E.2    Villion, M.3    Romero, D.A.4    Barrangou, R.5
  • 14
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-7
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1    Chylinski, K.2    Sharma, C.M.3    Gonzales, K.4    Chao, Y.5
  • 15
    • 0028061666 scopus 로고
    • Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
    • Rouet P, Smih F, Jasin M. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096-106
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8096-8106
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 16
    • 0028237305 scopus 로고
    • Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells
    • Rouet P, Smih F, Jasin M. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. PNAS 91:6064-68
    • (1994) PNAS , vol.91 , pp. 6064-6068
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 17
    • 0024693555 scopus 로고
    • Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
    • Rudin N, Sugarman E, Haber JE. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519-34
    • (1989) Genetics , vol.122 , pp. 519-534
    • Rudin, N.1    Sugarman, E.2    Haber, J.E.3
  • 18
    • 0026573892 scopus 로고
    • Site-specific recombination determined by I-SceI, a mitochondrial group i intron-encoded endonuclease expressed in the yeast nucleus
    • Plessis A, Perrin A, Haber JE, Dujon B. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451-60
    • (1992) Genetics , vol.130 , pp. 451-460
    • Plessis, A.1    Perrin, A.2    Haber, J.E.3    Dujon, B.4
  • 19
    • 0028919608 scopus 로고
    • Induction of homologous recombination inmammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae
    • Choulika A, Perrin A, Dujon B, Nicolas JF. 1995. Induction of homologous recombination inmammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1968-73
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1968-1973
    • Choulika, A.1    Perrin, A.2    Dujon, B.3    Nicolas, J.F.4
  • 20
    • 84954140058 scopus 로고    scopus 로고
    • Genome editing: A new approach to human therapeutics
    • PorteusM. 2016. Genome editing: A new approach to human therapeutics. Annu. Rev. Pharmacol. Toxicol. 56:163-90
    • (2016) Annu. Rev. Pharmacol. Toxicol. , vol.56 , pp. 163-190
    • Porteus, M.1
  • 21
    • 79951694132 scopus 로고    scopus 로고
    • Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy
    • SilvaG, Poirot L, Galetto R, Smith J, Montoya G, et al. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11:11-27
    • (2011) Curr. Gene Ther. , vol.11 , pp. 11-27
    • Silva, G.1    Poirot, L.2    Galetto, R.3    Smith, J.4    Montoya, G.5
  • 22
    • 77951234910 scopus 로고    scopus 로고
    • Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds
    • Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, et al. 2010. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res. 38:2006-18
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2006-2018
    • Grizot, S.1    Epinat, J.C.2    Thomas, S.3    Duclert, A.4    Rolland, S.5
  • 23
    • 0040215628 scopus 로고
    • Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes
    • Miller J, McLachlan AD, Klug A. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609-14
    • (1985) EMBO J. , vol.4 , pp. 1609-1614
    • Miller, J.1    McLachlan, A.D.2    Klug, A.3
  • 24
    • 0030032063 scopus 로고    scopus 로고
    • Hybrid restriction enzymes: Zinc finger fusions to Fok i cleavage domain
    • Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93:1156-60
    • (1996) PNAS , vol.93 , pp. 1156-1160
    • Kim, Y.G.1    Cha, J.2    Chandrasegaran, S.3
  • 26
    • 72149110399 scopus 로고    scopus 로고
    • Breaking the code of DNA binding specificity of TAL-type III effectors
    • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509-12
    • (2009) Science , vol.326 , pp. 1509-1512
    • Boch, J.1    Scholze, H.2    Schornack, S.3    Landgraf, A.4    Hahn, S.5
  • 27
    • 78951479577 scopus 로고    scopus 로고
    • Targeting DNA double-strand breaks with TAL effector nucleases
    • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757-61
    • (2010) Genetics , vol.186 , pp. 757-761
    • Christian, M.1    Cermak, T.2    Doyle, E.L.3    Schmidt, C.4    Zhang, F.5
  • 28
    • 84871519181 scopus 로고    scopus 로고
    • TALENs: A widely applicable technology for targeted genome editing
    • Joung JK, Sander JD. 2013. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49-55
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 49-55
    • Joung, J.K.1    Sander, J.D.2
  • 29
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843-45
    • (2008) Science , vol.322 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 30
    • 23844505202 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551-61
    • (2005) Microbiology , vol.151 , pp. 2551-2561
    • Bolotin, A.1    Quinquis, B.2    Sorokin, A.3    Ehrlich, S.D.4
  • 33
    • 84883785822 scopus 로고    scopus 로고
    • Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
    • Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-91
    • (2013) Nat. Biotechnol. , vol.31 , pp. 688-691
    • Li, J.F.1    Norville, J.E.2    Aach, J.3    McCormack, M.4    Zhang, D.5
  • 34
    • 84883828590 scopus 로고    scopus 로고
    • Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
    • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691-93
    • (2013) Nat. Biotechnol. , vol.31 , pp. 691-693
    • Nekrasov, V.1    Staskawicz, B.2    Weigel, D.3    Jones, J.D.4    Kamoun, S.5
  • 35
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347-55
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 36
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910-18
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1    Yang, H.2    Shivalila, C.S.3    Dawlaty, M.M.4    Cheng, A.W.5
  • 37
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes
    • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, et al. 2013. CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes. Cell 154:442-51
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1    Larson, M.H.2    Morsut, L.3    Liu, Z.4    Brar, G.A.5
  • 38
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510-17
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1    D'Ippolito, A.M.2    Vockley, C.M.3    Thakore, P.I.4    Crawford, G.E.5
  • 39
    • 84928924333 scopus 로고    scopus 로고
    • Functional annotation of native enhancers with a Cas9-histone demethylase fusion
    • Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:401-3
    • (2015) Nat. Methods , vol.12 , pp. 401-403
    • Kearns, N.A.1    Pham, H.2    Tabak, B.3    Genga, R.M.4    Silverstein, N.J.5
  • 40
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • Gilbert LA, HorlbeckMA, AdamsonB, Villalta JE, Chen Y, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647-61
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1    Horlbeck, M.A.2    Adamson, B.3    Villalta, J.E.4    Chen, Y.5
  • 41
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173-83
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3    Doudna, J.A.4    Weissman, J.S.5
  • 44
    • 84891363606 scopus 로고    scopus 로고
    • Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors
    • Ma H, Reyes-Gutierrez P, Pederson T. 2013. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. PNAS 110:21048-53
    • (2013) PNAS , vol.110 , pp. 21048-21053
    • Ma, H.1    Reyes-Gutierrez, P.2    Pederson, T.3
  • 46
    • 84897502408 scopus 로고    scopus 로고
    • Repeated TALEs: VisualizingDNA sequence localization and chromosome dynamics in live cells
    • Pederson T. 2014. Repeated TALEs: visualizingDNA sequence localization and chromosome dynamics in live cells. Nucleus 5:28-31
    • (2014) Nucleus , vol.5 , pp. 28-31
    • Pederson, T.1
  • 47
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479-91
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1    Gilbert, L.A.2    Cimini, B.A.3    Schnitzbauer, J.4    Zhang, W.5
  • 48
    • 84904662792 scopus 로고    scopus 로고
    • Identification of proteins associated with an IFN responsive promoter by a retroviral expression system for enChIP using CRISPR
    • Fujita T, Fujii H. 2014. Identification of proteins associated with an IFN responsive promoter by a retroviral expression system for enChIP using CRISPR. PLOS ONE 9:e103084
    • (2014) PLOS ONE , vol.9 , pp. e103084
    • Fujita, T.1    Fujii, H.2
  • 49
    • 84883799821 scopus 로고    scopus 로고
    • Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR
    • Fujita T, Fujii H. 2013. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439:132-36
    • (2013) Biochem. Biophys. Res. Commun. , vol.439 , pp. 132-136
    • Fujita, T.1    Fujii, H.2
  • 52
    • 16444385662 scopus 로고    scopus 로고
    • Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
    • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174-82
    • (2005) J. Mol. Evol. , vol.60 , pp. 174-182
    • Mojica, F.J.1    Diez-Villasenor, C.2    Garcia-Martinez, J.3    Soria, E.4
  • 53
    • 84942079449 scopus 로고    scopus 로고
    • The CRISPR-Cas immune system: Biology, mechanisms and applications
    • Rath D, Amlinger L, Rath A, Lundgren M. 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119-28
    • (2015) Biochimie , vol.117 , pp. 119-128
    • Rath, D.1    Amlinger, L.2    Rath, A.3    Lundgren, M.4
  • 54
    • 84923640664 scopus 로고    scopus 로고
    • Evolution of adaptive immunity from transposable elements combined with innate immune systems
    • Koonin EV, Krupovic M. 2015. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16:184-92
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 184-192
    • Koonin, E.V.1    Krupovic, M.2
  • 55
    • 15844390228 scopus 로고    scopus 로고
    • CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
    • Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653-63
    • (2005) Microbiology , vol.151 , pp. 653-663
    • Pourcel, C.1    Salvignol, G.2    Vergnaud, G.3
  • 59
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
    • Shmakov S, AbudayyehOO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60:385-97
    • (2015) Mol. Cell , vol.60 , pp. 385-397
    • Shmakov, S.1    Abudayyeh, O.O.2    Makarova, K.S.3    Wolf, Y.I.4    Gootenberg, J.S.5
  • 60
    • 84857097177 scopus 로고    scopus 로고
    • RNA-guided genetic silencing systems in bacteria and archaea
    • Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331-38
    • (2012) Nature , vol.482 , pp. 331-338
    • Wiedenheft, B.1    Sternberg, S.H.2    Doudna, J.A.3
  • 61
    • 84899134190 scopus 로고    scopus 로고
    • CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
    • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54:234-44
    • (2014) Mol. Cell , vol.54 , pp. 234-244
    • Barrangou, R.1    Marraffini, L.A.2
  • 62
    • 84897440729 scopus 로고    scopus 로고
    • To acquire or resist: The complex biological effects of CRISPRCas systems
    • Bondy-Denomy J, Davidson AR. 2014. To acquire or resist: The complex biological effects of CRISPRCas systems. Trends Microbiol. 22:218-25
    • (2014) Trends Microbiol. , vol.22 , pp. 218-225
    • Bondy-Denomy, J.1    Davidson, A.R.2
  • 63
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733-40
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1    Diez-Villasenor, C.2    Garcia-Martinez, J.3    Almendros, C.4
  • 64
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPRencoded resistance in Streptococcus thermophilus
    • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390-400
    • (2008) J. Bacteriol. , vol.190 , pp. 1390-1400
    • Deveau, H.1    Barrangou, R.2    Garneau, J.E.3    Labonte, J.4    Fremaux, C.5
  • 65
    • 84879026965 scopus 로고    scopus 로고
    • Protospacer recognition motifs: Mixed identities and functional diversity
    • Shah SA, Erdmann S, Mojica FJ, Garrett RA. 2013. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10:891-99
    • (2013) RNA Biol. , vol.10 , pp. 891-899
    • Shah, S.A.1    Erdmann, S.2    Mojica, F.J.3    Garrett, R.A.4
  • 66
    • 70449753811 scopus 로고    scopus 로고
    • RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex
    • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009. RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex. Cell 139:945-56
    • (2009) Cell , vol.139 , pp. 945-956
    • Hale, C.R.1    Zhao, P.2    Olson, S.3    Duff, M.O.4    Graveley, B.R.5
  • 67
    • 84895832944 scopus 로고    scopus 로고
    • Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
    • Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42:2577-90
    • (2014) Nucleic Acids Res. , vol.42 , pp. 2577-2590
    • Fonfara, I.1    Le Rhun, A.2    Chylinski, K.3    Makarova, K.S.4    Lecrivain, A.L.5
  • 69
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran FA, Cong L, YanWX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186-91
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1    Cong, L.2    Yan, W.X.3    Scott, D.A.4    Gootenberg, J.S.5
  • 70
    • 84940368054 scopus 로고    scopus 로고
    • Crystal structure of Staphylococcus aureus Cas9
    • NishimasuH, Cong L, Yan WX, Ran FA, Zetsche B, et al. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell 162:1113-26
    • (2015) Cell , vol.162 , pp. 1113-1126
    • Nishimasu, H.1    Cong, L.2    Yan, W.X.3    Ran, F.A.4    Zetsche, B.5
  • 72
  • 74
    • 84878193178 scopus 로고    scopus 로고
    • Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
    • Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50:488-503
    • (2013) Mol. Cell , vol.50 , pp. 488-503
    • Zhang, Y.1    Heidrich, N.2    Ampattu, B.J.3    Gunderson, C.W.4    Seifert, H.S.5
  • 75
  • 76
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833-38
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1    Aach, J.2    Stranges, P.B.3    Esvelt, K.M.4    Moosburner, M.5
  • 77
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-89
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1    Hsu, P.D.2    Lin, C.Y.3    Gootenberg, J.S.4    Konermann, S.5
  • 78
    • 84897954175 scopus 로고    scopus 로고
    • Efficient genome modification by CRISPRCas9 nickase with minimal off-target effects
    • Shen B, Zhang W, Zhang J, Zhou J, Wang J, et al. 2014. Efficient genome modification by CRISPRCas9 nickase with minimal off-target effects. Nat. Methods 11:399-402
    • (2014) Nat. Methods , vol.11 , pp. 399-402
    • Shen, B.1    Zhang, W.2    Zhang, J.3    Zhou, J.4    Wang, J.5
  • 79
    • 84925427919 scopus 로고    scopus 로고
    • Genome editing using Cas9 nickases
    • Trevino AE, Zhang F. 2014. Genome editing using Cas9 nickases. Methods Enzymol. 546:161-74
    • (2014) Methods Enzymol. , vol.546 , pp. 161-174
    • Trevino, A.E.1    Zhang, F.2
  • 80
    • 84891710947 scopus 로고    scopus 로고
    • Analysis of off-target effects of CRISPR/Casderived RNA-guided endonucleases and nickases
    • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, et al. 2014. Analysis of off-target effects of CRISPR/Casderived RNA-guided endonucleases and nickases. Genome Res. 24:132-41
    • (2014) Genome Res. , vol.24 , pp. 132-141
    • Cho, S.W.1    Kim, S.2    Kim, Y.3    Kweon, J.4    Kim, H.S.5
  • 81
    • 84893157352 scopus 로고    scopus 로고
    • Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
    • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997
    • (2014) Science , vol.343 , pp. 1247997
    • Jinek, M.1    Jiang, F.2    Taylor, D.W.3    Sternberg, S.H.4    Kaya, E.5
  • 82
    • 84933574487 scopus 로고    scopus 로고
    • A Cas9-guide RNA complex preorganized for target DNA recognition
    • Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477-81
    • (2015) Science , vol.348 , pp. 1477-1481
    • Jiang, F.1    Zhou, K.2    Ma, L.3    Gressel, S.4    Doudna, J.A.5
  • 83
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935-49
    • (2014) Cell , vol.156 , pp. 935-949
    • Nishimasu, H.1    Ran, F.A.2    Hsu, P.D.3    Konermann, S.4    Shehata, S.I.5
  • 84
    • 84908508061 scopus 로고    scopus 로고
    • Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    • Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569-73
    • (2014) Nature , vol.513 , pp. 569-573
    • Anders, C.1    Niewoehner, O.2    Duerst, A.3    Jinek, M.4
  • 85
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100-11
    • (2015) Curr. Opin. Struct. Biol. , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 86
    • 84946215320 scopus 로고    scopus 로고
    • Conformational control ofDNAtarget cleavage by CRISPR-Cas9
    • Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control ofDNAtarget cleavage by CRISPR-Cas9. Nature 527:110-13
    • (2015) Nature , vol.527 , pp. 110-113
    • Sternberg, S.H.1    LaFrance, B.2    Kaplan, M.3    Doudna, J.A.4
  • 88
    • 84903975702 scopus 로고    scopus 로고
    • Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
    • Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:9798-803
    • (2014) PNAS , vol.111 , pp. 9798-9803
    • Szczelkun, M.D.1    Tikhomirova, M.S.2    Sinkunas, T.3    Gasiunas, G.4    Karvelis, T.5
  • 89
    • 84938836171 scopus 로고    scopus 로고
    • A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
    • O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. 2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43:3389-404
    • (2015) Nucleic Acids Res. , vol.43 , pp. 3389-3404
    • O'Geen, H.1    Henry, I.M.2    Bhakta, M.S.3    Meckler, J.F.4    Segal, D.J.5
  • 90
    • 84902095352 scopus 로고    scopus 로고
    • Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
    • Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:670-76
    • (2014) Nat. Biotechnol. , vol.32 , pp. 670-676
    • Wu, X.1    Scott, D.A.2    Kriz, A.J.3    Chiu, A.C.4    Hsu, P.D.5
  • 91
  • 92
    • 84946919064 scopus 로고    scopus 로고
    • Dynamics of CRISPR-Cas9 genome interrogation in living cells
    • Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823-26
    • (2015) Science , vol.350 , pp. 823-826
    • Knight, S.C.1    Xie, L.2    Deng, W.3    Guglielmi, B.4    Witkowsky, L.B.5
  • 93
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181-211
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 95
    • 84949791988 scopus 로고    scopus 로고
    • Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 bymodifying PAMrecognition
    • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 bymodifying PAMrecognition. Nat. Biotechnol. 33:1293-98
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1293-1298
    • Kleinstiver, B.P.1    Prew, M.S.2    Tsai, S.Q.3    Nguyen, N.T.4    Topkar, V.V.5
  • 97
    • 84884962826 scopus 로고    scopus 로고
    • RNA-guided genome editing in plants using a CRISPR-Cas system
    • Xie K, Yang Y. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant 6:1975-83
    • (2013) Mol. Plant , vol.6 , pp. 1975-1983
    • Xie, K.1    Yang, Y.2
  • 98
    • 84886926151 scopus 로고    scopus 로고
    • Demonstration ofCRISPR/Cas9/sgRNAmediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
    • JiangW, ZhouH, BiH, FrommM, Yang B, WeeksDP. 2013. Demonstration ofCRISPR/Cas9/sgRNAmediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41:e188
    • (2013) Nucleic Acids Res. , vol.41 , pp. e188
    • Jiang, W.1    Zhou, H.2    Bi, H.3    Fromm, M.4    Yang, B.5    Weeks, D.P.6
  • 99
    • 84894081986 scopus 로고    scopus 로고
    • Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
    • Niu Y, Shen B, Cui Y, Chen Y, Wang J, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836-43
    • (2014) Cell , vol.156 , pp. 836-843
    • Niu, Y.1    Shen, B.2    Cui, Y.3    Chen, Y.4    Wang, J.5
  • 100
    • 84880088705 scopus 로고    scopus 로고
    • Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
    • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, et al. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029-35
    • (2013) Genetics , vol.194 , pp. 1029-1035
    • Gratz, S.J.1    Cummings, A.M.2    Nguyen, J.N.3    Hamm, D.C.4    Donohue, L.K.5
  • 101
    • 84903818736 scopus 로고    scopus 로고
    • Heritable/conditional genome editing in C. Elegans using a CRISPR-Cas9 feeding system
    • Liu P, Long L, Xiong K, Yu B, Chang N, et al. 2014. Heritable/conditional genome editing in C. Elegans using a CRISPR-Cas9 feeding system. Cell Res. 24:886-89
    • (2014) Cell Res. , vol.24 , pp. 886-889
    • Liu, P.1    Long, L.2    Xiong, K.3    Yu, B.4    Chang, N.5
  • 103
    • 84942515505 scopus 로고    scopus 로고
    • Modeling disease in vivo with CRISPR/Cas9
    • Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21:609-21
    • (2015) Trends Mol. Med. , vol.21 , pp. 609-621
    • Dow, L.E.1
  • 104
    • 84912078930 scopus 로고    scopus 로고
    • Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
    • Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, et al. 2014. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9:1219-27
    • (2014) Cell Rep. , vol.9 , pp. 1219-1227
    • Blasco, R.B.1    Karaca, E.2    Ambrogio, C.3    Cheong, T.C.4    Karayol, E.5
  • 105
    • 84905388288 scopus 로고    scopus 로고
    • Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells
    • Canver MC, Bauer DE, Dass A, Yien YY, Chung J, et al. 2014. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289:21312-24
    • (2014) J. Biol. Chem. , vol.289 , pp. 21312-21324
    • Canver, M.C.1    Bauer, D.E.2    Dass, A.3    Yien, Y.Y.4    Chung, J.5
  • 107
    • 84899490344 scopus 로고    scopus 로고
    • Targeted genomic rearrangements using CRISPR/Cas technology
    • Choi PS, Meyerson M. 2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5:3728
    • (2014) Nat. Commun. , vol.5 , pp. 3728
    • Choi, P.S.1    Meyerson, M.2
  • 108
    • 84901834420 scopus 로고    scopus 로고
    • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    • Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012-19
    • (2014) Genome Res. , vol.24 , pp. 1012-1019
    • Kim, S.1    Kim, D.2    Cho, S.W.3    Kim, J.4    Kim, J.S.5
  • 109
    • 84923384373 scopus 로고    scopus 로고
    • Deletions, inversions, duplications: Engineering of structural variants using CRISPR/Cas in mice
    • pii: S2211-47
    • Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, et al. 2015. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in micE. Cell Rep. pii:S2211-47
    • (2015) Cell Rep.
    • Kraft, K.1    Geuer, S.2    Will, A.J.3    Chan, W.L.4    Paliou, C.5
  • 110
    • 84922735816 scopus 로고    scopus 로고
    • In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
    • Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423-27
    • (2014) Nature , vol.516 , pp. 423-427
    • Maddalo, D.1    Manchado, E.2    Concepcion, C.P.3    Bonetti, C.4    Vidigal, J.A.5
  • 112
    • 84923107960 scopus 로고    scopus 로고
    • Unraveling the potential of CRISPR-Cas9 for gene therapy
    • Barrangou R, May AP. 2015. Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin. Biol. Ther. 15:311-14
    • (2015) Expert Opin. Biol. Ther. , vol.15 , pp. 311-314
    • Barrangou, R.1    May, A.P.2
  • 113
    • 84883305437 scopus 로고    scopus 로고
    • Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus
    • Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510
    • (2013) Sci. Rep. , vol.3 , pp. 2510
    • Ebina, H.1    Misawa, N.2    Kanemura, Y.3    Koyanagi, Y.4
  • 114
    • 84905643812 scopus 로고    scopus 로고
    • RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection
    • Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:11461-66
    • (2014) PNAS , vol.111 , pp. 11461-11466
    • Hu, W.1    Kaminski, R.2    Yang, F.3    Zhang, Y.4    Cosentino, L.5
  • 115
    • 84937614537 scopus 로고    scopus 로고
    • Inhibition of hepatitis B virus by CRISPR/Cas9 system via targeting the conserved regions of viral genome
    • Liu X, Hao R, Chen S, Guo D, Chen Y. 2015. Inhibition of hepatitis B virus by CRISPR/Cas9 system via targeting the conserved regions of viral genome. J. Gen. Virol. 96:2252-61
    • (2015) J. Gen. Virol. , vol.96 , pp. 2252-2261
    • Liu, X.1    Hao, R.2    Chen, S.3    Guo, D.4    Chen, Y.5
  • 116
    • 84927513847 scopus 로고    scopus 로고
    • Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication
    • Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir. Res. 118:110-17
    • (2015) Antivir. Res. , vol.118 , pp. 110-117
    • Dong, C.1    Qu, L.2    Wang, H.3    Wei, L.4    Dong, Y.5    Xiong, S.6
  • 117
    • 84927935415 scopus 로고    scopus 로고
    • Targeting hepatitis B virus with CRISPR/Cas9
    • Seeger C, Sohn JA. 2014. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3:e216
    • (2014) Mol. Ther. Nucleic Acids , vol.3 , pp. e216
    • Seeger, C.1    Sohn, J.A.2
  • 118
    • 84906083667 scopus 로고    scopus 로고
    • In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9
    • Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. 2014. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 450:1422-16
    • (2014) Biochem. Biophys. Res. Commun. , vol.450 , pp. 1422-1516
    • Zhen, S.1    Hua, L.2    Takahashi, Y.3    Narita, S.4    Liu, Y.H.5    Li, Y.6
  • 119
    • 84906969257 scopus 로고    scopus 로고
    • RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
    • Wang J, Quake SR. 2014. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. PNAS 111:13157-62
    • (2014) PNAS , vol.111 , pp. 13157-13162
    • Wang, J.1    Quake, S.R.2
  • 120
    • 84903729497 scopus 로고    scopus 로고
    • Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5-32 mutation confers resistance to HIV infection
    • Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5-32 mutation confers resistance to HIV infection. PNAS 111:9591-96
    • (2014) PNAS , vol.111 , pp. 9591-9596
    • Ye, L.1    Wang, J.2    Beyer, A.I.3    Teque, F.4    Cradick, T.J.5
  • 121
    • 84940203001 scopus 로고    scopus 로고
    • Inhibition of HIV-1 infection of primary CD4+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9
    • Li C, Guan X, Du T, JinW, Wu B, et al. 2015. Inhibition of HIV-1 infection of primary CD4+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96:2381-93
    • (2015) J. Gen. Virol. , vol.96 , pp. 2381-2393
    • Li, C.1    Guan, X.2    Du, T.3    Jin, W.4    Wu, B.5
  • 122
    • 84895487305 scopus 로고    scopus 로고
    • Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
    • Tebas P, Stein D, Tang WW, Frank I, Wang SQ, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901-10
    • (2014) N. Engl. J. Med. , vol.370 , pp. 901-910
    • Tebas, P.1    Stein, D.2    Tang, W.W.3    Frank, I.4    Wang, S.Q.5
  • 123
    • 84923339481 scopus 로고    scopus 로고
    • CCR5 gene editing of resting CD4+ T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice
    • Yi G, Choi JG, Bharaj P, Abraham S, Dang Y, et al. 2014. CCR5 gene editing of resting CD4+ T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice. Mol. Ther. Nucleic Acids 3:e198
    • (2014) Mol. Ther. Nucleic Acids , vol.3 , pp. e198
    • Yi, G.1    Choi, J.G.2    Bharaj, P.3    Abraham, S.4    Dang, Y.5
  • 124
    • 84902440146 scopus 로고    scopus 로고
    • Gene editing using a zinc-finger nuclease mimicking the CCR5-32 mutation induces resistance to CCR5-using HIV-1
    • Badia R, Riveira-Munoz E, Clotet B, Este JA, Ballana E. 2014. Gene editing using a zinc-finger nuclease mimicking the CCR5-32 mutation induces resistance to CCR5-using HIV-1. J. Antimicrob. Chemother. 69:1755-59
    • (2014) J. Antimicrob. Chemother. , vol.69 , pp. 1755-1759
    • Badia, R.1    Riveira-Munoz, E.2    Clotet, B.3    Este, J.A.4    Ballana, E.5
  • 125
    • 84902095353 scopus 로고    scopus 로고
    • Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
    • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, et al. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32:551-53
    • (2014) Nat. Biotechnol. , vol.32 , pp. 551-553
    • Yin, H.1    Xue, W.2    Chen, S.3    Bogorad, R.L.4    Benedetti, E.5
  • 126
  • 127
    • 84920269807 scopus 로고    scopus 로고
    • Correction of a genetic disease by CRISPRCas9-mediated gene editing in mouse spermatogonial stem cells
    • Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, et al. 2015. Correction of a genetic disease by CRISPRCas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25:67-79
    • (2015) Cell Res. , vol.25 , pp. 67-79
    • Wu, Y.1    Zhou, H.2    Fan, X.3    Zhang, Y.4    Zhang, M.5
  • 128
    • 84890050551 scopus 로고    scopus 로고
    • Correction of a genetic disease in mouse via use of CRISPR-Cas9
    • Wu Y, Liang D, Wang Y, Bai M, Tang W, et al. 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659-62
    • (2013) Cell Stem Cell , vol.13 , pp. 659-662
    • Wu, Y.1    Liang, D.2    Wang, Y.3    Bai, M.4    Tang, W.5
  • 129
    • 84890033064 scopus 로고    scopus 로고
    • Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
    • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653-58
    • (2013) Cell Stem Cell , vol.13 , pp. 653-658
    • Schwank, G.1    Koo, B.K.2    Sasselli, V.3    Dekkers, J.F.4    Heo, I.5
  • 130
    • 84964610090 scopus 로고    scopus 로고
    • Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system
    • pii: S1046-2023
    • Li HL, Gee P, Ishida K, Hotta A. 2015. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods pii:S1046-2023
    • (2015) Methods
    • Li, H.L.1    Gee, P.2    Ishida, K.3    Hotta, A.4
  • 131
    • 84938751866 scopus 로고    scopus 로고
    • Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9
    • Park CY, Kim DH, Son JS, Sung JJ, Lee J, et al. 2015. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213-20
    • (2015) Cell Stem Cell , vol.17 , pp. 213-220
    • Park, C.Y.1    Kim, D.H.2    Son, J.S.3    Sung, J.J.4    Lee, J.5
  • 132
    • 84907219050 scopus 로고    scopus 로고
    • Seamless gene correction of thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac
    • Xie F, Ye L, Chang JC, Beyer AI, Wang J, et al. 2014. Seamless gene correction of thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526-33
    • (2014) Genome Res. , vol.24 , pp. 1526-1533
    • Xie, F.1    Ye, L.2    Chang, J.C.3    Beyer, A.I.4    Wang, J.5
  • 133
    • 84920853711 scopus 로고    scopus 로고
    • Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPRCas9
    • Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, et al. 2015. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPRCas9. Stem Cell Rep. 4:143-54
    • (2015) Stem Cell Rep. , vol.4 , pp. 143-154
    • Li, H.L.1    Fujimoto, N.2    Sasakawa, N.3    Shirai, S.4    Ohkame, T.5
  • 134
    • 84934285785 scopus 로고    scopus 로고
    • Improved hematopoietic differentiation efficiency of gene-corrected thalassemia induced pluripotent stem cells by CRISPR/Cas9 system
    • Song B, Fan Y, HeW, Zhu D, Niu X, et al. 2015. Improved hematopoietic differentiation efficiency of gene-corrected thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 24:1053-65
    • (2015) Stem Cells Dev. , vol.24 , pp. 1053-1065
    • Song, B.1    Fan, Y.2    He, W.3    Zhu, D.4    Niu, X.5
  • 135
    • 84937019827 scopus 로고    scopus 로고
    • Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in thalassemia-derived iPSCs
    • Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, et al. 2015. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in thalassemia-derived iPSCs. Sci. Rep. 5:12065
    • (2015) Sci. Rep. , vol.5 , pp. 12065
    • Xu, P.1    Tong, Y.2    Liu, X.Z.3    Wang, T.T.4    Cheng, L.5
  • 136
  • 137
    • 84939857195 scopus 로고    scopus 로고
    • Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9
    • LaFountaine JS, Fathe K, Smyth HD. 2015. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494:180-94
    • (2015) Int. J. Pharm. , vol.494 , pp. 180-194
    • LaFountaine, J.S.1    Fathe, K.2    Smyth, H.D.3
  • 138
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • Wang T, Wei JJ, Sabatini DM, LanderES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1    Wei, J.J.2    Sabatini, D.M.3    Lander, E.S.4
  • 139
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84-87
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1    Sanjana, N.E.2    Hartenian, E.3    Shi, X.4    Scott, D.A.5
  • 140
    • 84900861730 scopus 로고    scopus 로고
    • High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
    • Zhou Y, Zhu S, Cai C, Yuan P, Li C, et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487-91
    • (2014) Nature , vol.509 , pp. 487-491
    • Zhou, Y.1    Zhu, S.2    Cai, C.3    Yuan, P.4    Li, C.5
  • 141
    • 84905262730 scopus 로고    scopus 로고
    • Improved vectors and genome-wide libraries for CRISPR screening
    • Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11:783-84
    • (2014) Nat. Methods , vol.11 , pp. 783-784
    • Sanjana, N.E.1    Shalem, O.2    Zhang, F.3
  • 142
    • 84921540377 scopus 로고    scopus 로고
    • Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
    • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32:1262-67
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1262-1267
    • Doench, J.G.1    Hartenian, E.2    Graham, D.B.3    Tothova, Z.4    Hegde, M.5
  • 143
    • 84934833507 scopus 로고    scopus 로고
    • The impact of CRISPR-Cas9 on target identification and validation
    • Moore JD. 2015. The impact of CRISPR-Cas9 on target identification and validation. Drug Discov. Today 20:450-57
    • (2015) Drug Discov. Today , vol.20 , pp. 450-457
    • Moore, J.D.1
  • 144
    • 84938744950 scopus 로고    scopus 로고
    • A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
    • Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675-86
    • (2015) Cell , vol.162 , pp. 675-686
    • Parnas, O.1    Jovanovic, M.2    Eisenhaure, T.M.3    Herbst, R.H.4    Dixit, A.5
  • 145
    • 84898665052 scopus 로고    scopus 로고
    • Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
    • Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:267-73
    • (2014) Nat. Biotechnol. , vol.32 , pp. 267-273
    • Koike-Yusa, H.1    Li, Y.2    Tan, E.P.3    Velasco-Herrera Mdel, C.4    Yusa, K.5
  • 146
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-11
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1    Xu, S.2    Montgomery, M.K.3    Kostas, S.A.4    Driver, S.E.5    Mello, C.C.6
  • 147
    • 84939784406 scopus 로고    scopus 로고
    • A perspective on the future of high-throughput RNAi screening: Will CRISPR cut out the competition or can RNAi help guide the way?
    • Taylor J, Woodcock S. 2015. A perspective on the future of high-throughput RNAi screening: Will CRISPR cut out the competition or can RNAi help guide the way? J. Biomol. Screen. 20:1040-51
    • (2015) J. Biomol. Screen. , vol.20 , pp. 1040-1051
    • Taylor, J.1    Woodcock, S.2
  • 148
    • 14544280255 scopus 로고    scopus 로고
    • The silent revolution: RNA interference as basic biology, research tool, and therapeutic
    • Dykxhoorn DM, Lieberman J. 2005. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56:401-23
    • (2005) Annu. Rev. Med. , vol.56 , pp. 401-423
    • Dykxhoorn, D.M.1    Lieberman, J.2
  • 149
    • 84962978225 scopus 로고    scopus 로고
    • Potential pitfalls of CRISPR/Cas9-mediated genome editing
    • Peng R, Lin G, Li J. 2016. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283:1218-31
    • (2016) FEBS J. , vol.283 , pp. 1218-1231
    • Peng, R.1    Lin, G.2    Li, J.3
  • 150
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822-26
    • (2013) Nat. Biotechnol. , vol.31 , pp. 822-826
    • Fu, Y.1    Foden, J.A.2    Khayter, C.3    Maeder, M.L.4    Reyon, D.5
  • 152
    • 84943820923 scopus 로고    scopus 로고
    • CRISPR-Cas9-mediated genome editing and guide RNA design
    • Wiles MV, Qin W, Cheng AW, Wang H. 2015. CRISPR-Cas9-mediated genome editing and guide RNA design. Mamm. Genome 26:501-10
    • (2015) Mamm. Genome , vol.26 , pp. 501-510
    • Wiles, M.V.1    Qin, W.2    Cheng, A.W.3    Wang, H.4
  • 153
    • 84902210542 scopus 로고    scopus 로고
    • Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
    • Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577-82
    • (2014) Nat. Biotechnol. , vol.32 , pp. 577-582
    • Guilinger, J.P.1    Thompson, D.B.2    Liu, D.R.3
  • 154
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32:569-76
    • (2014) Nat. Biotechnol. , vol.32 , pp. 569-576
    • Tsai, S.Q.1    Wyvekens, N.2    Khayter, C.3    Foden, J.A.4    Thapar, V.5
  • 156
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:279-84
    • (2014) Nat. Biotechnol. , vol.32 , pp. 279-284
    • Fu, Y.1    Sander, J.D.2    Reyon, D.3    Cascio, V.M.4    Joung, J.K.5
  • 157
    • 84923846574 scopus 로고    scopus 로고
    • Digenome-seq: Genome-wide profiling ofCRISPR-Cas9 off-target effects in human cells
    • Kim D, Bae S, Park J, Kim E, Kim S, et al. 2015. Digenome-seq: genome-wide profiling ofCRISPR-Cas9 off-target effects in human cells. Nat. Methods 12:237-43
    • (2015) Nat. Methods , vol.12 , pp. 237-243
    • Kim, D.1    Bae, S.2    Park, J.3    Kim, E.4    Kim, S.5
  • 159
    • 84929147435 scopus 로고    scopus 로고
    • Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
    • Chu VT, Weber T, Wefers B, Wurst W, Sander S, et al. 2015. Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33:543-48
    • (2015) Nat. Biotechnol. , vol.33 , pp. 543-548
    • Chu, V.T.1    Weber, T.2    Wefers, B.3    Wurst, W.4    Sander, S.5
  • 160
    • 84929166074 scopus 로고    scopus 로고
    • Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
    • Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33:538-42
    • (2015) Nat. Biotechnol. , vol.33 , pp. 538-542
    • Maruyama, T.1    Dougan, S.K.2    Truttmann, M.C.3    Bilate, A.M.4    Ingram, J.R.5    Ploegh, H.L.6
  • 161
    • 84983792922 scopus 로고    scopus 로고
    • Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
    • Lin S, Staahl B, Alla RK, Doudna JA. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. ELife 3:e04766
    • (2014) ELife , vol.3 , pp. e04766
    • Lin, S.1    Staahl, B.2    Alla, R.K.3    Doudna, J.A.4
  • 162
    • 38049155945 scopus 로고    scopus 로고
    • Regulation of DNA double-strand break repair pathway choice
    • ShrivastavM, DeHaro LP, Nickoloff JA. 2008. Regulation of DNA double-strand break repair pathway choicE. Cell Res. 18:134-47
    • (2008) Cell Res. , vol.18 , pp. 134-147
    • Shrivastav, M.1    DeHaro, L.P.2    Nickoloff, J.A.3
  • 163
    • 84924911665 scopus 로고    scopus 로고
    • Small molecules enhance CRISPR genome editing in pluripotent stem cells
    • Yu C, Liu Y, Ma T, Liu K, Xu S, et al. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16:142-47
    • (2015) Cell Stem Cell , vol.16 , pp. 142-147
    • Yu, C.1    Liu, Y.2    Ma, T.3    Liu, K.4    Xu, S.5
  • 164
    • 84930618439 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    • Liang P, Xu Y, Zhang X, Ding C, Huang R, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363-72
    • (2015) Protein Cell , vol.6 , pp. 363-372
    • Liang, P.1    Xu, Y.2    Zhang, X.3    Ding, C.4    Huang, R.5
  • 165
    • 84928775846 scopus 로고    scopus 로고
    • A prudent path forward for genomic engineering and germline gene modification
    • Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, et al. 2015. A prudent path forward for genomic engineering and germline gene modification. Science 348:36-38
    • (2015) Science , vol.348 , pp. 36-38
    • Baltimore, D.1    Berg, P.2    Botchan, M.3    Carroll, D.4    Charo, R.A.5
  • 167
    • 84925321827 scopus 로고    scopus 로고
    • Embryo engineering alarm
    • Vogel G. 2015. Embryo engineering alarm. Science 347:1301
    • (2015) Science , vol.347 , pp. 1301
    • Vogel, G.1
  • 168
    • 84929507584 scopus 로고    scopus 로고
    • Embryo engineering study splits scientific community
    • Kaiser J, Normile D. 2015. Embryo engineering study splits scientific community. Science 348:486-87
    • (2015) Science , vol.348 , pp. 486-487
    • Kaiser, J.1    Normile, D.2
  • 169
    • 84929939964 scopus 로고    scopus 로고
    • Eugenics lurk in the shadow of CRISPR
    • Pollack R. 2015. Eugenics lurk in the shadow of CRISPR. Science 348:871
    • (2015) Science , vol.348 , pp. 871
    • Pollack, R.1
  • 172
    • 84924410016 scopus 로고    scopus 로고
    • Concerning RNA-guided gene drives for the alteration of wild populations
    • Esvelt KM, Smidler AL, Catteruccia F, Church GM. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. ELife 3:e03401
    • (2014) ELife , vol.3 , pp. e03401
    • Esvelt, K.M.1    Smidler, A.L.2    Catteruccia, F.3    Church, G.M.4
  • 173
    • 33646882131 scopus 로고    scopus 로고
    • Gene drive systems for insect disease vectors
    • Sinkins SP, Gould F. 2006. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 7:427-35
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 427-435
    • Sinkins, S.P.1    Gould, F.2
  • 176
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41:7429-37
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3    Hochschild, A.4    Zhang, F.5    Marraffini, L.A.6
  • 177
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472-76
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1    Brigham, M.D.2    Trevino, A.E.3    Hsu, P.D.4    Heidenreich, M.5
  • 179
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • Zalatan JG, LeeME, Almeida R, Gilbert LA, Whitehead EH, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339-50
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.G.1    Lee, M.E.2    Almeida, R.3    Gilbert, L.A.4    Whitehead, E.H.5
  • 180
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583-88
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1    Brigham, M.D.2    Trevino, A.E.3    Joung, J.4    Abudayyeh, O.O.5
  • 181
    • 84934267574 scopus 로고    scopus 로고
    • Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display
    • Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. 2015. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12:664-70
    • (2015) Nat. Methods , vol.12 , pp. 664-670
    • Shechner, D.M.1    Hacisuleyman, E.2    Younger, S.T.3    Rinn, J.L.4
  • 183
    • 84885180675 scopus 로고    scopus 로고
    • Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
    • Cheng AW, Wang H, Yang H, Shi L, Katz Y, et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23:1163-71
    • (2013) Cell Res. , vol.23 , pp. 1163-1171
    • Cheng, A.W.1    Wang, H.2    Yang, H.3    Shi, L.4    Katz, Y.5
  • 185
    • 84908328232 scopus 로고    scopus 로고
    • A protein-tagging system for signal amplification in gene expression and fluorescence imaging
    • TanenbaumME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635-46
    • (2014) Cell , vol.159 , pp. 635-646
    • Tanenbaum, M.E.1    Gilbert, L.A.2    Qi, L.S.3    Weissman, J.S.4    Vale, R.D.5
  • 186
    • 0031893016 scopus 로고    scopus 로고
    • Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo
    • He S, Weintraub SJ. 1998. Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo. Mol. Cell. Biol. 18:2876-83
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2876-2883
    • He, S.1    Weintraub, S.J.2
  • 187
    • 20744437261 scopus 로고    scopus 로고
    • Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo
    • Govind CK, Yoon S, QiuH, Govind S, Hinnebusch AG. 2005. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol. Cell. Biol. 25:5626-38
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 5626-5638
    • Govind, C.K.1    Yoon, S.2    Qiu, H.3    Govind, S.4    Hinnebusch, A.G.5
  • 188
    • 84929627714 scopus 로고    scopus 로고
    • Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi)
    • Hawkins JS, Wong S, Peters JM, Almeida R, Qi LS. 2015. Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi). Methods Mol. Biol. 1311:349-62
    • (2015) Methods Mol. Biol. , vol.1311 , pp. 349-362
    • Hawkins, J.S.1    Wong, S.2    Peters, J.M.3    Almeida, R.4    Qi, L.S.5
  • 189
    • 84938857368 scopus 로고    scopus 로고
    • Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators
    • Polstein L, Perez-Pinera P, Kocak D, Vockley C, Bledsoe P, et al. 2015. Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators. Genome Res. 25:1158-69
    • (2015) Genome Res. , vol.25 , pp. 1158-1169
    • Polstein, L.1    Perez-Pinera, P.2    Kocak, D.3    Vockley, C.4    Bledsoe, P.5
  • 190
    • 84893819419 scopus 로고    scopus 로고
    • Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
    • Zhao Y, Dai Z, Liang Y, Yin M, Ma K, et al. 2014. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 4:3943
    • (2014) Sci. Rep. , vol.4 , pp. 3943
    • Zhao, Y.1    Dai, Z.2    Liang, Y.3    Yin, M.4    Ma, K.5
  • 191
    • 84944632276 scopus 로고    scopus 로고
    • The new state of the art: Cas9 for gene activation and repression
    • La Russa MF, Qi LS. 2015. The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 35:3800-9
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 3800-3809
    • La Russa, M.F.1    Qi, L.S.2
  • 192
    • 84952639685 scopus 로고    scopus 로고
    • Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation
    • Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17:5-15
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 5-15
    • Dominguez, A.A.1    Lim, W.A.2    Qi, L.S.3
  • 193
    • 84943638166 scopus 로고    scopus 로고
    • In vivo transcriptional activation using CRISPR/Cas9 in Drosophila
    • Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N. 2015. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics 201:433-42
    • (2015) Genetics , vol.201 , pp. 433-442
    • Lin, S.1    Ewen-Campen, B.2    Ni, X.3    Housden, B.E.4    Perrimon, N.5
  • 194
    • 84928212884 scopus 로고    scopus 로고
    • RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
    • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, et al. 2015. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13:578-89
    • (2015) Plant Biotechnol. J. , vol.13 , pp. 578-589
    • Piatek, A.1    Ali, Z.2    Baazim, H.3    Li, L.4    Abulfaraj, A.5
  • 195
    • 84942931752 scopus 로고    scopus 로고
    • A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
    • Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, et al. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169:971-85
    • (2015) Plant Physiol. , vol.169 , pp. 971-985
    • Lowder, L.G.1    Zhang, D.2    Baltes, N.J.3    Paul, J.W.4    Tang, X.5
  • 196
    • 84947078456 scopus 로고    scopus 로고
    • CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs
    • Zhang Y, Yin C, Zhang T, Li F, Yang W, et al. 2015. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci. Rep. 5:16277
    • (2015) Sci. Rep. , vol.5 , pp. 16277
    • Zhang, Y.1    Yin, C.2    Zhang, T.3    Li, F.4    Yang, W.5
  • 198
    • 0037164741 scopus 로고    scopus 로고
    • Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo
    • Snowden AW, Gregory PD, Case CC, Pabo CO. 2002. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12:2159-66
    • (2002) Curr. Biol. , vol.12 , pp. 2159-2166
    • Snowden, A.W.1    Gregory, P.D.2    Case, C.C.3    Pabo, C.O.4
  • 199
    • 84890048526 scopus 로고    scopus 로고
    • Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
    • Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, et al. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31:1137-42
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1137-1142
    • Maeder, M.L.1    Angstman, J.F.2    Richardson, M.E.3    Linder, S.J.4    Cascio, V.M.5
  • 201
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472-76
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1    Brigham, M.D.2    Trevino, A.E.3    Hsu, P.D.4    Heidenreich, M.5
  • 202
    • 84903942172 scopus 로고    scopus 로고
    • Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation
    • Keung AJ, Bashor CJ, Kiriakov S, Collins JJ, Khalil AS. 2014. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110-20
    • (2014) Cell , vol.158 , pp. 110-120
    • Keung, A.J.1    Bashor, C.J.2    Kiriakov, S.3    Collins, J.J.4    Khalil, A.S.5
  • 203
    • 84949100864 scopus 로고    scopus 로고
    • Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
    • Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, et al. 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12:1143-49
    • (2015) Nat. Methods , vol.12 , pp. 1143-1149
    • Thakore, P.I.1    D'Ippolito, A.M.2    Song, L.3    Safi, A.4    Shivakumar, N.K.5
  • 204
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions
    • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. 2007. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8:104-15
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 104-115
    • Lanctôt, C.1    Cheutin, T.2    Cremer, M.3    Cavalli, G.4    Cremer, T.5
  • 205
    • 36849074774 scopus 로고    scopus 로고
    • Dynamics and interplay of nuclear architecture, genome organization, and gene expression
    • Schneider R, Grosschedl R. 2007. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21:3027-43
    • (2007) Genes Dev. , vol.21 , pp. 3027-3043
    • Schneider, R.1    Grosschedl, R.2
  • 206
    • 84923366733 scopus 로고    scopus 로고
    • Chromatin architecture reorganization during stem cell differentiation
    • Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, et al. 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518:331-36
    • (2015) Nature , vol.518 , pp. 331-336
    • Dixon, J.R.1    Jung, I.2    Selvaraj, S.3    Shen, Y.4    Antosiewicz-Bourget, J.E.5
  • 207
    • 77952576224 scopus 로고    scopus 로고
    • Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
    • Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, et al. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38:603-13
    • (2010) Mol. Cell , vol.38 , pp. 603-613
    • Peric-Hupkes, D.1    Meuleman, W.2    Pagie, L.3    Bruggeman, S.W.4    Solovei, I.5
  • 208
    • 0014525545 scopus 로고
    • Formation and detection of RNA-DNA hybrid molecules in cytological preparations
    • Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63:378-83
    • (1969) PNAS , vol.63 , pp. 378-383
    • Gall, J.G.1    Pardue, M.L.2
  • 209
    • 0014668983 scopus 로고
    • RNA-DNAhybrids at the cytological level
    • John HA, Birnstiel ML, JonesKW. 1969. RNA-DNAhybrids at the cytological level. Nature 223:582-87
    • (1969) Nature , vol.223 , pp. 582-587
    • John, H.A.1    Birnstiel, M.L.2    Jones, K.W.3
  • 210
    • 0014585882 scopus 로고
    • Molecular hybridization of radioactive DNA to the DNA of cytological preparations
    • Pardue ML, Gall JG. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. PNAS 64:600-4
    • (1969) PNAS , vol.64 , pp. 600-604
    • Pardue, M.L.1    Gall, J.G.2
  • 211
    • 0022446922 scopus 로고
    • Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization
    • Pinkel D, Straume T, Gray JW. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. PNAS 83:2934-38
    • (1986) PNAS , vol.83 , pp. 2934-2938
    • Pinkel, D.1    Straume, T.2    Gray, J.W.3
  • 213
    • 0029912473 scopus 로고    scopus 로고
    • Karyotyping human chromosomes by combinatorial multi-fluor FISH
    • Speicher MR, Gwyn Ballard S, Ward DC. 1996. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12:368-75
    • (1996) Nat. Genet. , vol.12 , pp. 368-375
    • Speicher, M.R.1    Gwyn Ballard, S.2    Ward, D.C.3
  • 214
    • 77649292704 scopus 로고    scopus 로고
    • Human interphase chromosomes: A review of available molecular cytogenetic technologies
    • Vorsanova SG, Yurov YB, Iourov IY. 2010. Human interphase chromosomes: A review of available molecular cytogenetic technologies. Mol. Cytogenet. 3:1
    • (2010) Mol. Cytogenet. , vol.3 , pp. 1
    • Vorsanova, S.G.1    Yurov, Y.B.2    Iourov, I.Y.3
  • 215
    • 84901670973 scopus 로고    scopus 로고
    • Human molecular cytogenetics: From cells to nucleotides
    • Riegel M. 2014. Human molecular cytogenetics: from cells to nucleotides. Genet. Mol. Biol. 37:194-209
    • (2014) Genet. Mol. Biol. , vol.37 , pp. 194-209
    • Riegel, M.1
  • 216
    • 84934443980 scopus 로고    scopus 로고
    • TrackingDNAandRNAsequences at high resolution
    • Cmarko D, Ligasova A, KobernaK. 2014. TrackingDNAandRNAsequences at high resolution. Methods Mol. Biol. 1117:343-66
    • (2014) Methods Mol. Biol. , vol.1117 , pp. 343-366
    • Cmarko, D.1    Ligasova, A.2    Koberna, K.3
  • 217
    • 0020398267 scopus 로고
    • In situ hybridization at the electron microscope level: Hybrid detection by autoradiography and colloidal gold
    • Hutchison NJ, Langer-Safer PR, Ward DC, Hamkalo BA. 1982. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold. J. Cell Biol. 95:609-18
    • (1982) J. Cell Biol. , vol.95 , pp. 609-618
    • Hutchison, N.J.1    Langer-Safer, P.R.2    Ward, D.C.3    Hamkalo, B.A.4
  • 218
    • 0346993718 scopus 로고    scopus 로고
    • Visualizing telomere dynamics in living mammalian cells using PNA probes
    • Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, et al. 2003. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 22:6631-41
    • (2003) EMBO J. , vol.22 , pp. 6631-6641
    • Molenaar, C.1    Wiesmeijer, K.2    Verwoerd, N.P.3    Khazen, S.4    Eils, R.5
  • 219
    • 0030461543 scopus 로고    scopus 로고
    • In vivo localization ofDNAsequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
    • Robinett CC, Straight A, Li G, WillhelmC, Sudlow G, et al. 1996. In vivo localization ofDNAsequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685-700
    • (1996) J. Cell Biol. , vol.135 , pp. 1685-1700
    • Robinett, C.C.1    Straight, A.2    Li, G.3    Willhelm, C.4    Sudlow, G.5
  • 220
    • 0031457326 scopus 로고    scopus 로고
    • Interphase chromosomes undergo constrained diffusional motion in living cells
    • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, et al. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7:930-39
    • (1997) Curr. Biol. , vol.7 , pp. 930-939
    • Marshall, W.F.1    Straight, A.2    Marko, J.F.3    Swedlow, J.4    Dernburg, A.5
  • 221
    • 82955213040 scopus 로고    scopus 로고
    • Tracking chromosome dynamics in live yeast cells: Coordinated movement of rDNA homologs and anaphase disassembly of the nucleolus during meiosis
    • Li P, Jin H, Hoang ML, Yu HG. 2011. Tracking chromosome dynamics in live yeast cells: coordinated movement of rDNA homologs and anaphase disassembly of the nucleolus during meiosis. Chromosome Res. 19:1013-26
    • (2011) Chromosome Res. , vol.19 , pp. 1013-1026
    • Li, P.1    Jin, H.2    Hoang, M.L.3    Yu, H.G.4
  • 223
    • 0029829004 scopus 로고    scopus 로고
    • Dynamic elastic behavior of satellite DNA domains visualized in situ in living human cells
    • Shelby RD, Hahn KM, Sullivan KF. 1996. Dynamic elastic behavior of satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135:545-57
    • (1996) J. Cell Biol. , vol.135 , pp. 545-557
    • Shelby, R.D.1    Hahn, K.M.2    Sullivan, K.F.3
  • 224
    • 68849112331 scopus 로고    scopus 로고
    • Transient anomalous diffusion of telomeres in the nucleus of mammalian cells
    • Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, et al. 2009. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103:018102
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 018102
    • Bronstein, I.1    Israel, Y.2    Kepten, E.3    Mai, S.4    Shav-Tal, Y.5
  • 225
    • 84897532001 scopus 로고    scopus 로고
    • Visualization of specificDNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
    • Anton T, Bultmann S, LeonhardtH, Markaki Y. 2014. Visualization of specificDNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163-72
    • (2014) Nucleus , vol.5 , pp. 163-172
    • Anton, T.1    Bultmann, S.2    Leonhardt, H.3    Markaki, Y.4
  • 226
    • 84942845731 scopus 로고    scopus 로고
    • CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
    • Deng W, Shi X, Tjian R, Lionnet T, Singer RH. 2015. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. PNAS 112:11870-75
    • (2015) PNAS , vol.112 , pp. 11870-11875
    • Deng, W.1    Shi, X.2    Tjian, R.3    Lionnet, T.4    Singer, R.H.5
  • 227
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677-83
    • (2014) Nat. Biotechnol. , vol.32 , pp. 677-683
    • Kuscu, C.1    Arslan, S.2    Singh, R.3    Thorpe, J.4    Adli, M.5
  • 228
    • 84905592408 scopus 로고    scopus 로고
    • Genome-wide identification ofCRISPR/Cas9 off-targets in human genome
    • Duan J, Lu G, Xie Z, Lou M, Luo J, et al. 2014. Genome-wide identification ofCRISPR/Cas9 off-targets in human genomE. Cell Res. 24:1009-12
    • (2014) Cell Res. , vol.24 , pp. 1009-1012
    • Duan, J.1    Lu, G.2    Xie, Z.3    Lou, M.4    Luo, J.5
  • 230
    • 84905905141 scopus 로고    scopus 로고
    • An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells
    • Gonzalez F, Zhu Z, Shi ZD, Lelli K, VermaN, et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215-26
    • (2014) Cell Stem Cell , vol.15 , pp. 215-226
    • Gonzalez, F.1    Zhu, Z.2    Shi, Z.D.3    Lelli, K.4    Verma, N.5
  • 232
    • 84925534357 scopus 로고    scopus 로고
    • A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
    • Polstein LR, Gersbach CA. 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:198-200
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 198-200
    • Polstein, L.R.1    Gersbach, C.A.2
  • 233
    • 84923297110 scopus 로고    scopus 로고
    • A split-Cas9 architecture for inducible genome editing and transcription modulation
    • Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:139-42
    • (2015) Nat. Biotechnol. , vol.33 , pp. 139-142
    • Zetsche, B.1    Volz, S.E.2    Zhang, F.3
  • 235
    • 84942793975 scopus 로고    scopus 로고
    • Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    • Nihongaki Y, Kawano F, Nakajima T, Sato M. 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33:755-60
    • (2015) Nat. Biotechnol. , vol.33 , pp. 755-760
    • Nihongaki, Y.1    Kawano, F.2    Nakajima, T.3    Sato, M.4
  • 237
    • 84887931623 scopus 로고    scopus 로고
    • Cas9-dependent endogenous gene regulation is required for bacterial virulence
    • Sampson TR, Weiss DS. 2013. Cas9-dependent endogenous gene regulation is required for bacterial virulence. Biochem. Soc. Trans. 41:1407-11
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1407-1411
    • Sampson, T.R.1    Weiss, D.S.2
  • 238
    • 84877782955 scopus 로고    scopus 로고
    • A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
    • Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254-57
    • (2013) Nature , vol.497 , pp. 254-257
    • Sampson, T.R.1    Saroj, S.D.2    Llewellyn, A.C.3    Tzeng, Y.L.4    Weiss, D.S.5
  • 239
    • 84931957166 scopus 로고    scopus 로고
    • Applications of Cas9 as an RNA-programmed RNAbinding protein
    • Nelles DA, Fang MY, Aigner S, Yeo GW. 2015. Applications of Cas9 as an RNA-programmed RNAbinding protein. BioEssays 37:732-39
    • (2015) BioEssays , vol.37 , pp. 732-739
    • Nelles, D.A.1    Fang, M.Y.2    Aigner, S.3    Yeo, G.W.4
  • 240
    • 84901233875 scopus 로고    scopus 로고
    • Pol III promoters to express small RNAs: Delineation of transcription initiation
    • Ma H, Wu Y, Dang Y, Choi JG, Zhang J, Wu H. 2014. Pol III promoters to express small RNAs: delineation of transcription initiation. Mol. Ther. Nucleic Acids 3:e161
    • (2014) Mol. Ther. Nucleic Acids , vol.3 , pp. e161
    • Ma, H.1    Wu, Y.2    Dang, Y.3    Choi, J.G.4    Zhang, J.5    Wu, H.6
  • 241
    • 84879949311 scopus 로고    scopus 로고
    • Heritable and precise zebrafish genome editing using a CRISPR-Cas system
    • Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, et al. 2013. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLOS ONE 8:e68708
    • (2013) PLOS ONE , vol.8 , pp. e68708
    • Hwang, W.Y.1    Fu, Y.2    Reyon, D.3    Maeder, M.L.4    Kaini, P.5
  • 242
    • 84879641784 scopus 로고    scopus 로고
    • Mechanism of eukaryotic RNA polymerase III transcription termination
    • Nielsen S, Yuzenkova Y, Zenkin N. 2013. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340:1577-80
    • (2013) Science , vol.340 , pp. 1577-1580
    • Nielsen, S.1    Yuzenkova, Y.2    Zenkin, N.3
  • 243
    • 0029665242 scopus 로고    scopus 로고
    • Krüppel-associated box-mediated repression ofRNApolymerase II promoters is influenced by the arrangement of basal promoter elements
    • Pengue G, Lania L. 1996. Krüppel-associated box-mediated repression ofRNApolymerase II promoters is influenced by the arrangement of basal promoter elements. PNAS 93:1015-20
    • (1996) PNAS , vol.93 , pp. 1015-1020
    • Pengue, G.1    Lania, L.2
  • 244
    • 77950421703 scopus 로고    scopus 로고
    • KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading
    • Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, et al. 2010. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLOS Genet. 6:e1000869
    • (2010) PLOS Genet. , vol.6 , pp. e1000869
    • Groner, A.C.1    Meylan, S.2    Ciuffi, A.3    Zangger, N.4    Ambrosini, G.5
  • 245
    • 0346993714 scopus 로고    scopus 로고
    • A novel docking site on Mediator is critical for activation by VP16 in mammalian cells
    • Mittler G, Stühler T, Santolin L, Uhlmann T, Kremmer E, et al. 2003. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22:6494-504
    • (2003) EMBO J. , vol.22 , pp. 6494-6504
    • Mittler, G.1    Stühler, T.2    Santolin, L.3    Uhlmann, T.4    Kremmer, E.5
  • 246
    • 84960366869 scopus 로고    scopus 로고
    • Genome engineering using adeno-associated virus: Basic and clinical research applications
    • Gaj T, Epstein BE, Schaffer DV. 2016. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol. Ther. 24:458-64
    • (2016) Mol. Ther. , vol.24 , pp. 458-464
    • Gaj, T.1    Epstein, B.E.2    Schaffer, D.V.3
  • 247
    • 84947714470 scopus 로고    scopus 로고
    • Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
    • Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, et al. 2015. Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16:257
    • (2015) Genome Biol. , vol.16 , pp. 257
    • Friedland, A.E.1    Baral, R.2    Singhal, P.3    Loveluck, K.4    Shen, S.5
  • 248
    • 84942887576 scopus 로고    scopus 로고
    • Efficient generation of myostatin knockout sheep using CRISPR/Cas9 technology and microinjection into zygotes
    • Crispo M, MuletAP, TessonL, Barrera N, Cuadro F, et al. 2015. Efficient generation of myostatin knockout sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE 10:e0136690
    • (2015) PLOS ONE , vol.10 , pp. e0136690
    • Crispo, M.1    Mulet, A.P.2    Tesson, L.3    Barrera, N.4    Cuadro, F.5
  • 249
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4:220-28
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1    Tibbit, C.2    Ponting, C.P.3    Liu, J.L.4
  • 250
    • 84908190503 scopus 로고    scopus 로고
    • CRISPR-mediated direct mutation of cancer genes in the mouse liver
    • Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380-84
    • (2014) Nature , vol.514 , pp. 380-384
    • Xue, W.1    Chen, S.2    Yin, H.3    Tammela, T.4    Papagiannakopoulos, T.5
  • 251
    • 84884911076 scopus 로고    scopus 로고
    • Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins
    • Cho SW, Lee J, Carroll D, Kim JS. 2013. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177-80
    • (2013) Genetics , vol.195 , pp. 1177-1180
    • Cho, S.W.1    Lee, J.2    Carroll, D.3    Kim, J.S.4
  • 252
    • 84891704542 scopus 로고    scopus 로고
    • Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases
    • Sung YH, Kim JM, Kim HT, Lee J, Jeon J, et al. 2014. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res. 24:125-31
    • (2014) Genome Res. , vol.24 , pp. 125-131
    • Sung, Y.H.1    Kim, J.M.2    Kim, H.T.3    Lee, J.4    Jeon, J.5
  • 253
    • 84965190468 scopus 로고    scopus 로고
    • Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
    • Liu J, Gaj T, Yang Y, Wang N, Shui S, et al. 2015. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10:1842-59
    • (2015) Nat. Protoc. , vol.10 , pp. 1842-1859
    • Liu, J.1    Gaj, T.2    Yang, Y.3    Wang, N.4    Shui, S.5
  • 254
    • 84940184252 scopus 로고    scopus 로고
    • Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
    • Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:10437-42
    • (2015) PNAS , vol.112 , pp. 10437-10442
    • Schumann, K.1    Lin, S.2    Boyer, E.3    Simeonov, D.R.4    Subramaniam, M.5
  • 255
    • 84937905397 scopus 로고    scopus 로고
    • Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
    • Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985-89
    • (2015) Nat. Biotechnol. , vol.33 , pp. 985-989
    • Hendel, A.1    Bak, R.O.2    Clark, J.T.3    Kennedy, A.B.4    Ryan, D.E.5
  • 256
    • 84930943161 scopus 로고    scopus 로고
    • Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
    • Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208:44-53
    • (2015) J. Biotechnol. , vol.208 , pp. 44-53
    • Liang, X.1    Potter, J.2    Kumar, S.3    Zou, Y.4    Quintanilla, R.5
  • 257
    • 84961288301 scopus 로고    scopus 로고
    • Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
    • Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73-80
    • (2015) Nat. Biotechnol. , vol.33 , pp. 73-80
    • Zuris, J.A.1    Thompson, D.B.2    Shu, Y.3    Guilinger, J.P.4    Bessen, J.L.5
  • 258
    • 84901843996 scopus 로고    scopus 로고
    • Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
    • Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24:1020-27
    • (2014) Genome Res. , vol.24 , pp. 1020-1027
    • Ramakrishna, S.1    Kwaku Dad, A.B.2    Beloor, J.3    Gopalappa, R.4    Lee, S.K.5    Kim, H.6
  • 260
    • 84942821644 scopus 로고    scopus 로고
    • Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
    • Sun W, Ji W, Hall JM, Hu Q, Wang C, et al. 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. 54:12029-33
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 12029-12033
    • Sun, W.1    Ji, W.2    Hall, J.M.3    Hu, Q.4    Wang, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.