메뉴 건너뛰기




Volumn 27, Issue , 2015, Pages 121-126

Bacterial CRISPR: Accomplishments and prospects

Author keywords

[No Author keywords available]

Indexed keywords

RNA; SINGLE GUIDE RNA; UNCLASSIFIED DRUG;

EID: 84941285455     PISSN: 13695274     EISSN: 18790364     Source Type: Journal    
DOI: 10.1016/j.mib.2015.08.007     Document Type: Review
Times cited : (73)

References (53)
  • 1
    • 80755187812 scopus 로고    scopus 로고
    • CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation
    • Bhaya D., Davison M., Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011, 45:273-297.
    • (2011) Annu Rev Genet , vol.45 , pp. 273-297
    • Bhaya, D.1    Davison, M.2    Barrangou, R.3
  • 3
    • 84857097177 scopus 로고    scopus 로고
    • RNA-guided genetic silencing systems in bacteria and archaea
    • Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482:331-338.
    • (2012) Nature , vol.482 , pp. 331-338
    • Wiedenheft, B.1    Sternberg, S.H.2    Doudna, J.A.3
  • 6
    • 84920871112 scopus 로고    scopus 로고
    • The roles of CRISPR-Cas systems in adaptive immunity and beyond
    • Barrangou R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 2015, 32:36-41.
    • (2015) Curr Opin Immunol , vol.32 , pp. 36-41
    • Barrangou, R.1
  • 7
    • 84897440729 scopus 로고    scopus 로고
    • To acquire or resist: the complex biological effects of CRISPR-Cas systems
    • Bondy-Denomy J., Davidson A.R. To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol 2014, 22:218-225.
    • (2014) Trends Microbiol , vol.22 , pp. 218-225
    • Bondy-Denomy, J.1    Davidson, A.R.2
  • 8
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 11
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang F., Doudna J.A. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 2015, 30:100-111.
    • (2015) Curr Opin Struct Biol , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 13
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3    Doudna, J.A.4    Weissman, J.S.5    Arkin, A.P.6    Lim, W.A.7
  • 14
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013, 41:7429-7437.
    • (2013) Nucleic Acids Res , vol.41 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3    Hochschild, A.4    Zhang, F.5    Marraffini, L.A.6
  • 15
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the Biologist's Toolkit with CRISPR-Cas9
    • Sternberg S.H., Doudna J.A. Expanding the Biologist's Toolkit with CRISPR-Cas9. Mol Cell 2015, 58:568-574.
    • (2015) Mol Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 16
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR-Cas9
    • Shalem O., Sanjana N.E., Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015, 16:299-311.
    • (2015) Nat Rev Genet , vol.16 , pp. 299-311
    • Shalem, O.1    Sanjana, N.E.2    Zhang, F.3
  • 17
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346:1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 19
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157:1262-1278.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 20
    • 84925876620 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas systems for bacterial genome editing
    • Selle K., Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 2015, 23:225-232.
    • (2015) Trends Microbiol , vol.23 , pp. 225-232
    • Selle, K.1    Barrangou, R.2
  • 21
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W., Bikard D., Cox D., Zhang F., Marraffini L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013, 31:233-239.
    • (2013) Nat Biotechnol , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 23
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015, 81:2506-2514.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5    Yang, S.6
  • 24
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh J.-H., van Pijkeren J.-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 2014, 42:e131.
    • (2014) Nucleic Acids Res , vol.42 , pp. e131
    • Oh, J.-H.1    van Pijkeren, J.-P.2
  • 25
    • 84924425397 scopus 로고    scopus 로고
    • Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
    • Wang Y., Zhang Z-T., Seo S-O., Choi K., Lu T., Jin Y-S., Blaschek H.P. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 2015, 200:1-5.
    • (2015) J Biotechnol , vol.200 , pp. 1-5
    • Wang, Y.1    Zhang, Z.-T.2    Seo, S.-O.3    Choi, K.4    Lu, T.5    Jin, Y.-S.6    Blaschek, H.P.7
  • 26
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb R.E., Wang Y., Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015, 4:723-728.
    • (2015) ACS Synth Biol , vol.4 , pp. 723-728
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 27
    • 84926466507 scopus 로고    scopus 로고
    • One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang H., Zheng G., Jiang W., Hu H., Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 2015, 47:231-243.
    • (2015) Acta Biochim Biophys Sin , vol.47 , pp. 231-243
    • Huang, H.1    Zheng, G.2    Jiang, W.3    Hu, H.4    Lu, Y.5
  • 30
    • 84884911076 scopus 로고    scopus 로고
    • Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins
    • Cho S.W., Lee J., Carroll D., Kim J-S., Lee J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 2013, 195:1177-1180.
    • (2013) Genetics , vol.195 , pp. 1177-1180
    • Cho, S.W.1    Lee, J.2    Carroll, D.3    Kim, J.-S.4    Lee, J.5
  • 32
    • 84926645319 scopus 로고    scopus 로고
    • Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
    • Lv L., Ren Y-L., Chen J-C., Wu Q., Chen G-Q. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 2015, 29:160-168.
    • (2015) Metab Eng , vol.29 , pp. 160-168
    • Lv, L.1    Ren, Y.-L.2    Chen, J.-C.3    Wu, Q.4    Chen, G.-Q.5
  • 33
    • 84898878580 scopus 로고    scopus 로고
    • A versatile framework for microbial engineering using synthetic non-coding RNAs
    • Qi L.S., Arkin A.P. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat Rev Microbiol 2014, 12:341-354.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 341-354
    • Qi, L.S.1    Arkin, A.P.2
  • 34
    • 84923869859 scopus 로고    scopus 로고
    • Gene silencing by CRISPR interference in mycobacteria
    • Choudhary E., Thakur P., Pareek M., Agarwal N. Gene silencing by CRISPR interference in mycobacteria. Nat Commun 2015, 6:6267.
    • (2015) Nat Commun , vol.6 , pp. 6267
    • Choudhary, E.1    Thakur, P.2    Pareek, M.3    Agarwal, N.4
  • 35
    • 84886993480 scopus 로고    scopus 로고
    • CRISPR interference (CRISPRi) for sequence-specific control of gene expression
    • Larson M.H., Gilbert L.A., Wang X., Lim W.A., Weissman J.S., Qi L.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 2013, 8:2180-2196.
    • (2013) Nat Protoc , vol.8 , pp. 2180-2196
    • Larson, M.H.1    Gilbert, L.A.2    Wang, X.3    Lim, W.A.4    Weissman, J.S.5    Qi, L.S.6
  • 36
    • 84929627714 scopus 로고    scopus 로고
    • Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi)
    • Hawkins J.S., Wong S., Peters J.M., Almeida R., Qi L.S. Targeted transcriptional repression in bacteria using CRISPR interference (CRISPRi). Methods Mol Biol 2015, 1311:349-362.
    • (2015) Methods Mol Biol , vol.1311 , pp. 349-362
    • Hawkins, J.S.1    Wong, S.2    Peters, J.M.3    Almeida, R.4    Qi, L.S.5
  • 38
    • 77952530236 scopus 로고    scopus 로고
    • Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process
    • LeProust E.M., Peck B.J., Spirin K., McCuen H.B., Moore B., Namsaraev E., Caruthers M.H. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 2010, 38:2522-2540.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2522-2540
    • LeProust, E.M.1    Peck, B.J.2    Spirin, K.3    McCuen, H.B.4    Moore, B.5    Namsaraev, E.6    Caruthers, M.H.7
  • 41
    • 84908328232 scopus 로고    scopus 로고
    • A protein-tagging system for signal amplification in gene expression and fluorescence imaging
    • Tanenbaum M.E., Gilbert L.A., Qi L.S., Weissman J.S., Vale R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014, 159:635-646.
    • (2014) Cell , vol.159 , pp. 635-646
    • Tanenbaum, M.E.1    Gilbert, L.A.2    Qi, L.S.3    Weissman, J.S.4    Vale, R.D.5
  • 42
    • 25844499174 scopus 로고    scopus 로고
    • Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA
    • Vrentas C.E., Gaal T., Ross W., Ebright R.H., Gourse R.L. Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. Genes Dev 2005, 19:2378-2387.
    • (2005) Genes Dev , vol.19 , pp. 2378-2387
    • Vrentas, C.E.1    Gaal, T.2    Ross, W.3    Ebright, R.H.4    Gourse, R.L.5
  • 43
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 44
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C., Arslan S., Singh R., Thorpe J., Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014, 32:677-683.
    • (2014) Nat Biotechnol , vol.32 , pp. 677-683
    • Kuscu, C.1    Arslan, S.2    Singh, R.3    Thorpe, J.4    Adli, M.5
  • 45
    • 84983752643 scopus 로고    scopus 로고
    • Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
    • Singh R., Kuscu C., Quinlan A., Qi Y., Adli M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 2015, 10.1093/nar/gkv575.
    • (2015) Nucleic Acids Res
    • Singh, R.1    Kuscu, C.2    Quinlan, A.3    Qi, Y.4    Adli, M.5
  • 46
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind L., Koonin E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 2001, 11:1365-1374.
    • (2001) Genome Res , vol.11 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 48
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by non-homologous end joining
    • Shuman S., Glickman M.S. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 2007, 5:852-861.
    • (2007) Nat Rev Microbiol , vol.5 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 49
    • 34447508310 scopus 로고    scopus 로고
    • Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks
    • Stephanou N.C., Gao F., Bongiorno P., Ehrt S., Schnappinger D., Shuman S., Glickman M.S. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 2007, 189:5237-5246.
    • (2007) J Bacteriol , vol.189 , pp. 5237-5246
    • Stephanou, N.C.1    Gao, F.2    Bongiorno, P.3    Ehrt, S.4    Schnappinger, D.5    Shuman, S.6    Glickman, M.S.7
  • 52
    • 84938323503 scopus 로고    scopus 로고
    • Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota
    • Mimee M., Tucker A.C., Voigt C.A., Lu T.K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Sys 2015, 1-11. 10.1016/j.cels.2015.06.001.
    • (2015) Cell Sys , pp. 1-11
    • Mimee, M.1    Tucker, A.C.2    Voigt, C.A.3    Lu, T.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.