메뉴 건너뛰기




Volumn 117, Issue , 2015, Pages 119-128

The CRISPR-Cas immune system: Biology, mechanisms and applications

Author keywords

Cas3; Cas9; Cascade; Cmr Csm; CRISPR

Indexed keywords

RNA;

EID: 84942079449     PISSN: 03009084     EISSN: 61831638     Source Type: Journal    
DOI: 10.1016/j.biochi.2015.03.025     Document Type: Review
Times cited : (372)

References (131)
  • 1
    • 25144506135 scopus 로고    scopus 로고
    • Viruses in the sea
    • C.A. Suttle Viruses in the sea Nature 437 7057 2005 356 361
    • (2005) Nature , vol.437 , Issue.7057 , pp. 356-361
    • Suttle, C.A.1
  • 2
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • R. Barrangou, and et al. CRISPR provides acquired resistance against viruses in prokaryotes Science 315 5819 2007 1709 1712
    • (2007) Science , vol.315 , Issue.5819 , pp. 1709-1712
    • Barrangou, R.1
  • 3
    • 0036408356 scopus 로고    scopus 로고
    • Identification of a novel family of sequence repeats among prokaryotes
    • R. Jansen, and et al. Identification of a novel family of sequence repeats among prokaryotes OMICS 6 1 2002 23 33
    • (2002) OMICS , vol.6 , Issue.1 , pp. 23-33
    • Jansen, R.1
  • 4
    • 70449753811 scopus 로고    scopus 로고
    • RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
    • C.R. Hale, and et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell 139 5 2009 945 956
    • (2009) Cell , vol.139 , Issue.5 , pp. 945-956
    • Hale, C.R.1
  • 5
    • 0023600057 scopus 로고
    • Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
    • Y. Ishino, Uppsala University of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product J. Bacteriol. 169 12 1987 5429 5433
    • (1987) J. Bacteriol. , vol.169 , Issue.12 , pp. 5429-5433
    • Ishino, Y.1
  • 6
    • 34547579396 scopus 로고    scopus 로고
    • CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats
    • I. Grissa, G. Vergnaud, and C. Pourcel CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats Nucleic Acids Res. 35 Web Server issue 2007 W52 W57
    • (2007) Nucleic Acids Res. , vol.35 , Issue.WEB SERVER ISSUE , pp. W52-W57
    • Grissa, I.1    Vergnaud, G.2    Pourcel, C.3
  • 7
    • 23844505202 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    • A. Bolotin, and et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology 151 Pt 8 2005 2551 2561
    • (2005) Microbiology , vol.151 , pp. 2551-2561
    • Bolotin, A.1
  • 8
    • 16444385662 scopus 로고    scopus 로고
    • Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
    • F.J. Mojica, and et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J. Mol. Evol. 60 2 2005 174 182
    • (2005) J. Mol. Evol. , vol.60 , Issue.2 , pp. 174-182
    • Mojica, F.J.1
  • 9
    • 15844390228 scopus 로고    scopus 로고
    • CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
    • C. Pourcel, G. Salvignol, and G. Vergnaud CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies Microbiology 151 Pt 3 2005 653 663
    • (2005) Microbiology , vol.151 , pp. 653-663
    • Pourcel, C.1    Salvignol, G.2    Vergnaud, G.3
  • 10
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • S.J. Brouns, and et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science 321 5891 2008 960 964
    • (2008) Science , vol.321 , Issue.5891 , pp. 960-964
    • Brouns, S.J.1
  • 11
    • 75849154794 scopus 로고    scopus 로고
    • CRISPI: A CRISPR interactive database
    • C. Rousseau, and et al. CRISPI: a CRISPR interactive database Bioinformatics 25 24 2009 3317 3318
    • (2009) Bioinformatics , vol.25 , Issue.24 , pp. 3317-3318
    • Rousseau, C.1
  • 12
    • 0037079680 scopus 로고    scopus 로고
    • A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis
    • K.S. Makarova, and et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis Nucleic Acids Res. 30 2 2002 482 496
    • (2002) Nucleic Acids Res. , vol.30 , Issue.2 , pp. 482-496
    • Makarova, K.S.1
  • 13
    • 79956157571 scopus 로고    scopus 로고
    • Evolution and classification of the CRISPR-Cas systems
    • K.S. Makarova, and et al. Evolution and classification of the CRISPR-Cas systems Nat. Rev. Microbiol. 9 6 2011 467 477
    • (2011) Nat. Rev. Microbiol. , vol.9 , Issue.6 , pp. 467-477
    • Makarova, K.S.1
  • 14
    • 84923640664 scopus 로고    scopus 로고
    • Evolution of adaptive immunity from transposable elements combined with innate immune systems
    • E.V. Koonin, and M. Krupovic Evolution of adaptive immunity from transposable elements combined with innate immune systems Nat. Rev. Genet. 16 2014 184 192
    • (2014) Nat. Rev. Genet. , vol.16 , pp. 184-192
    • Koonin, E.V.1    Krupovic, M.2
  • 15
    • 79953779608 scopus 로고    scopus 로고
    • Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
    • T. Sinkunas, and et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system EMBO J. 30 7 2011 1335 1342
    • (2011) EMBO J. , vol.30 , Issue.7 , pp. 1335-1342
    • Sinkunas, T.1
  • 16
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • E. Deltcheva, and et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III Nature 471 7340 2011 602 607
    • (2011) Nature , vol.471 , Issue.7340 , pp. 602-607
    • Deltcheva, E.1
  • 17
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • J.E. Garneau, and et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature 468 7320 2010 67 71
    • (2010) Nature , vol.468 , Issue.7320 , pp. 67-71
    • Garneau, J.E.1
  • 18
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • M. Jinek, and et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 337 6096 2012 816 821
    • (2012) Science , vol.337 , Issue.6096 , pp. 816-821
    • Jinek, M.1
  • 19
    • 84922998282 scopus 로고    scopus 로고
    • Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation
    • Y. Wei, R.M. Terns, and M.P. Terns Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation Genes Dev. 29 4 2015 356 361
    • (2015) Genes Dev. , vol.29 , Issue.4 , pp. 356-361
    • Wei, Y.1    Terns, R.M.2    Terns, M.P.3
  • 20
    • 84924705939 scopus 로고    scopus 로고
    • Cas9 specifies functional viral targets during CRISPR-Cas adaptation
    • R. Heler, and et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation Nature 2015
    • (2015) Nature
    • Heler, R.1
  • 21
    • 84878168552 scopus 로고    scopus 로고
    • CRISPR-Cas: Evolution of an RNA-based adaptive immunity system in prokaryotes
    • E.V. Koonin, and K.S. Makarova CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes RNA Biol. 10 5 2013 679 686
    • (2013) RNA Biol. , vol.10 , Issue.5 , pp. 679-686
    • Koonin, E.V.1    Makarova, K.S.2
  • 22
    • 84878211288 scopus 로고    scopus 로고
    • The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
    • K. Chylinski, A. Le Rhun, and E. Charpentier The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems RNA Biol. 10 5 2013 726 737
    • (2013) RNA Biol. , vol.10 , Issue.5 , pp. 726-737
    • Chylinski, K.1    Le Rhun, A.2    Charpentier, E.3
  • 23
    • 84885336337 scopus 로고    scopus 로고
    • Structure of the CRISPR interference complex CSM reveals key similarities with cascade
    • C. Rouillon, and et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade Mol. Cell. 52 1 2013 124 134
    • (2013) Mol. Cell. , vol.52 , Issue.1 , pp. 124-134
    • Rouillon, C.1
  • 24
    • 84885355637 scopus 로고    scopus 로고
    • Structure of an RNA silencing complex of the CRISPR-Cas immune system
    • M. Spilman, and et al. Structure of an RNA silencing complex of the CRISPR-Cas immune system Mol. Cell. 52 1 2013 146 152
    • (2013) Mol. Cell. , vol.52 , Issue.1 , pp. 146-152
    • Spilman, M.1
  • 25
    • 84885334898 scopus 로고    scopus 로고
    • Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus
    • R.H. Staals, and et al. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus Mol. Cell. 52 1 2013 135 145
    • (2013) Mol. Cell. , vol.52 , Issue.1 , pp. 135-145
    • Staals, R.H.1
  • 26
    • 77949398275 scopus 로고    scopus 로고
    • Identification and characterization of E. Coli CRISPR-cas promoters and their silencing by H-NS
    • U. Pul, and et al. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS Mol. Microbiol. 75 6 2010 1495 1512
    • (2010) Mol. Microbiol. , vol.75 , Issue.6 , pp. 1495-1512
    • Pul, U.1
  • 27
    • 38149061877 scopus 로고    scopus 로고
    • Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses
    • G.W. Tyson, and J.F. Banfield Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses Environ. Microbiol. 10 1 2008 200 207
    • (2008) Environ. Microbiol. , vol.10 , Issue.1 , pp. 200-207
    • Tyson, G.W.1    Banfield, J.F.2
  • 28
    • 44449133775 scopus 로고    scopus 로고
    • Virus population dynamics and acquired virus resistance in natural microbial communities
    • A.F. Andersson, and J.F. Banfield Virus population dynamics and acquired virus resistance in natural microbial communities Science 320 5879 2008 1047 1050
    • (2008) Science , vol.320 , Issue.5879 , pp. 1047-1050
    • Andersson, A.F.1    Banfield, J.F.2
  • 29
    • 84874619358 scopus 로고    scopus 로고
    • Strong bias in the bacterial CRISPR elements that confer immunity to phage
    • D. Paez-Espino, and et al. Strong bias in the bacterial CRISPR elements that confer immunity to phage Nat. Commun. 4 2013 1430
    • (2013) Nat. Commun. , vol.4 , pp. 1430
    • Paez-Espino, D.1
  • 30
    • 84876001507 scopus 로고    scopus 로고
    • The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity
    • B.R. Levin, and et al. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity PLoS Genet. 9 3 2013 e1003312
    • (2013) PLoS Genet. , vol.9 , Issue.3 , pp. e1003312
    • Levin, B.R.1
  • 31
    • 84924664059 scopus 로고    scopus 로고
    • Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
    • J.K. Nunez, and et al. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity Nature 2015
    • (2015) Nature
    • Nunez, J.K.1
  • 32
    • 84866023604 scopus 로고    scopus 로고
    • Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms
    • S. Erdmann, and R.A. Garrett Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms Mol. Microbiol. 85 6 2012 1044 1056
    • (2012) Mol. Microbiol. , vol.85 , Issue.6 , pp. 1044-1056
    • Erdmann, S.1    Garrett, R.A.2
  • 33
    • 84941035583 scopus 로고    scopus 로고
    • Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition
    • T. Liu, and et al. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition Nucleic Acids Res. 2015
    • (2015) Nucleic Acids Res.
    • Liu, T.1
  • 34
    • 84895823059 scopus 로고    scopus 로고
    • Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
    • M. Li, and et al. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process Nucleic Acids Res. 42 4 2014 2483 2492
    • (2014) Nucleic Acids Res. , vol.42 , Issue.4 , pp. 2483-2492
    • Li, M.1
  • 35
    • 84860433123 scopus 로고    scopus 로고
    • CRISPR interference directs strand specific spacer acquisition
    • D.C. Swarts, and et al. CRISPR interference directs strand specific spacer acquisition PLoS One 7 4 2012 e35888
    • (2012) PLoS One , vol.7 , Issue.4 , pp. e35888
    • Swarts, D.C.1
  • 36
    • 84861639567 scopus 로고    scopus 로고
    • Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
    • I. Yosef, M.G. Goren, and U. Qimron Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli Nucleic Acids Res. 40 12 2012 5569 5576
    • (2012) Nucleic Acids Res. , vol.40 , Issue.12 , pp. 5569-5576
    • Yosef, I.1    Goren, M.G.2    Qimron, U.3
  • 37
    • 84864864464 scopus 로고    scopus 로고
    • Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
    • K.A. Datsenko, and et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system Nat. Commun. 3 2012 945
    • (2012) Nat. Commun. , vol.3 , pp. 945
    • Datsenko, K.A.1
  • 38
    • 84868143545 scopus 로고    scopus 로고
    • The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages
    • K.C. Cady, and et al. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages J. Bacteriol. 194 21 2012 5728 5738
    • (2012) J. Bacteriol. , vol.194 , Issue.21 , pp. 5728-5738
    • Cady, K.C.1
  • 39
    • 84905594146 scopus 로고    scopus 로고
    • Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
    • C. Richter, and et al. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer Nucleic Acids Res. 42 13 2014 8516 8526
    • (2014) Nucleic Acids Res. , vol.42 , Issue.13 , pp. 8516-8526
    • Richter, C.1
  • 40
    • 84922978235 scopus 로고    scopus 로고
    • Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus
    • Y. Wei, and et al. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus Nucleic Acids Res. 2015
    • (2015) Nucleic Acids Res.
    • Wei, Y.1
  • 41
    • 84870718176 scopus 로고    scopus 로고
    • Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information
    • P.C. Fineran, and E. Charpentier Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information Virology 434 2 2012 202 209
    • (2012) Virology , vol.434 , Issue.2 , pp. 202-209
    • Fineran, P.C.1    Charpentier, E.2
  • 42
    • 78651083184 scopus 로고    scopus 로고
    • A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair
    • M. Babu, and et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair Mol. Microbiol. 79 2 2011 484 502
    • (2011) Mol. Microbiol. , vol.79 , Issue.2 , pp. 484-502
    • Babu, M.1
  • 43
    • 66349134987 scopus 로고    scopus 로고
    • Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
    • B. Wiedenheft, and et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense Structure 17 6 2009 904 912
    • (2009) Structure , vol.17 , Issue.6 , pp. 904-912
    • Wiedenheft, B.1
  • 44
    • 49649120271 scopus 로고    scopus 로고
    • A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats
    • N. Beloglazova, and et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats J. Biol. Chem. 283 29 2008 20361 20371
    • (2008) J. Biol. Chem. , vol.283 , Issue.29 , pp. 20361-20371
    • Beloglazova, N.1
  • 45
    • 84902010986 scopus 로고    scopus 로고
    • Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
    • J.K. Nunez, and et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity Nat. Struct. Mol. Biol. 21 6 2014 528 534
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , Issue.6 , pp. 528-534
    • Nunez, J.K.1
  • 46
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • F.J. Mojica, and et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system Microbiology 155 Pt 3 2009 733 740
    • (2009) Microbiology , vol.155 , Issue.PT 3 , pp. 733-740
    • Mojica, F.J.1
  • 47
    • 84880125937 scopus 로고    scopus 로고
    • CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance
    • M.E. Dupuis, and et al. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance Nat. Commun. 4 2013 2087
    • (2013) Nat. Commun. , vol.4 , pp. 2087
    • Dupuis, M.E.1
  • 48
    • 84904019733 scopus 로고    scopus 로고
    • Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system
    • Z. Arslan, and et al. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system Nucleic Acids Res. 42 12 2014 7884 7893
    • (2014) Nucleic Acids Res. , vol.42 , Issue.12 , pp. 7884-7893
    • Arslan, Z.1
  • 49
    • 84899087750 scopus 로고    scopus 로고
    • Degenerate target sites mediate rapid primed CRISPR adaptation
    • P.C. Fineran, and et al. Degenerate target sites mediate rapid primed CRISPR adaptation Proc. Natl. Acad. Sci. U. S. A. 111 16 2014 E1629 E1638
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.16 , pp. E1629-E1638
    • Fineran, P.C.1
  • 50
    • 62949197925 scopus 로고    scopus 로고
    • CRISPR families of the crenarchaeal genus Sulfolobus: Bidirectional transcription and dynamic properties
    • R.K. Lillestol, and et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties Mol. Microbiol. 72 1 2009 259 272
    • (2009) Mol. Microbiol. , vol.72 , Issue.1 , pp. 259-272
    • Lillestol, R.K.1
  • 51
    • 84856792673 scopus 로고    scopus 로고
    • Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
    • C.R. Hale, and et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs Mol. Cell. 45 3 2012 292 302
    • (2012) Mol. Cell. , vol.45 , Issue.3 , pp. 292-302
    • Hale, C.R.1
  • 52
    • 77956628107 scopus 로고    scopus 로고
    • Transcription, processing and function of CRISPR cassettes in Escherichia coli
    • K. Pougach, and et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli Mol. Microbiol. 77 6 2010 1367 1379
    • (2010) Mol. Microbiol. , vol.77 , Issue.6 , pp. 1367-1379
    • Pougach, K.1
  • 53
    • 84903465255 scopus 로고    scopus 로고
    • The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus
    • J. Carte, and et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus Mol. Microbiol. 93 1 2014 98 112
    • (2014) Mol. Microbiol. , vol.93 , Issue.1 , pp. 98-112
    • Carte, J.1
  • 54
    • 84865704094 scopus 로고    scopus 로고
    • Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system
    • K.H. Nam, and et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system Structure 20 9 2012 1574 1584
    • (2012) Structure , vol.20 , Issue.9 , pp. 1574-1584
    • Nam, K.H.1
  • 55
    • 79955574254 scopus 로고    scopus 로고
    • Structural basis for CRISPR RNA-guided DNA recognition by Cascade
    • M.M. Jore, and et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade Nat. Struct. Mol. Biol. 18 5 2011 529 536
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , Issue.5 , pp. 529-536
    • Jore, M.M.1
  • 56
    • 80053169737 scopus 로고    scopus 로고
    • Structures of the RNA-guided surveillance complex from a bacterial immune system
    • B. Wiedenheft, and et al. Structures of the RNA-guided surveillance complex from a bacterial immune system Nature 477 7365 2011 486 489
    • (2011) Nature , vol.477 , Issue.7365 , pp. 486-489
    • Wiedenheft, B.1
  • 57
    • 84907208955 scopus 로고    scopus 로고
    • Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
    • R.N. Jackson, and et al. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli Science 345 6203 2014 1473 1479
    • (2014) Science , vol.345 , Issue.6203 , pp. 1473-1479
    • Jackson, R.N.1
  • 58
    • 84907204893 scopus 로고    scopus 로고
    • Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
    • S. Mulepati, A. Heroux, and S. Bailey Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target Science 345 6203 2014 1479 1484
    • (2014) Science , vol.345 , Issue.6203 , pp. 1479-1484
    • Mulepati, S.1    Heroux, A.2    Bailey, S.3
  • 59
    • 84908445494 scopus 로고    scopus 로고
    • Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
    • H. Zhao, and et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli Nature 515 7525 2014 147 150
    • (2014) Nature , vol.515 , Issue.7525 , pp. 147-150
    • Zhao, H.1
  • 60
    • 84942079467 scopus 로고    scopus 로고
    • CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli
    • N. Beloglazova, and et al. CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli Nucleic Acids Res. 43 1 2015 530 543
    • (2015) Nucleic Acids Res. , vol.43 , Issue.1 , pp. 530-543
    • Beloglazova, N.1
  • 61
    • 84855475577 scopus 로고    scopus 로고
    • Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site
    • A. Hatoum-Aslan, I. Maniv, and L.A. Marraffini Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site Proc. Natl. Acad. Sci. U. S. A. 108 52 2011 21218 21222
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.52 , pp. 21218-21222
    • Hatoum-Aslan, A.1    Maniv, I.2    Marraffini, L.A.3
  • 62
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • L.A. Marraffini, and E.J. Sontheimer CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA Science 322 5909 2008 1843 1845
    • (2008) Science , vol.322 , Issue.5909 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 63
    • 84856778250 scopus 로고    scopus 로고
    • Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
    • J. Zhang, and et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity Mol. Cell. 45 3 2012 303 313
    • (2012) Mol. Cell. , vol.45 , Issue.3 , pp. 303-313
    • Zhang, J.1
  • 64
    • 34248374277 scopus 로고    scopus 로고
    • A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
    • K.S. Makarova, and et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action Biol. Direct 1 2006 7
    • (2006) Biol. Direct , vol.1 , pp. 7
    • Makarova, K.S.1
  • 65
    • 79960554003 scopus 로고    scopus 로고
    • Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
    • K.S. Makarova, and et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems Biol. Direct 6 2011 38
    • (2011) Biol. Direct , vol.6 , pp. 38
    • Makarova, K.S.1
  • 66
    • 84861996069 scopus 로고    scopus 로고
    • CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
    • E.R. Westra, and et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 Mol. Cell. 46 5 2012 595 605
    • (2012) Mol. Cell. , vol.46 , Issue.5 , pp. 595-605
    • Westra, E.R.1
  • 67
    • 84899810698 scopus 로고    scopus 로고
    • In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex
    • A. Plagens, and et al. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex Nucleic Acids Res. 42 8 2014 5125 5138
    • (2014) Nucleic Acids Res. , vol.42 , Issue.8 , pp. 5125-5138
    • Plagens, A.1
  • 68
    • 84879011562 scopus 로고    scopus 로고
    • Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B
    • L.K. Maier, and et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B RNA Biol. 10 5 2013 865 874
    • (2013) RNA Biol. , vol.10 , Issue.5 , pp. 865-874
    • Maier, L.K.1
  • 69
    • 79959963663 scopus 로고    scopus 로고
    • Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
    • E. Semenova, and et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence Proc. Natl. Acad. Sci. U. S. A. 108 25 2011 10098 10103
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.25 , pp. 10098-10103
    • Semenova, E.1
  • 70
    • 79960029056 scopus 로고    scopus 로고
    • RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
    • B. Wiedenheft, and et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions Proc. Natl. Acad. Sci. U. S. A. 108 25 2011 10092 10097
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.25 , pp. 10092-10097
    • Wiedenheft, B.1
  • 71
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • S.H. Sternberg, and et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 Nature 507 7490 2014 62 67
    • (2014) Nature , vol.507 , Issue.7490 , pp. 62-67
    • Sternberg, S.H.1
  • 72
    • 84861990812 scopus 로고    scopus 로고
    • Mechanism of foreign DNA selection in a bacterial adaptive immune system
    • D.G. Sashital, B. Wiedenheft, and J.A. Doudna Mechanism of foreign DNA selection in a bacterial adaptive immune system Mol. Cell. 46 5 2012 606 615
    • (2012) Mol. Cell. , vol.46 , Issue.5 , pp. 606-615
    • Sashital, D.G.1    Wiedenheft, B.2    Doudna, J.A.3
  • 73
    • 84899794031 scopus 로고    scopus 로고
    • CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
    • M.L. Hochstrasser, and et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference Proc. Natl. Acad. Sci. U. S. A. 111 18 2014 6618 6623
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.18 , pp. 6618-6623
    • Hochstrasser, M.L.1
  • 74
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • H. Nishimasu, and et al. Crystal structure of Cas9 in complex with guide RNA and target DNA Cell 156 5 2014 935 949
    • (2014) Cell , vol.156 , Issue.5 , pp. 935-949
    • Nishimasu, H.1
  • 75
    • 84893157352 scopus 로고    scopus 로고
    • Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
    • M. Jinek, and et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation Science 343 6176 2014 1247997
    • (2014) Science , vol.343 , Issue.6176 , pp. 1247997
    • Jinek, M.1
  • 76
    • 85018127903 scopus 로고    scopus 로고
    • Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex
    • X. Zhu, and K. Ye Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex Nucleic Acids Res. 2014
    • (2014) Nucleic Acids Res.
    • Zhu, X.1    Ye, K.2
  • 77
    • 84915825854 scopus 로고    scopus 로고
    • Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex
    • N.F. Ramia, and et al. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex Cell. Rep. 9 5 2014 1610 1617
    • (2014) Cell. Rep. , vol.9 , Issue.5 , pp. 1610-1617
    • Ramia, N.F.1
  • 78
    • 84915828062 scopus 로고    scopus 로고
    • Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4
    • C. Benda, and et al. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4 Mol. Cell. 56 1 2014 43 54
    • (2014) Mol. Cell. , vol.56 , Issue.1 , pp. 43-54
    • Benda, C.1
  • 79
    • 84899048370 scopus 로고    scopus 로고
    • CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus
    • Z. Zebec, and et al. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus Nucleic Acids Res. 42 8 2014 5280 5288
    • (2014) Nucleic Acids Res. , vol.42 , Issue.8 , pp. 5280-5288
    • Zebec, Z.1
  • 80
    • 84912066885 scopus 로고    scopus 로고
    • RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus
    • R.H. Staals, and et al. RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus Mol. Cell. 56 4 2014 518 530
    • (2014) Mol. Cell. , vol.56 , Issue.4 , pp. 518-530
    • Staals, R.H.1
  • 81
    • 84912096635 scopus 로고    scopus 로고
    • Programmable RNA Shredding by the Type III-A CRISPR-Cas system of Streptococcus thermophilus
    • G. Tamulaitis, and et al. Programmable RNA Shredding by the Type III-A CRISPR-Cas system of Streptococcus thermophilus Mol. Cell. 56 4 2014 506 517
    • (2014) Mol. Cell. , vol.56 , Issue.4 , pp. 506-517
    • Tamulaitis, G.1
  • 82
    • 84874195392 scopus 로고    scopus 로고
    • A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
    • L. Deng, and et al. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus Mol. Microbiol. 87 5 2013 1088 1099
    • (2013) Mol. Microbiol. , vol.87 , Issue.5 , pp. 1088-1099
    • Deng, L.1
  • 83
    • 84941143049 scopus 로고    scopus 로고
    • An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference
    • W. Peng, and et al. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference Nucleic Acids Res. 43 1 2015 406 417
    • (2015) Nucleic Acids Res. , vol.43 , Issue.1 , pp. 406-417
    • Peng, W.1
  • 84
    • 75749118174 scopus 로고    scopus 로고
    • Self versus non-self discrimination during CRISPR RNA-directed immunity
    • L.A. Marraffini, and E.J. Sontheimer Self versus non-self discrimination during CRISPR RNA-directed immunity Nature 463 7280 2010 568 571
    • (2010) Nature , vol.463 , Issue.7280 , pp. 568-571
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 85
    • 84908456823 scopus 로고    scopus 로고
    • Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
    • G.W. Goldberg, and et al. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting Nature 514 7524 2014 633 637
    • (2014) Nature , vol.514 , Issue.7524 , pp. 633-637
    • Goldberg, G.W.1
  • 86
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
    • H. Deveau, and et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus J. Bacteriol. 190 4 2008 1390 1400
    • (2008) J. Bacteriol. , vol.190 , Issue.4 , pp. 1390-1400
    • Deveau, H.1
  • 87
    • 84872607723 scopus 로고    scopus 로고
    • Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
    • J. Bondy-Denomy, and et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system Nature 493 7432 2013 429 432
    • (2013) Nature , vol.493 , Issue.7432 , pp. 429-432
    • Bondy-Denomy, J.1
  • 88
    • 84899866053 scopus 로고    scopus 로고
    • A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa
    • A. Pawluk, and et al. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa MBio 5 2 2014 e00896
    • (2014) MBio , vol.5 , Issue.2 , pp. e00896
    • Pawluk, A.1
  • 89
    • 84874388110 scopus 로고    scopus 로고
    • A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity
    • K.D. Seed, and et al. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity Nature 494 7438 2013 489 491
    • (2013) Nature , vol.494 , Issue.7438 , pp. 489-491
    • Seed, K.D.1
  • 90
    • 78751680634 scopus 로고    scopus 로고
    • Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli
    • R. Perez-Rodriguez, and et al. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli Mol. Microbiol. 79 3 2011 584 599
    • (2011) Mol. Microbiol. , vol.79 , Issue.3 , pp. 584-599
    • Perez-Rodriguez, R.1
  • 91
    • 33847371621 scopus 로고    scopus 로고
    • Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets
    • P. Mandin, and et al. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets Nucleic Acids Res. 35 3 2007 962 974
    • (2007) Nucleic Acids Res. , vol.35 , Issue.3 , pp. 962-974
    • Mandin, P.1
  • 92
    • 84877782955 scopus 로고    scopus 로고
    • A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
    • T.R. Sampson, and et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence Nature 497 7448 2013 254 257
    • (2013) Nature , vol.497 , Issue.7448 , pp. 254-257
    • Sampson, T.R.1
  • 93
    • 84872618158 scopus 로고    scopus 로고
    • A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome
    • R. Louwen, and et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome Eur. J. Clin. Microbiol. Infect. Dis. 32 2 2013 207 226
    • (2013) Eur. J. Clin. Microbiol. Infect. Dis. , vol.32 , Issue.2 , pp. 207-226
    • Louwen, R.1
  • 94
    • 84880074536 scopus 로고    scopus 로고
    • The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae
    • F.F. Gunderson, and N.P. Cianciotto The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae MBio 4 2 2013 e00074-13
    • (2013) MBio , vol.4 , Issue.2 , pp. e00074-e00113
    • Gunderson, F.F.1    Cianciotto, N.P.2
  • 95
    • 58149479228 scopus 로고    scopus 로고
    • Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa
    • M.E. Zegans, and et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa J. Bacteriol. 191 1 2009 210 219
    • (2009) J. Bacteriol. , vol.191 , Issue.1 , pp. 210-219
    • Zegans, M.E.1
  • 96
    • 84876845227 scopus 로고    scopus 로고
    • Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
    • R.B. Vercoe, and et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands PLoS Genet. 9 4 2013 e1003454
    • (2013) PLoS Genet. , vol.9 , Issue.4 , pp. e1003454
    • Vercoe, R.B.1
  • 97
    • 0027724480 scopus 로고
    • Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; Application for strain differentiation by a novel typing method
    • P.M. Groenen, and et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method Mol. Microbiol. 10 5 1993 1057 1065
    • (1993) Mol. Microbiol. , vol.10 , Issue.5 , pp. 1057-1065
    • Groenen, P.M.1
  • 98
    • 0030911908 scopus 로고    scopus 로고
    • Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology
    • J. Kamerbeek, and et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology J. Clin. Microbiol. 35 4 1997 907 914
    • (1997) J. Clin. Microbiol. , vol.35 , Issue.4 , pp. 907-914
    • Kamerbeek, J.1
  • 99
    • 50349083723 scopus 로고    scopus 로고
    • Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats
    • Y. Cui, and et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats PLoS One 3 7 2008 e2652
    • (2008) PLoS One , vol.3 , Issue.7 , pp. e2652
    • Cui, Y.1
  • 100
    • 79960084127 scopus 로고    scopus 로고
    • Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs)
    • F. Liu, and et al. Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs) Appl. Environ. Microbiol. 77 13 2011 4520 4526
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.13 , pp. 4520-4526
    • Liu, F.1
  • 101
    • 79953205601 scopus 로고    scopus 로고
    • Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. Enterica
    • F. Liu, and et al. Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica Appl. Environ. Microbiol. 77 6 2011 1946 1956
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.6 , pp. 1946-1956
    • Liu, F.1
  • 102
    • 16844378680 scopus 로고    scopus 로고
    • Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method
    • I. Mokrousov, and et al. Efficient discrimination within a Corynebacterium diphtheriae epidemic clonal group by a novel macroarray-based method J. Clin. Microbiol. 43 4 2005 1662 1668
    • (2005) J. Clin. Microbiol. , vol.43 , Issue.4 , pp. 1662-1668
    • Mokrousov, I.1
  • 103
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • L. Cong, and et al. Multiplex genome engineering using CRISPR/Cas systems Science 339 6121 2013 819 823
    • (2013) Science , vol.339 , Issue.6121 , pp. 819-823
    • Cong, L.1
  • 104
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • P. Mali, and et al. RNA-guided human genome engineering via Cas9 Science 339 6121 2013 823 826
    • (2013) Science , vol.339 , Issue.6121 , pp. 823-826
    • Mali, P.1
  • 105
    • 79960558872 scopus 로고    scopus 로고
    • Targeted genome editing across species using ZFNs and TALENs
    • A.J. Wood, and et al. Targeted genome editing across species using ZFNs and TALENs Science 333 6040 2011 307
    • (2011) Science , vol.333 , Issue.6040 , pp. 307
    • Wood, A.J.1
  • 106
    • 84896731736 scopus 로고    scopus 로고
    • CRISPR-based technologies: Prokaryotic defense weapons repurposed
    • R.M. Terns, and M.P. Terns CRISPR-based technologies: prokaryotic defense weapons repurposed Trends Genet. 30 3 2014 111 118
    • (2014) Trends Genet. , vol.30 , Issue.3 , pp. 111-118
    • Terns, R.M.1    Terns, M.P.2
  • 107
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • T. Wang, and et al. Genetic screens in human cells using the CRISPR-Cas9 system Science 343 6166 2014 80 84
    • (2014) Science , vol.343 , Issue.6166 , pp. 80-84
    • Wang, T.1
  • 108
    • 84913568580 scopus 로고    scopus 로고
    • Programmable RNA recognition and cleavage by CRISPR/Cas9
    • M.R. O'Connell, and et al. Programmable RNA recognition and cleavage by CRISPR/Cas9 Nature 516 7530 2014 263 266
    • (2014) Nature , vol.516 , Issue.7530 , pp. 263-266
    • O'Connell, M.R.1
  • 109
    • 84903138336 scopus 로고    scopus 로고
    • CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
    • Y. Lin, and et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences Nucleic Acids Res. 42 11 2014 7473 7485
    • (2014) Nucleic Acids Res. , vol.42 , Issue.11 , pp. 7473-7485
    • Lin, Y.1
  • 110
    • 84923643463 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • S.Q. Tsai, and et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol. 2014
    • (2014) Nat. Biotechnol.
    • Tsai, S.Q.1
  • 111
    • 84983142945 scopus 로고    scopus 로고
    • Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    • D. Bikard, and et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials Nat. Biotechnol. 32 11 2014 1146 1150
    • (2014) Nat. Biotechnol. , vol.32 , Issue.11 , pp. 1146-1150
    • Bikard, D.1
  • 112
    • 84983208863 scopus 로고    scopus 로고
    • Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
    • R.J. Citorik, M. Mimee, and T.K. Lu Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases Nat. Biotechnol. 32 11 2014 1141 1145
    • (2014) Nat. Biotechnol. , vol.32 , Issue.11 , pp. 1141-1145
    • Citorik, R.J.1    Mimee, M.2    Lu, T.K.3
  • 113
    • 84890033064 scopus 로고    scopus 로고
    • Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
    • G. Schwank, and et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients Cell. Stem Cell. 13 6 2013 653 658
    • (2013) Cell. Stem Cell. , vol.13 , Issue.6 , pp. 653-658
    • Schwank, G.1
  • 114
    • 84890050551 scopus 로고    scopus 로고
    • Correction of a genetic disease in mouse via use of CRISPR-Cas9
    • Y. Wu, and et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9 Cell. Stem Cell. 13 6 2013 659 662
    • (2013) Cell. Stem Cell. , vol.13 , Issue.6 , pp. 659-662
    • Wu, Y.1
  • 115
    • 84907200149 scopus 로고    scopus 로고
    • Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
    • C. Long, and et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA Science 345 6201 2014 1184 1188
    • (2014) Science , vol.345 , Issue.6201 , pp. 1184-1188
    • Long, C.1
  • 116
    • 84902095353 scopus 로고    scopus 로고
    • Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
    • H. Yin, and et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype Nat. Biotechnol. 32 6 2014 551 553
    • (2014) Nat. Biotechnol. , vol.32 , Issue.6 , pp. 551-553
    • Yin, H.1
  • 117
    • 84905643812 scopus 로고    scopus 로고
    • RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection
    • W. Hu, and et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection Proc. Natl. Acad. Sci. U. S. A. 111 31 2014 11461 11466
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.31 , pp. 11461-11466
    • Hu, W.1
  • 118
    • 84903729497 scopus 로고    scopus 로고
    • Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection
    • L. Ye, and et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection Proc. Natl. Acad. Sci. U. S. A. 111 26 2014 9591 9596
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.26 , pp. 9591-9596
    • Ye, L.1
  • 119
    • 84929048246 scopus 로고    scopus 로고
    • Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
    • S. Zhen, and et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus Gene Ther. 2015
    • (2015) Gene Ther.
    • Zhen, S.1
  • 120
    • 84894081986 scopus 로고    scopus 로고
    • Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
    • Y. Niu, and et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos Cell 156 4 2014 836 843
    • (2014) Cell , vol.156 , Issue.4 , pp. 836-843
    • Niu, Y.1
  • 121
    • 84941084368 scopus 로고    scopus 로고
    • Efficient programmable gene silencing by Cascade
    • D. Rath, and et al. Efficient programmable gene silencing by Cascade Nucleic Acids Res. 43 1 2015 237 246
    • (2015) Nucleic Acids Res. , vol.43 , Issue.1 , pp. 237-246
    • Rath, D.1
  • 122
    • 84941084492 scopus 로고    scopus 로고
    • Repurposing endogenous type i CRISPR-Cas systems for programmable gene repression
    • M.L. Luo, and et al. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression Nucleic Acids Res. 43 1 2015 674 681
    • (2015) Nucleic Acids Res. , vol.43 , Issue.1 , pp. 674-681
    • Luo, M.L.1
  • 123
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • L.S. Qi, and et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell 152 5 2013 1173 1183
    • (2013) Cell , vol.152 , Issue.5 , pp. 1173-1183
    • Qi, L.S.1
  • 124
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • D. Bikard, and et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system Nucleic Acids Res. 41 15 2013 7429 7437
    • (2013) Nucleic Acids Res. , vol.41 , Issue.15 , pp. 7429-7437
    • Bikard, D.1
  • 125
    • 84885180675 scopus 로고    scopus 로고
    • Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
    • A.W. Cheng, and et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system Cell. Res. 23 10 2013 1163 1171
    • (2013) Cell. Res. , vol.23 , Issue.10 , pp. 1163-1171
    • Cheng, A.W.1
  • 126
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • L.A. Gilbert, and et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell 154 2 2013 442 451
    • (2013) Cell , vol.154 , Issue.2 , pp. 442-451
    • Gilbert, L.A.1
  • 127
    • 84886488970 scopus 로고    scopus 로고
    • Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
    • F. Farzadfard, S.D. Perli, and T.K. Lu Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas ACS Synth. Biol. 2 10 2013 604 613
    • (2013) ACS Synth. Biol. , vol.2 , Issue.10 , pp. 604-613
    • Farzadfard, F.1    Perli, S.D.2    Lu, T.K.3
  • 128
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • S. Konermann, and et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature 517 7536 2015 583 588
    • (2015) Nature , vol.517 , Issue.7536 , pp. 583-588
    • Konermann, S.1
  • 129
    • 84928473578 scopus 로고    scopus 로고
    • CRISPR adaptation biases explain preference for acquisition of foreign DNA
    • [Electronic publication ahead of print]
    • A. Levy, and et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA Nature 2015 [Electronic publication ahead of print]
    • (2015) Nature
    • Levy, A.1
  • 130
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • F.A. Ran, and et al. In vivo genome editing using Staphylococcus aureus Cas9 Nature 520 5819 2015 299 311
    • (2015) Nature , vol.520 , Issue.5819 , pp. 299-311
    • Ran, F.A.1
  • 131
    • 84928775846 scopus 로고    scopus 로고
    • A prudent path forward for genomic engineering and germline gene modification
    • D. Baltimore, and et al. A prudent path forward for genomic engineering and germline gene modification Science 348 6230 2015 36 38
    • (2015) Science , vol.348 , Issue.6230 , pp. 36-38
    • Baltimore, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.