메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages 79-101

The promise and perils of HDAC inhibitors in neurodegeneration

Author keywords

[No Author keywords available]

Indexed keywords

ESTROGEN RECEPTOR; FRAGILE X MENTAL RETARDATION PROTEIN; FRATAXIN; HEAT SHOCK PROTEIN 90; HISTONE DEACETYLASE; HISTONE DEACETYLASE 10; HISTONE DEACETYLASE 4; HISTONE DEACETYLASE 6; HISTONE DEACETYLASE INHIBITOR; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INTERLEUKIN 10; MYOCYTE ENHANCER FACTOR 2; MYOD PROTEIN; NUCLEAR RECEPTOR COREPRESSOR; PROTEIN P53; RETINOBLASTOMA PROTEIN; SILENT INFORMATION REGULATOR PROTEIN 2; SIRTUIN 1; SURVIVAL MOTOR NEURON PROTEIN; TATA BINDING PROTEIN; THYROID HORMONE RECEPTOR; TRANSCRIPTION FACTOR RUNX2; TRANSCRIPTION FACTOR SIN3A;

EID: 84929878466     PISSN: None     EISSN: 23289503     Source Type: Journal    
DOI: 10.1002/acn3.147     Document Type: Review
Times cited : (96)

References (304)
  • 1
    • 1842578986 scopus 로고    scopus 로고
    • Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis
    • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004;338:17-31.
    • (2004) J Mol Biol , vol.338 , pp. 17-31
    • Gregoretti, I.V.1    Lee, Y.M.2    Goodson, H.V.3
  • 2
    • 36048958965 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors: overview and perspectives
    • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007;5:981-989.
    • (2007) Mol Cancer Res , vol.5 , pp. 981-989
    • Dokmanovic, M.1    Clarke, C.2    Marks, P.A.3
  • 3
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32-42.
    • (2009) Nat Rev Genet , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 4
    • 0037444803 scopus 로고    scopus 로고
    • Histone deacetylases (HDACs): characterization of the classical HDAC family
    • de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370(Pt 3):737-749.
    • (2003) Biochem J , vol.370 , pp. 737-749
    • de Ruijter, A.J.1    van Gennip, A.H.2    Caron, H.N.3
  • 6
    • 53249130741 scopus 로고    scopus 로고
    • Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
    • Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discovery 2008;7:854-868.
    • (2008) Nat Rev Drug Discovery , vol.7 , pp. 854-868
    • Kazantsev, A.G.1    Thompson, L.M.2
  • 7
    • 3242793175 scopus 로고    scopus 로고
    • Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues
    • Waltregny D, De Leval L, Glenisson W, et al. Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 2004;165:553-564.
    • (2004) Am J Pathol , vol.165 , pp. 553-564
    • Waltregny, D.1    De Leval, L.2    Glenisson, W.3
  • 8
    • 0037382681 scopus 로고    scopus 로고
    • Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression
    • Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 2003;13:143-153.
    • (2003) Curr Opin Genet Dev , vol.13 , pp. 143-153
    • Yang, X.J.1    Seto, E.2
  • 9
    • 34547909260 scopus 로고    scopus 로고
    • HDAC3: taking the SMRT-N-CoRrect road to repression
    • Karagianni P, Wong J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 2007;26:5439-5449.
    • (2007) Oncogene , vol.26 , pp. 5439-5449
    • Karagianni, P.1    Wong, J.2
  • 10
    • 0034602180 scopus 로고    scopus 로고
    • CREB-binding protein/p300 activates MyoD by acetylation
    • Polesskaya A, Duquet A, Naguibneva I, et al. CREB-binding protein/p300 activates MyoD by acetylation. J Biol Chem 2000;275:34359-34364.
    • (2000) J Biol Chem , vol.275 , pp. 34359-34364
    • Polesskaya, A.1    Duquet, A.2    Naguibneva, I.3
  • 11
    • 0037112901 scopus 로고    scopus 로고
    • MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation
    • Ito A, Kawaguchi Y, Lai CH, et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002;21:6236-6245.
    • (2002) EMBO J , vol.21 , pp. 6236-6245
    • Ito, A.1    Kawaguchi, Y.2    Lai, C.H.3
  • 12
    • 0034905085 scopus 로고    scopus 로고
    • Regulation of transcription factor YY1 by acetylation and deacetylation
    • Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 2001;21:5979-5991.
    • (2001) Mol Cell Biol , vol.21 , pp. 5979-5991
    • Yao, Y.L.1    Yang, W.M.2    Seto, E.3
  • 13
    • 0033572270 scopus 로고    scopus 로고
    • Down-regulation of nuclear factor kappaB is required for p53-dependent apoptosis in X-ray-irradiated mouse lymphoma cells and thymocytes
    • Kawai H, Yamada Y, Tatsuka M, et al. Down-regulation of nuclear factor kappaB is required for p53-dependent apoptosis in X-ray-irradiated mouse lymphoma cells and thymocytes. Cancer Res 1999;59:6038-6041.
    • (1999) Cancer Res , vol.59 , pp. 6038-6041
    • Kawai, H.1    Yamada, Y.2    Tatsuka, M.3
  • 14
    • 33645830066 scopus 로고    scopus 로고
    • DNA-damage-responsive acetylation of pRb regulates binding to E2F-1
    • Markham D, Munro S, Soloway J, et al. DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 2006;7:192-198.
    • (2006) EMBO Rep , vol.7 , pp. 192-198
    • Markham, D.1    Munro, S.2    Soloway, J.3
  • 15
    • 0034646630 scopus 로고    scopus 로고
    • E2F family members are differentially regulated by reversible acetylation
    • Marzio G, Wagener C, Gutierrez MI, et al. E2F family members are differentially regulated by reversible acetylation. J Biol Chem 2000;275:10887-10892.
    • (2000) J Biol Chem , vol.275 , pp. 10887-10892
    • Marzio, G.1    Wagener, C.2    Gutierrez, M.I.3
  • 16
    • 33846940901 scopus 로고    scopus 로고
    • Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2
    • Gregoire S, Xiao L, Nie J, et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 2007;27:1280-1295.
    • (2007) Mol Cell Biol , vol.27 , pp. 1280-1295
    • Gregoire, S.1    Xiao, L.2    Nie, J.3
  • 18
    • 20844447169 scopus 로고    scopus 로고
    • Regulation of human SRY subcellular distribution by its acetylation/deacetylation
    • Thevenet L, Mejean C, Moniot B, et al. Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 2004;23:3336-3345.
    • (2004) EMBO J , vol.23 , pp. 3336-3345
    • Thevenet, L.1    Mejean, C.2    Moniot, B.3
  • 19
    • 58849139353 scopus 로고    scopus 로고
    • A phosphorylation-acetylation switch regulates STAT1 signaling
    • Kramer OH, Knauer SK, Greiner G, et al. A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 2009;23:223-235.
    • (2009) Genes Dev , vol.23 , pp. 223-235
    • Kramer, O.H.1    Knauer, S.K.2    Greiner, G.3
  • 20
    • 12244251445 scopus 로고    scopus 로고
    • Stat3 dimerization regulated by reversible acetylation of a single lysine residue
    • Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005;307:269-273.
    • (2005) Science , vol.307 , pp. 269-273
    • Yuan, Z.L.1    Guan, Y.J.2    Chatterjee, D.3    Chin, Y.E.4
  • 21
    • 0035979737 scopus 로고    scopus 로고
    • Duration of nuclear NF-kappaB action regulated by reversible acetylation
    • Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001;293:1653-1657.
    • (2001) Science , vol.293 , pp. 1653-1657
    • Chen, L.1    Fischle, W.2    Verdin, E.3    Greene, W.C.4
  • 22
    • 84877903301 scopus 로고    scopus 로고
    • Lysine deacetylases and mitochondrial dynamics in neurodegeneration
    • Guedes-Dias P, Oliveira JM. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim Biophys Acta 2013;1832:1345-1359.
    • (2013) Biochim Biophys Acta , vol.1832 , pp. 1345-1359
    • Guedes-Dias, P.1    Oliveira, J.M.2
  • 23
    • 0034659405 scopus 로고    scopus 로고
    • Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm
    • Verdel A, Curtet S, Brocard MP, et al. Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr Biol 2000;10:747-749.
    • (2000) Curr Biol , vol.10 , pp. 747-749
    • Verdel, A.1    Curtet, S.2    Brocard, M.P.3
  • 24
    • 0037161744 scopus 로고    scopus 로고
    • HDAC6 is a microtubule-associated deacetylase
    • Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455-458.
    • (2002) Nature , vol.417 , pp. 455-458
    • Hubbert, C.1    Guardiola, A.2    Shao, R.3
  • 25
    • 65549166880 scopus 로고    scopus 로고
    • HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling
    • Kekatpure VD, Dannenberg AJ, Subbaramaiah K. HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem 2009;284:7436-7445.
    • (2009) J Biol Chem , vol.284 , pp. 7436-7445
    • Kekatpure, V.D.1    Dannenberg, A.J.2    Subbaramaiah, K.3
  • 26
    • 34447315270 scopus 로고    scopus 로고
    • HDAC6 modulates cell motility by altering the acetylation level of cortactin
    • Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 2007;27:197-213.
    • (2007) Mol Cell , vol.27 , pp. 197-213
    • Zhang, X.1    Yuan, Z.2    Zhang, Y.3
  • 27
    • 45149089913 scopus 로고    scopus 로고
    • HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization
    • Li Y, Zhang X, Polakiewicz RD, et al. HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization. J Biol Chem 2008;283:12686-12690.
    • (2008) J Biol Chem , vol.283 , pp. 12686-12690
    • Li, Y.1    Zhang, X.2    Polakiewicz, R.D.3
  • 28
    • 0037287068 scopus 로고    scopus 로고
    • CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression
    • Ellis JJ, Valencia TG, Zeng H, et al. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression. Mol Cell Biochem 2003;242:153-161.
    • (2003) Mol Cell Biochem , vol.242 , pp. 153-161
    • Ellis, J.J.1    Valencia, T.G.2    Zeng, H.3
  • 29
    • 33644859838 scopus 로고    scopus 로고
    • DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines
    • Basile V, Mantovani R, Imbriano C. DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines. J Biol Chem 2006;281:2347-2357.
    • (2006) J Biol Chem , vol.281 , pp. 2347-2357
    • Basile, V.1    Mantovani, R.2    Imbriano, C.3
  • 30
    • 33745196250 scopus 로고    scopus 로고
    • Bone morphogenetic protein-2 stimulates Runx2 acetylation
    • Jeon EJ, Lee KY, Choi NS, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 2006;281:16502-16511.
    • (2006) J Biol Chem , vol.281 , pp. 16502-16511
    • Jeon, E.J.1    Lee, K.Y.2    Choi, N.S.3
  • 31
    • 28044471827 scopus 로고    scopus 로고
    • Acetylation and deacetylation of non-histone proteins
    • Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005;363:15-23.
    • (2005) Gene , vol.363 , pp. 15-23
    • Glozak, M.A.1    Sengupta, N.2    Zhang, X.3    Seto, E.4
  • 32
    • 84866183822 scopus 로고    scopus 로고
    • HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle
    • Deardorff MA, Bando M, Nakato R, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012;489:313-317.
    • (2012) Nature , vol.489 , pp. 313-317
    • Deardorff, M.A.1    Bando, M.2    Nakato, R.3
  • 33
    • 18744375998 scopus 로고    scopus 로고
    • Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation
    • Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709-720.
    • (2002) Cell , vol.111 , pp. 709-720
    • Jeong, J.W.1    Bae, M.K.2    Ahn, M.Y.3
  • 34
    • 77951249270 scopus 로고    scopus 로고
    • Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors
    • Lai IL, Lin TP, Yao YL, et al. Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors. J Biol Chem 2010;285:7187-7196.
    • (2010) J Biol Chem , vol.285 , pp. 7187-7196
    • Lai, I.L.1    Lin, T.P.2    Yao, Y.L.3
  • 35
    • 44349184388 scopus 로고    scopus 로고
    • HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity
    • Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem 2008;283:10135-10146.
    • (2008) J Biol Chem , vol.283 , pp. 10135-10146
    • Gupta, M.P.1    Samant, S.A.2    Smith, S.H.3    Shroff, S.G.4
  • 36
    • 75949094261 scopus 로고    scopus 로고
    • A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation
    • Hageman J, Rujano MA, van Waarde MA, et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 2010;37:355-369.
    • (2010) Mol Cell , vol.37 , pp. 355-369
    • Hageman, J.1    Rujano, M.A.2    van Waarde, M.A.3
  • 37
    • 78649848838 scopus 로고    scopus 로고
    • Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein
    • Yuan Z, Peng L, Radhakrishnan R, Seto E. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem 2010;285:39329-39338.
    • (2010) J Biol Chem , vol.285 , pp. 39329-39338
    • Yuan, Z.1    Peng, L.2    Radhakrishnan, R.3    Seto, E.4
  • 38
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417-435.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 39
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-798.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 40
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-4635.
    • (2005) Mol Biol Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3
  • 41
    • 54049158932 scopus 로고    scopus 로고
    • Brain SIRT1: anatomical distribution and regulation by energy availability
    • Ramadori G, Lee CE, Bookout AL, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 2008;28:9989-9996.
    • (2008) J Neurosci , vol.28 , pp. 9989-9996
    • Ramadori, G.1    Lee, C.E.2    Bookout, A.L.3
  • 42
    • 0035868764 scopus 로고    scopus 로고
    • Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription
    • Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001;20:1353-1362.
    • (2001) EMBO J , vol.20 , pp. 1353-1362
    • Muth, V.1    Nadaud, S.2    Grummt, I.3    Voit, R.4
  • 43
    • 15444377466 scopus 로고    scopus 로고
    • SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    • Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 2005;280:10264-10276.
    • (2005) J Biol Chem , vol.280 , pp. 10264-10276
    • Bouras, T.1    Fu, M.2    Sauve, A.A.3
  • 44
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003;100:10794-10799.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 45
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3
  • 46
    • 78649738291 scopus 로고    scopus 로고
    • SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
    • Rothgiesser KM, Erener S, Waibel S, et al. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 2010;123(Pt 24):4251-4258.
    • (2010) J Cell Sci , vol.123 , pp. 4251-4258
    • Rothgiesser, K.M.1    Erener, S.2    Waibel, S.3
  • 47
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11:437-444.
    • (2003) Mol Cell , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3
  • 48
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006;103:10224-10229.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3
  • 49
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 2008;382:790-801.
    • (2008) J Mol Biol , vol.382 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3
  • 50
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008;105:14447-14452.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 51
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008;28:6384-6401.
    • (2008) Mol Cell Biol , vol.28 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3
  • 52
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007;130:1095-1107.
    • (2007) Cell , vol.130 , pp. 1095-1107
    • Yang, H.1    Yang, T.2    Baur, J.A.3
  • 53
    • 77951235122 scopus 로고    scopus 로고
    • NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • Yang Y, Cimen H, Han MJ, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 2010;285:7417-7429.
    • (2010) J Biol Chem , vol.285 , pp. 7417-7429
    • Yang, Y.1    Cimen, H.2    Han, M.J.3
  • 54
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 2013;50:686-698.
    • (2013) Mol Cell , vol.50 , pp. 686-698
    • Laurent, G.1    German, N.J.2    Saha, A.K.3
  • 55
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009;137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 56
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010;329:1348-1353.
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 57
    • 84871676013 scopus 로고    scopus 로고
    • The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
    • Dominy JE Jr, Lee Y, Jedrychowski MP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 2012;48:900-913.
    • (2012) Mol Cell , vol.48 , pp. 900-913
    • Dominy, J.E.1    Lee, Y.2    Jedrychowski, M.P.3
  • 58
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008;102:703-710.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 59
    • 0037067696 scopus 로고    scopus 로고
    • Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family
    • Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002;277:25748-25755.
    • (2002) J Biol Chem , vol.277 , pp. 25748-25755
    • Gao, L.1    Cueto, M.A.2    Asselbergs, F.3    Atadja, P.4
  • 60
    • 38849201941 scopus 로고    scopus 로고
    • Developmental expression of histone deacetylase 11 in the murine brain
    • Liu H, Hu Q, Kaufman A, et al. Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res 2008;86:537-543.
    • (2008) J Neurosci Res , vol.86 , pp. 537-543
    • Liu, H.1    Hu, Q.2    Kaufman, A.3
  • 61
    • 57849096553 scopus 로고    scopus 로고
    • The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance
    • Villagra A, Cheng F, Wang HW, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 2009;10:92-100.
    • (2009) Nat Immunol , vol.10 , pp. 92-100
    • Villagra, A.1    Cheng, F.2    Wang, H.W.3
  • 62
    • 0034644473 scopus 로고    scopus 로고
    • Signaling to chromatin through histone modifications
    • Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell 2000;103:263-271.
    • (2000) Cell , vol.103 , pp. 263-271
    • Cheung, P.1    Allis, C.D.2    Sassone-Corsi, P.3
  • 63
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009;460:831-838.
    • (2009) Nature , vol.460 , pp. 831-838
    • Lill, R.1
  • 64
    • 84858054466 scopus 로고    scopus 로고
    • Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models
    • Martelli A, Napierala M, Puccio H. Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models. Dis Model Mech 2012;5:165-176.
    • (2012) Dis Model Mech , vol.5 , pp. 165-176
    • Martelli, A.1    Napierala, M.2    Puccio, H.3
  • 65
    • 13344270899 scopus 로고    scopus 로고
    • Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion
    • Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271:1423-1427.
    • (1996) Science , vol.271 , pp. 1423-1427
    • Campuzano, V.1    Montermini, L.2    Molto, M.D.3
  • 66
    • 84907853593 scopus 로고    scopus 로고
    • Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length
    • Chutake YK, Lam C, Costello WN, et al. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol 2014;76:522-528.
    • (2014) Ann Neurol , vol.76 , pp. 522-528
    • Chutake, Y.K.1    Lam, C.2    Costello, W.N.3
  • 67
    • 0034778511 scopus 로고    scopus 로고
    • Frataxin expression rescues mitochondrial dysfunctions in FRDA cells
    • Tan G, Chen LS, Lonnerdal B, et al. Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum Mol Genet 2001;10:2099-2107.
    • (2001) Hum Mol Genet , vol.10 , pp. 2099-2107
    • Tan, G.1    Chen, L.S.2    Lonnerdal, B.3
  • 68
    • 84902976174 scopus 로고    scopus 로고
    • Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia
    • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat Med 2014;20:542-547.
    • (2014) Nat Med , vol.20 , pp. 542-547
    • Perdomini, M.1    Belbellaa, B.2    Monassier, L.3
  • 69
    • 0037464584 scopus 로고    scopus 로고
    • DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing
    • Saveliev A, Everett C, Sharpe T, et al. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 2003;422:909-913.
    • (2003) Nature , vol.422 , pp. 909-913
    • Saveliev, A.1    Everett, C.2    Sharpe, T.3
  • 70
    • 67649983121 scopus 로고    scopus 로고
    • Instability and chromatin structure of expanded trinucleotide repeats
    • Dion V, Wilson JH. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 2009;25:288-297.
    • (2009) Trends Genet , vol.25 , pp. 288-297
    • Dion, V.1    Wilson, J.H.2
  • 71
    • 33748778745 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia
    • Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2006;2:551-558.
    • (2006) Nat Chem Biol , vol.2 , pp. 551-558
    • Herman, D.1    Jenssen, K.2    Burnett, R.3
  • 72
    • 34250830900 scopus 로고    scopus 로고
    • Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia
    • Greene E, Mahishi L, Entezam A, et al. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 2007;35:3383-3390.
    • (2007) Nucleic Acids Res , vol.35 , pp. 3383-3390
    • Greene, E.1    Mahishi, L.2    Entezam, A.3
  • 73
    • 77953659252 scopus 로고    scopus 로고
    • Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation
    • Punga T, Buhler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2010;2:120-129.
    • (2010) EMBO Mol Med , vol.2 , pp. 120-129
    • Punga, T.1    Buhler, M.2
  • 74
    • 79953006870 scopus 로고    scopus 로고
    • Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells
    • Kumari D, Biacsi RE, Usdin K. Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells. J Biol Chem 2011;286:4209-4215.
    • (2011) J Biol Chem , vol.286 , pp. 4209-4215
    • Kumari, D.1    Biacsi, R.E.2    Usdin, K.3
  • 75
    • 80455149647 scopus 로고    scopus 로고
    • Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia
    • Kim E, Napierala M, Dent SY. Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia. Nucleic Acids Res 2011;39:8366-8377.
    • (2011) Nucleic Acids Res , vol.39 , pp. 8366-8377
    • Kim, E.1    Napierala, M.2    Dent, S.Y.3
  • 76
    • 17944380227 scopus 로고    scopus 로고
    • Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability
    • Peters AH, O'Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001;107:323-337.
    • (2001) Cell , vol.107 , pp. 323-337
    • Peters, A.H.1    O'Carroll, D.2    Scherthan, H.3
  • 77
    • 70949099119 scopus 로고    scopus 로고
    • Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription
    • De Biase I, Chutake YK, Rindler PM, Bidichandani SI. Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS One 2009;4:e7914.
    • (2009) PLoS One , vol.4 , pp. e7914
    • De Biase, I.1    Chutake, Y.K.2    Rindler, P.M.3    Bidichandani, S.I.4
  • 78
    • 0038448961 scopus 로고    scopus 로고
    • Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia
    • Sarsero JP, Li L, Wardan H, et al. Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 2003;5:72-81.
    • (2003) J Gene Med , vol.5 , pp. 72-81
    • Sarsero, J.P.1    Li, L.2    Wardan, H.3
  • 79
    • 44349114629 scopus 로고    scopus 로고
    • HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model
    • Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 2008;3:e1958.
    • (2008) PLoS One , vol.3 , pp. e1958
    • Rai, M.1    Soragni, E.2    Jenssen, K.3
  • 80
    • 79954628287 scopus 로고    scopus 로고
    • Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model
    • Sandi C, Pinto RM, Al-Mahdawi S, et al. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 2011;42:496-505.
    • (2011) Neurobiol Dis , vol.42 , pp. 496-505
    • Sandi, C.1    Pinto, R.M.2    Al-Mahdawi, S.3
  • 81
    • 70349163898 scopus 로고    scopus 로고
    • Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing
    • Xu C, Soragni E, Chou CJ, et al. Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing. Chem Biol 2009;16:980-989.
    • (2009) Chem Biol , vol.16 , pp. 980-989
    • Xu, C.1    Soragni, E.2    Chou, C.J.3
  • 82
    • 77952530173 scopus 로고    scopus 로고
    • Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich's ataxia patients and in a mouse model
    • Rai M, Soragni E, Chou CJ, et al. Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich's ataxia patients and in a mouse model. PLoS One 2010;5:e8825.
    • (2010) PLoS One , vol.5 , pp. e8825
    • Rai, M.1    Soragni, E.2    Chou, C.J.3
  • 83
    • 84907815534 scopus 로고    scopus 로고
    • Epigenetic therapy for Friedreich ataxia
    • Soragni E, Miao W, Iudicello M, et al. Epigenetic therapy for Friedreich ataxia. Ann Neurol 2014;76:489-508.
    • (2014) Ann Neurol , vol.76 , pp. 489-508
    • Soragni, E.1    Miao, W.2    Iudicello, M.3
  • 84
    • 84878912414 scopus 로고    scopus 로고
    • Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3
    • Chan PK, Torres R, Yandim C, et al. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet 2013;22:2662-2675.
    • (2013) Hum Mol Genet , vol.22 , pp. 2662-2675
    • Chan, P.K.1    Torres, R.2    Yandim, C.3
  • 85
    • 84906326678 scopus 로고    scopus 로고
    • Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia: an exploratory, open-label, dose-escalation study
    • Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia: an exploratory, open-label, dose-escalation study. Lancet 2014;384:504-513.
    • (2014) Lancet , vol.384 , pp. 504-513
    • Libri, V.1    Yandim, C.2    Athanasopoulos, S.3
  • 86
    • 23944511133 scopus 로고    scopus 로고
    • Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons
    • Antar LN, Dictenberg JB, Plociniak M, et al. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 2005;4:350-359.
    • (2005) Genes Brain Behav , vol.4 , pp. 350-359
    • Antar, L.N.1    Dictenberg, J.B.2    Plociniak, M.3
  • 87
    • 0025833298 scopus 로고
    • Absence of expression of the FMR-1 gene in fragile X syndrome
    • Pieretti M, Zhang FP, Fu YH, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991;66:817-822.
    • (1991) Cell , vol.66 , pp. 817-822
    • Pieretti, M.1    Zhang, F.P.2    Fu, Y.H.3
  • 88
    • 0032905253 scopus 로고    scopus 로고
    • Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells
    • Coffee B, Zhang F, Warren ST, Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet 1999;22:98-101.
    • (1999) Nat Genet , vol.22 , pp. 98-101
    • Coffee, B.1    Zhang, F.2    Warren, S.T.3    Reines, D.4
  • 89
    • 0036782129 scopus 로고    scopus 로고
    • Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome
    • Coffee B, Zhang F, Ceman S, et al. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Am J Hum Genet 2002;71:923-932.
    • (2002) Am J Hum Genet , vol.71 , pp. 923-932
    • Coffee, B.1    Zhang, F.2    Ceman, S.3
  • 90
    • 19944431036 scopus 로고    scopus 로고
    • Molecular dissection of the events leading to inactivation of the FMR1 gene
    • Pietrobono R, Tabolacci E, Zalfa F, et al. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet 2005;14:267-277.
    • (2005) Hum Mol Genet , vol.14 , pp. 267-277
    • Pietrobono, R.1    Tabolacci, E.2    Zalfa, F.3
  • 91
    • 18844398832 scopus 로고    scopus 로고
    • Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments
    • Tabolacci E, Pietrobono R, Moscato U, et al. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur J Hum Genet 2005;13:641-648.
    • (2005) Eur J Hum Genet , vol.13 , pp. 641-648
    • Tabolacci, E.1    Pietrobono, R.2    Moscato, U.3
  • 92
    • 35848937244 scopus 로고    scopus 로고
    • Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos
    • Eiges R, Urbach A, Malcov M, et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 2007;1:568-577.
    • (2007) Cell Stem Cell , vol.1 , pp. 568-577
    • Eiges, R.1    Urbach, A.2    Malcov, M.3
  • 93
    • 78149272981 scopus 로고    scopus 로고
    • The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome
    • Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 2010;19:4634-4642.
    • (2010) Hum Mol Genet , vol.19 , pp. 4634-4642
    • Kumari, D.1    Usdin, K.2
  • 94
    • 0035830879 scopus 로고    scopus 로고
    • Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for fragile X mental retardation syndrome
    • Kumari D, Usdin K. Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for fragile X mental retardation syndrome. J Biol Chem 2001;276:4357-4364.
    • (2001) J Biol Chem , vol.276 , pp. 4357-4364
    • Kumari, D.1    Usdin, K.2
  • 95
    • 71849115415 scopus 로고    scopus 로고
    • A distinct DNA-methylation boundary in the 5′- upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome
    • Naumann A, Hochstein N, Weber S, et al. A distinct DNA-methylation boundary in the 5′- upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am J Hum Genet 2009;85:606-616.
    • (2009) Am J Hum Genet , vol.85 , pp. 606-616
    • Naumann, A.1    Hochstein, N.2    Weber, S.3
  • 96
    • 0038150132 scopus 로고    scopus 로고
    • Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect
    • Chandler SP, Kansagra P, Hirst MC. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol Biol 2003;4:3.
    • (2003) BMC Mol Biol , vol.4 , pp. 3
    • Chandler, S.P.1    Kansagra, P.2    Hirst, M.C.3
  • 97
    • 0032741429 scopus 로고    scopus 로고
    • Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene
    • Chiurazzi P, Pomponi MG, Pietrobono R, et al. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 1999;8:2317-2323.
    • (1999) Hum Mol Genet , vol.8 , pp. 2317-2323
    • Chiurazzi, P.1    Pomponi, M.G.2    Pietrobono, R.3
  • 98
    • 55749110434 scopus 로고    scopus 로고
    • Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation
    • Tabolacci E, De Pascalis I, Accadia M, et al. Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation. Pharmacogenet Genomics 2008;18:738-741.
    • (2008) Pharmacogenet Genomics , vol.18 , pp. 738-741
    • Tabolacci, E.1    De Pascalis, I.2    Accadia, M.3
  • 99
    • 41949125454 scopus 로고    scopus 로고
    • SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome
    • Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome. PLoS Genet 2008;4:e1000017.
    • (2008) PLoS Genet , vol.4 , pp. e1000017
    • Biacsi, R.1    Kumari, D.2    Usdin, K.3
  • 100
    • 2342453253 scopus 로고    scopus 로고
    • Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation
    • Hagerman RJ, Leavitt BR, Farzin F, et al. Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet 2004;74:1051-1056.
    • (2004) Am J Hum Genet , vol.74 , pp. 1051-1056
    • Hagerman, R.J.1    Leavitt, B.R.2    Farzin, F.3
  • 101
    • 0033940157 scopus 로고    scopus 로고
    • Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome
    • Tassone F, Hagerman RJ, Taylor AK, et al. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 2000;66:6-15.
    • (2000) Am J Hum Genet , vol.66 , pp. 6-15
    • Tassone, F.1    Hagerman, R.J.2    Taylor, A.K.3
  • 102
    • 34547697173 scopus 로고    scopus 로고
    • RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS
    • Sofola OA, Jin P, Qin Y, et al. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 2007;55:565-571.
    • (2007) Neuron , vol.55 , pp. 565-571
    • Sofola, O.A.1    Jin, P.2    Qin, Y.3
  • 103
    • 84862200262 scopus 로고    scopus 로고
    • Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular RNAs and translocates to the early oocyte
    • Aumiller V, Graebsch A, Kremmer E, et al. Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular RNAs and translocates to the early oocyte. RNA Biol 2012;9:633-643.
    • (2012) RNA Biol , vol.9 , pp. 633-643
    • Aumiller, V.1    Graebsch, A.2    Kremmer, E.3
  • 104
    • 77950529507 scopus 로고    scopus 로고
    • Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients
    • Sellier C, Rau F, Liu Y, et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 2010;29:1248-1261.
    • (2010) EMBO J , vol.29 , pp. 1248-1261
    • Sellier, C.1    Rau, F.2    Liu, Y.3
  • 105
    • 84875804170 scopus 로고    scopus 로고
    • Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome
    • Sellier C, Freyermuth F, Tabet R, et al. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 2013;3:869-880.
    • (2013) Cell Rep , vol.3 , pp. 869-880
    • Sellier, C.1    Freyermuth, F.2    Tabet, R.3
  • 106
    • 78650693402 scopus 로고    scopus 로고
    • Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome
    • Todd PK, Oh SY, Krans A, et al. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLoS Genet 2010;6:e1001240.
    • (2010) PLoS Genet , vol.6 , pp. e1001240
    • Todd, P.K.1    Oh, S.Y.2    Krans, A.3
  • 107
    • 84883291308 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors as potential treatment for spinal muscular atrophy
    • Mohseni J, Zabidi-Hussin ZA, Sasongko TH. Histone deacetylase inhibitors as potential treatment for spinal muscular atrophy. Genet Mol Biol 2013;36:299-307.
    • (2013) Genet Mol Biol , vol.36 , pp. 299-307
    • Mohseni, J.1    Zabidi-Hussin, Z.A.2    Sasongko, T.H.3
  • 109
    • 0034639645 scopus 로고    scopus 로고
    • The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy
    • Monani UR, Sendtner M, Coovert DD, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 2000;9:333-339.
    • (2000) Hum Mol Genet , vol.9 , pp. 333-339
    • Monani, U.R.1    Sendtner, M.2    Coovert, D.D.3
  • 110
    • 84890898281 scopus 로고    scopus 로고
    • Spinal muscular atrophy: development and implementation of potential treatments
    • Arnold WD, Burghes AH. Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol 2013;74:348-362.
    • (2013) Ann Neurol , vol.74 , pp. 348-362
    • Arnold, W.D.1    Burghes, A.H.2
  • 111
    • 18144400082 scopus 로고    scopus 로고
    • The role of histone acetylation in SMN gene expression
    • Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet 2005;14:1171-1182.
    • (2005) Hum Mol Genet , vol.14 , pp. 1171-1182
    • Kernochan, L.E.1    Russo, M.L.2    Woodling, N.S.3
  • 112
    • 10744229981 scopus 로고    scopus 로고
    • Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy
    • Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004;12:59-65.
    • (2004) Eur J Hum Genet , vol.12 , pp. 59-65
    • Andreassi, C.1    Angelozzi, C.2    Tiziano, F.D.3
  • 113
    • 0141506887 scopus 로고    scopus 로고
    • Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy
    • Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003;12:2481-2489.
    • (2003) Hum Mol Genet , vol.12 , pp. 2481-2489
    • Brichta, L.1    Hofmann, Y.2    Hahnen, E.3
  • 114
    • 0035859952 scopus 로고    scopus 로고
    • Treatment of spinal muscular atrophy by sodium butyrate
    • Chang JG, Hsieh-Li HM, Jong YJ, et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 2001;98:9808-9813.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 9808-9813
    • Chang, J.G.1    Hsieh-Li, H.M.2    Jong, Y.J.3
  • 115
    • 33847358736 scopus 로고    scopus 로고
    • Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy
    • Avila AM, Burnett BG, Taye AA, et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 2007;117:659-671.
    • (2007) J Clin Invest , vol.117 , pp. 659-671
    • Avila, A.M.1    Burnett, B.G.2    Taye, A.A.3
  • 116
    • 77952295831 scopus 로고    scopus 로고
    • SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy
    • Riessland M, Ackermann B, Forster A, et al. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 2010;19:1492-1506.
    • (2010) Hum Mol Genet , vol.19 , pp. 1492-1506
    • Riessland, M.1    Ackermann, B.2    Forster, A.3
  • 117
    • 33747083488 scopus 로고    scopus 로고
    • Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy
    • Weihl CC, Connolly AM, Pestronk A. Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology 2006;67:500-501.
    • (2006) Neurology , vol.67 , pp. 500-501
    • Weihl, C.C.1    Connolly, A.M.2    Pestronk, A.3
  • 118
    • 36248958610 scopus 로고    scopus 로고
    • Valproic acid treatment in six patients with spinal muscular atrophy
    • Tsai LK, Yang CC, Hwu WL, Li H. Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol 2007;14:e8-e9.
    • (2007) Eur J Neurol , vol.14 , pp. e8-e9
    • Tsai, L.K.1    Yang, C.C.2    Hwu, W.L.3    Li, H.4
  • 119
    • 65849222556 scopus 로고    scopus 로고
    • Phase II open label study of valproic acid in spinal muscular atrophy
    • Swoboda KJ, Scott CB, Reyna SP, et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One 2009;4:e5268.
    • (2009) PLoS One , vol.4 , pp. e5268
    • Swoboda, K.J.1    Scott, C.B.2    Reyna, S.P.3
  • 120
    • 79953096879 scopus 로고    scopus 로고
    • Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid
    • Darbar IA, Plaggert PG, Resende MB, et al. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid. BMC Neurol 2011;11:36.
    • (2011) BMC Neurol , vol.11 , pp. 36
    • Darbar, I.A.1    Plaggert, P.G.2    Resende, M.B.3
  • 121
    • 77957929588 scopus 로고    scopus 로고
    • SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy
    • Swoboda KJ, Scott CB, Crawford TO, et al. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One 2010;5:e12140.
    • (2010) PLoS One , vol.5 , pp. e12140
    • Swoboda, K.J.1    Scott, C.B.2    Crawford, T.O.3
  • 122
    • 79959988589 scopus 로고    scopus 로고
    • SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy
    • Kissel JT, Scott CB, Reyna SP, et al. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS One 2011;6:e21296.
    • (2011) PLoS One , vol.6 , pp. e21296
    • Kissel, J.T.1    Scott, C.B.2    Reyna, S.P.3
  • 123
    • 84892504278 scopus 로고    scopus 로고
    • SMA valiant trial: a prospective, double-blind, placebo-controlled trial of valproic acid in ambulatory adults with spinal muscular atrophy
    • Kissel JT, Elsheikh B, King WM, et al. SMA valiant trial: a prospective, double-blind, placebo-controlled trial of valproic acid in ambulatory adults with spinal muscular atrophy. Muscle Nerve 2014;49:187-192.
    • (2014) Muscle Nerve , vol.49 , pp. 187-192
    • Kissel, J.T.1    Elsheikh, B.2    King, W.M.3
  • 124
    • 77954170148 scopus 로고    scopus 로고
    • Niemann-Pick C disease: history, current research topics, biological and molecular diagnosis
    • Vanier MT. [Niemann-Pick C disease: history, current research topics, biological and molecular diagnosis]. Arch Pediatr 2010;17(suppl 2):S41-S44.
    • (2010) Arch Pediatr , vol.17 , pp. S41-S44
    • Vanier, M.T.1
  • 125
    • 84887882549 scopus 로고    scopus 로고
    • Niemann-Pick's and Gaucher's diseases
    • Stern G. Niemann-Pick's and Gaucher's diseases. Parkinsonism Relat Disord 2014;20(suppl 1):S143-S146.
    • (2014) Parkinsonism Relat Disord , vol.20 , pp. S143-S146
    • Stern, G.1
  • 126
    • 0037319111 scopus 로고    scopus 로고
    • Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease
    • Blom TS, Linder MD, Snow K, et al. Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease. Hum Mol Genet 2003;12:257-272.
    • (2003) Hum Mol Genet , vol.12 , pp. 257-272
    • Blom, T.S.1    Linder, M.D.2    Snow, K.3
  • 127
    • 33845994402 scopus 로고    scopus 로고
    • NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols
    • Liou HL, Dixit SS, Xu S, et al. NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 2006;281:36710-36723.
    • (2006) J Biol Chem , vol.281 , pp. 36710-36723
    • Liou, H.L.1    Dixit, S.S.2    Xu, S.3
  • 128
    • 55749083068 scopus 로고    scopus 로고
    • NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes
    • Infante RE, Wang ML, Radhakrishnan A, et al. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA 2008;105:15287-15292.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15287-15292
    • Infante, R.E.1    Wang, M.L.2    Radhakrishnan, A.3
  • 129
    • 43749115379 scopus 로고    scopus 로고
    • Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding
    • Gelsthorpe ME, Baumann N, Millard E, et al. Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 2008;283:8229-8236.
    • (2008) J Biol Chem , vol.283 , pp. 8229-8236
    • Gelsthorpe, M.E.1    Baumann, N.2    Millard, E.3
  • 130
    • 12444315104 scopus 로고    scopus 로고
    • Regulation of niemann-pick c1 gene expression by the 3′5′-cyclic adenosine monophosphate pathway in steroidogenic cells
    • Gevry NY, Lalli E, Sassone-Corsi P, Murphy BD. Regulation of niemann-pick c1 gene expression by the 3′5′-cyclic adenosine monophosphate pathway in steroidogenic cells. Mol Endocrinol 2003;17:704-715.
    • (2003) Mol Endocrinol , vol.17 , pp. 704-715
    • Gevry, N.Y.1    Lalli, E.2    Sassone-Corsi, P.3    Murphy, B.D.4
  • 131
    • 79954995849 scopus 로고    scopus 로고
    • Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts
    • Pipalia NH, Cosner CC, Huang A, et al. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci USA 2011;108:5620-5625.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 5620-5625
    • Pipalia, N.H.1    Cosner, C.C.2    Huang, A.3
  • 132
    • 0034578144 scopus 로고    scopus 로고
    • Trinucleotide repeats: mechanisms and pathophysiology
    • Cummings CJ, Zoghbi HY. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 2000;1:281-328.
    • (2000) Annu Rev Genomics Hum Genet , vol.1 , pp. 281-328
    • Cummings, C.J.1    Zoghbi, H.Y.2
  • 133
    • 0035393427 scopus 로고    scopus 로고
    • SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein
    • Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001;10:1441-1448.
    • (2001) Hum Mol Genet , vol.10 , pp. 1441-1448
    • Nakamura, K.1    Jeong, S.Y.2    Uchihara, T.3
  • 134
    • 0036247596 scopus 로고    scopus 로고
    • The role of chaperones in polyglutamine disease
    • Opal P, Zoghbi HY. The role of chaperones in polyglutamine disease. Trends Mol Med 2002;8:232-236.
    • (2002) Trends Mol Med , vol.8 , pp. 232-236
    • Opal, P.1    Zoghbi, H.Y.2
  • 136
    • 12944263711 scopus 로고    scopus 로고
    • The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription
    • Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 2000;97:6763-6768.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 6763-6768
    • Steffan, J.S.1    Kazantsev, A.2    Spasic-Boskovic, O.3
  • 137
    • 0034285017 scopus 로고    scopus 로고
    • CREB-binding protein sequestration by expanded polyglutamine
    • McCampbell A, Taylor JP, Taye AA, et al. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 2000;9:2197-2202.
    • (2000) Hum Mol Genet , vol.9 , pp. 2197-2202
    • McCampbell, A.1    Taylor, J.P.2    Taye, A.A.3
  • 138
    • 0037408279 scopus 로고    scopus 로고
    • Transcriptional abnormalities in Huntington disease
    • Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003;19:233-238.
    • (2003) Trends Genet , vol.19 , pp. 233-238
    • Sugars, K.L.1    Rubinsztein, D.C.2
  • 139
    • 0035937523 scopus 로고    scopus 로고
    • Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity
    • Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001;291:2423-2428.
    • (2001) Science , vol.291 , pp. 2423-2428
    • Nucifora, F.C.1    Sasaki, M.2    Peters, M.F.3
  • 140
    • 20844444637 scopus 로고    scopus 로고
    • Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration
    • Palhan VB, Chen S, Peng GH, et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA 2005;102:8472-8477.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 8472-8477
    • Palhan, V.B.1    Chen, S.2    Peng, G.H.3
  • 141
    • 0037160106 scopus 로고    scopus 로고
    • Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities
    • Li F, Macfarlan T, Pittman RN, Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem 2002;277:45004-45012.
    • (2002) J Biol Chem , vol.277 , pp. 45004-45012
    • Li, F.1    Macfarlan, T.2    Pittman, R.N.3    Chakravarti, D.4
  • 142
    • 84865312220 scopus 로고    scopus 로고
    • LANP mediates neuritic pathology in Spinocerebellar ataxia type 1
    • Cvetanovic M, Kular RK, Opal P. LANP mediates neuritic pathology in Spinocerebellar ataxia type 1. Neurobiol Dis 2012;48:526-532.
    • (2012) Neurobiol Dis , vol.48 , pp. 526-532
    • Cvetanovic, M.1    Kular, R.K.2    Opal, P.3
  • 143
    • 81255158083 scopus 로고    scopus 로고
    • Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1
    • Cvetanovic M, Patel JM, Marti HH, et al. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med 2011;17:1445-1447.
    • (2011) Nat Med , vol.17 , pp. 1445-1447
    • Cvetanovic, M.1    Patel, J.M.2    Marti, H.H.3
  • 144
    • 65549132937 scopus 로고    scopus 로고
    • Neuronal differentiation is regulated by leucine-rich acidic nuclear protein (LANP), a member of the inhibitor of histone acetyltransferase complex
    • Kular RK, Cvetanovic M, Siferd S, et al. Neuronal differentiation is regulated by leucine-rich acidic nuclear protein (LANP), a member of the inhibitor of histone acetyltransferase complex. J Biol Chem 2009;284:7783-7792.
    • (2009) J Biol Chem , vol.284 , pp. 7783-7792
    • Kular, R.K.1    Cvetanovic, M.2    Siferd, S.3
  • 145
    • 36248970599 scopus 로고    scopus 로고
    • Sodium phenylbutyrate in Huntington's disease: a dose-finding study
    • Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington's disease: a dose-finding study. Mov Disord 2007;22:1962-1964.
    • (2007) Mov Disord , vol.22 , pp. 1962-1964
    • Hogarth, P.1    Lovrecic, L.2    Krainc, D.3
  • 146
    • 77049120123 scopus 로고    scopus 로고
    • Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry
    • Ebbel EN, Leymarie N, Schiavo S, et al. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry. Anal Biochem 2010;399:152-161.
    • (2010) Anal Biochem , vol.399 , pp. 152-161
    • Ebbel, E.N.1    Leymarie, N.2    Schiavo, S.3
  • 147
    • 84902957141 scopus 로고    scopus 로고
    • The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1
    • Venkatraman A, Hu YS, Didonna A, et al. The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1. Hum Mol Genet 2014;23:3733-3745.
    • (2014) Hum Mol Genet , vol.23 , pp. 3733-3745
    • Venkatraman, A.1    Hu, Y.S.2    Didonna, A.3
  • 148
    • 84856710176 scopus 로고    scopus 로고
    • Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease
    • Moumne L, Campbell K, Howland D, et al. Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease. PLoS One 2012;7:e31080.
    • (2012) PLoS One , vol.7 , pp. e31080
    • Moumne, L.1    Campbell, K.2    Howland, D.3
  • 149
    • 66749119970 scopus 로고    scopus 로고
    • Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease
    • Benn CL, Butler R, Mariner L, et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease. PLoS One 2009;4:e5747.
    • (2009) PLoS One , vol.4 , pp. e5747
    • Benn, C.L.1    Butler, R.2    Mariner, L.3
  • 150
    • 84889031644 scopus 로고    scopus 로고
    • HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration
    • Mielcarek M, Landles C, Weiss A, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 2013;11:e1001717.
    • (2013) PLoS Biol , vol.11 , pp. e1001717
    • Mielcarek, M.1    Landles, C.2    Weiss, A.3
  • 151
    • 79958064073 scopus 로고    scopus 로고
    • Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease
    • Bobrowska A, Paganetti P, Matthias P, Bates GP. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS One 2011;6:e20696.
    • (2011) PLoS One , vol.6 , pp. e20696
    • Bobrowska, A.1    Paganetti, P.2    Matthias, P.3    Bates, G.P.4
  • 152
    • 84866529842 scopus 로고    scopus 로고
    • SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
    • Bobrowska A, Donmez G, Weiss A, et al. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS One 2012;7:e34805.
    • (2012) PLoS One , vol.7 , pp. e34805
    • Bobrowska, A.1    Donmez, G.2    Weiss, A.3
  • 153
    • 39149121834 scopus 로고    scopus 로고
    • Tubulin modifications and their cellular functions
    • Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol 2008;20:71-76.
    • (2008) Curr Opin Cell Biol , vol.20 , pp. 71-76
    • Hammond, J.W.1    Cai, D.2    Verhey, K.J.3
  • 154
    • 77956525855 scopus 로고    scopus 로고
    • HDAC6 regulates mitochondrial transport in hippocampal neurons
    • Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010;5:e10848.
    • (2010) PLoS One , vol.5 , pp. e10848
    • Chen, S.1    Owens, G.C.2    Makarenkova, H.3    Edelman, D.B.4
  • 155
    • 34250848194 scopus 로고    scopus 로고
    • Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation
    • Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 2007;147:599-612.
    • (2007) Neuroscience , vol.147 , pp. 599-612
    • Suzuki, K.1    Koike, T.2
  • 156
    • 0030240325 scopus 로고    scopus 로고
    • Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease
    • Hempen B, Brion JP. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J Neuropathol Exp Neurol 1996;55:964-972.
    • (1996) J Neuropathol Exp Neurol , vol.55 , pp. 964-972
    • Hempen, B.1    Brion, J.P.2
  • 157
    • 34047175919 scopus 로고    scopus 로고
    • Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation
    • Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 2007;27:3571-3583.
    • (2007) J Neurosci , vol.27 , pp. 3571-3583
    • Dompierre, J.P.1    Godin, J.D.2    Charrin, B.C.3
  • 158
    • 42149182980 scopus 로고    scopus 로고
    • Charcot-Marie-Tooth disease: a clinico-genetic confrontation
    • Barisic N, Claeys KG, Sirotkovic-Skerlev M, et al. Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann Hum Genet 2008;72(Pt 3):416-441.
    • (2008) Ann Hum Genet , vol.72 , pp. 416-441
    • Barisic, N.1    Claeys, K.G.2    Sirotkovic-Skerlev, M.3
  • 159
    • 84884302150 scopus 로고    scopus 로고
    • Diagnostic laboratory testing for Charcot Marie Tooth disease (CMT): the spectrum of gene defects in Norwegian patients with CMT and its implications for future genetic test strategies
    • Ostern R, Fagerheim T, Hjellnes H, et al. Diagnostic laboratory testing for Charcot Marie Tooth disease (CMT): the spectrum of gene defects in Norwegian patients with CMT and its implications for future genetic test strategies. BMC Med Genet 2013;14:94.
    • (2013) BMC Med Genet , vol.14 , pp. 94
    • Ostern, R.1    Fagerheim, T.2    Hjellnes, H.3
  • 160
    • 84861476097 scopus 로고    scopus 로고
    • Charcot-Marie-Tooth disease: emerging mechanisms and therapies
    • d'Ydewalle C, Benoy V, Van Den Bosch L. Charcot-Marie-Tooth disease: emerging mechanisms and therapies. Int J Biochem Cell Biol 2012;44:1299-1304.
    • (2012) Int J Biochem Cell Biol , vol.44 , pp. 1299-1304
    • d'Ydewalle, C.1    Benoy, V.2    Van Den Bosch, L.3
  • 161
    • 79961168180 scopus 로고    scopus 로고
    • HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease
    • d'Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011;17:968-974.
    • (2011) Nat Med , vol.17 , pp. 968-974
    • d'Ydewalle, C.1    Krishnan, J.2    Chiheb, D.M.3
  • 162
    • 84875441083 scopus 로고    scopus 로고
    • The changing scene of amyotrophic lateral sclerosis
    • Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013;14:248-264.
    • (2013) Nat Rev Neurosci , vol.14 , pp. 248-264
    • Robberecht, W.1    Philips, T.2
  • 163
    • 78650545423 scopus 로고    scopus 로고
    • Deficits in axonal transport precede ALS symptoms in vivo
    • Bilsland LG, Sahai E, Kelly G, et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci USA 2010;107:20523-20528.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 20523-20528
    • Bilsland, L.G.1    Sahai, E.2    Kelly, G.3
  • 164
    • 0027164824 scopus 로고
    • Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis
    • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;364:362.
    • (1993) Nature , vol.364 , pp. 362
    • Rosen, D.R.1
  • 165
    • 77952419246 scopus 로고    scopus 로고
    • Mutations of optineurin in amyotrophic lateral sclerosis
    • Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010;465:223-226.
    • (2010) Nature , vol.465 , pp. 223-226
    • Maruyama, H.1    Morino, H.2    Ito, H.3
  • 166
    • 80052580969 scopus 로고    scopus 로고
    • Mutations in UBQLN2 cause dominant X-linked juvenile and adult-ons and ALS/dementia
    • Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011;477:211-215.
    • (2011) Nature , vol.477 , pp. 211-215
    • Deng, H.X.1    Chen, W.2    Hong, S.T.3
  • 167
    • 84875948762 scopus 로고    scopus 로고
    • Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS
    • Taes I, Timmers M, Hersmus N, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013;22:1783-1790.
    • (2013) Hum Mol Genet , vol.22 , pp. 1783-1790
    • Taes, I.1    Timmers, M.2    Hersmus, N.3
  • 168
    • 79961028733 scopus 로고    scopus 로고
    • Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis
    • Yoo YE, Ko CP. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2011;231:147-159.
    • (2011) Exp Neurol , vol.231 , pp. 147-159
    • Yoo, Y.E.1    Ko, C.P.2
  • 169
    • 20144385858 scopus 로고    scopus 로고
    • Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice
    • Ryu H, Smith K, Camelo SI, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 2005;93:1087-1098.
    • (2005) J Neurochem , vol.93 , pp. 1087-1098
    • Ryu, H.1    Smith, K.2    Camelo, S.I.3
  • 171
    • 70149086057 scopus 로고    scopus 로고
    • Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis
    • Piepers S, Veldink JH, de Jong SW, et al. Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol 2009;66:227-234.
    • (2009) Ann Neurol , vol.66 , pp. 227-234
    • Piepers, S.1    Veldink, J.H.2    de Jong, S.W.3
  • 172
    • 84865179881 scopus 로고    scopus 로고
    • HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons
    • Kim C, Choi H, Jung ES, et al. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012;7:e42983.
    • (2012) PLoS One , vol.7 , pp. e42983
    • Kim, C.1    Choi, H.2    Jung, E.S.3
  • 173
    • 84989182910 scopus 로고    scopus 로고
    • Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition
    • Selenica ML, Benner L, Housley SB, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther 2014;6:12.
    • (2014) Alzheimers Res Ther , vol.6 , pp. 12
    • Selenica, M.L.1    Benner, L.2    Housley, S.B.3
  • 174
    • 84875241051 scopus 로고    scopus 로고
    • HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila
    • Xiong Y, Zhao K, Wu J, et al. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci USA 2013;110:4604-4609.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 4604-4609
    • Xiong, Y.1    Zhao, K.2    Wu, J.3
  • 175
    • 84871946821 scopus 로고    scopus 로고
    • Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease
    • Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 2013;5:52-63.
    • (2013) EMBO Mol Med , vol.5 , pp. 52-63
    • Govindarajan, N.1    Rao, P.2    Burkhardt, S.3
  • 176
    • 84890357149 scopus 로고    scopus 로고
    • Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance
    • Cook C, Carlomagno Y, Gendron TF, et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 2014;23:104-116.
    • (2014) Hum Mol Genet , vol.23 , pp. 104-116
    • Cook, C.1    Carlomagno, Y.2    Gendron, T.F.3
  • 177
    • 33749583553 scopus 로고    scopus 로고
    • Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity
    • Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 2006;15:3012-3023.
    • (2006) Hum Mol Genet , vol.15 , pp. 3012-3023
    • Kontopoulos, E.1    Parvin, J.D.2    Feany, M.B.3
  • 178
    • 34249814605 scopus 로고    scopus 로고
    • Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone
    • Inden M, Kitamura Y, Takeuchi H, et al. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 2007;101:1491-1504.
    • (2007) J Neurochem , vol.101 , pp. 1491-1504
    • Inden, M.1    Kitamura, Y.2    Takeuchi, H.3
  • 179
    • 12344291203 scopus 로고    scopus 로고
    • Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity
    • Gardian G, Yang L, Cleren C, et al. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med 2004;5:235-241.
    • (2004) Neuromolecular Med , vol.5 , pp. 235-241
    • Gardian, G.1    Yang, L.2    Cleren, C.3
  • 180
    • 70350150325 scopus 로고    scopus 로고
    • A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P + A53T transgenic mice
    • Ono K, Ikemoto M, Kawarabayashi T, et al. A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P + A53T transgenic mice. Parkinsonism Relat Disord 2009;15:649-654.
    • (2009) Parkinsonism Relat Disord , vol.15 , pp. 649-654
    • Ono, K.1    Ikemoto, M.2    Kawarabayashi, T.3
  • 181
    • 84876409566 scopus 로고    scopus 로고
    • Valproic acid neuroprotection in 6-OHDA lesioned rat, a model for Parkinson's disease
    • Monti B, Mercatelli D, Contestabile A. Valproic acid neuroprotection in 6-OHDA lesioned rat, a model for Parkinson's disease. HOAJ Biol 2012;1:1-4.
    • (2012) HOAJ Biol , vol.1 , pp. 1-4
    • Monti, B.1    Mercatelli, D.2    Contestabile, A.3
  • 182
    • 0346020435 scopus 로고    scopus 로고
    • The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
    • Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115:727-738.
    • (2003) Cell , vol.115 , pp. 727-738
    • Kawaguchi, Y.1    Kovacs, J.J.2    McLaurin, A.3
  • 183
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 2010;29:969-980.
    • (2010) EMBO J , vol.29 , pp. 969-980
    • Lee, J.Y.1    Koga, H.2    Kawaguchi, Y.3
  • 184
    • 21144444486 scopus 로고    scopus 로고
    • HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor
    • Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005;18:601-607.
    • (2005) Mol Cell , vol.18 , pp. 601-607
    • Kovacs, J.J.1    Murphy, P.J.2    Gaillard, S.3
  • 185
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007;447:859-863.
    • (2007) Nature , vol.447 , pp. 859-863
    • Pandey, U.B.1    Nie, Z.2    Batlevi, Y.3
  • 186
    • 84898011296 scopus 로고    scopus 로고
    • Sorting out functions of sirtuins in cancer
    • Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene 2014;33:1609-1620.
    • (2014) Oncogene , vol.33 , pp. 1609-1620
    • Roth, M.1    Chen, W.Y.2
  • 187
    • 84876010140 scopus 로고    scopus 로고
    • Loss of histone deacetylase 2 improves working memory and accelerates extinction learning
    • Morris MJ, Mahgoub M, Na ES, et al. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 2013;33:6401-6411.
    • (2013) J Neurosci , vol.33 , pp. 6401-6411
    • Morris, M.J.1    Mahgoub, M.2    Na, E.S.3
  • 188
    • 78651479525 scopus 로고    scopus 로고
    • HDAC3 is a critical negative regulator of long-term memory formation
    • McQuown SC, Barrett RM, Matheos DP, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011;31:764-774.
    • (2011) J Neurosci , vol.31 , pp. 764-774
    • McQuown, S.C.1    Barrett, R.M.2    Matheos, D.P.3
  • 189
    • 84864862726 scopus 로고    scopus 로고
    • An essential role for histone deacetylase 4 in synaptic plasticity and memory formation
    • Kim MS, Akhtar MW, Adachi M, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 2012;32:10879-10886.
    • (2012) J Neurosci , vol.32 , pp. 10879-10886
    • Kim, M.S.1    Akhtar, M.W.2    Adachi, M.3
  • 190
    • 84869046060 scopus 로고    scopus 로고
    • HDAC4 governs a transcriptional program essential for synaptic plasticity and memory
    • Sando R III, Gounko N, Pieraut S, et al. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 2012;151:821-834.
    • (2012) Cell , vol.151 , pp. 821-834
    • Sando, R.1    Gounko, N.2    Pieraut, S.3
  • 191
    • 35648934049 scopus 로고    scopus 로고
    • Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli
    • Renthal W, Maze I, Krishnan V, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007;56:517-529.
    • (2007) Neuron , vol.56 , pp. 517-529
    • Renthal, W.1    Maze, I.2    Krishnan, V.3
  • 192
    • 84859063277 scopus 로고    scopus 로고
    • HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience
    • Espallergues J, Teegarden SL, Veerakumar A, et al. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci 2012;32:4400-4416.
    • (2012) J Neurosci , vol.32 , pp. 4400-4416
    • Espallergues, J.1    Teegarden, S.L.2    Veerakumar, A.3
  • 193
    • 77954855825 scopus 로고    scopus 로고
    • SIRT1 is essential for normal cognitive function and synaptic plasticity
    • Michan S, Li Y, Chou MM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010;30:9695-9707.
    • (2010) J Neurosci , vol.30 , pp. 9695-9707
    • Michan, S.1    Li, Y.2    Chou, M.M.3
  • 194
    • 84874484700 scopus 로고    scopus 로고
    • Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
    • Bellet MM, Nakahata Y, Boudjelal M, et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 2013;110:3333-3338.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 3333-3338
    • Bellet, M.M.1    Nakahata, Y.2    Boudjelal, M.3
  • 195
    • 84893459319 scopus 로고    scopus 로고
    • SIRT1 in neurodevelopment and brain senescence
    • Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014;81:471-483.
    • (2014) Neuron , vol.81 , pp. 471-483
    • Herskovits, A.Z.1    Guarente, L.2
  • 196
    • 84867431257 scopus 로고    scopus 로고
    • Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death
    • Bardai FH, Price V, Zaayman M, et al. Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 2012;287:35444-35453.
    • (2012) J Biol Chem , vol.287 , pp. 35444-35453
    • Bardai, F.H.1    Price, V.2    Zaayman, M.3
  • 197
    • 79551517312 scopus 로고    scopus 로고
    • Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta
    • Bardai FH, D'Mello SR. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 2011;31:1746-1751.
    • (2011) J Neurosci , vol.31 , pp. 1746-1751
    • Bardai, F.H.1    D'Mello, S.R.2
  • 198
    • 0142135022 scopus 로고    scopus 로고
    • Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2 + )//calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival
    • Linseman DA, Bartley CM, Le SS, et al. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2 + )//calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem 2003;278:41472-41481.
    • (2003) J Biol Chem , vol.278 , pp. 41472-41481
    • Linseman, D.A.1    Bartley, C.M.2    Le, S.S.3
  • 199
    • 46149115160 scopus 로고    scopus 로고
    • HDAC4 inhibits cell-cycle progression and protects neurons from cell death
    • Majdzadeh N, Wang L, Morrison BE, et al. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol 2008;68:1076-1092.
    • (2008) Dev Neurobiol , vol.68 , pp. 1076-1092
    • Majdzadeh, N.1    Wang, L.2    Morrison, B.E.3
  • 200
    • 33646265796 scopus 로고    scopus 로고
    • Neuroprotection by histone deacetylase-related protein
    • Morrison BE, Majdzadeh N, Zhang X, et al. Neuroprotection by histone deacetylase-related protein. Mol Cell Biol 2006;26:3550-3564.
    • (2006) Mol Cell Biol , vol.26 , pp. 3550-3564
    • Morrison, B.E.1    Majdzadeh, N.2    Zhang, X.3
  • 201
    • 58149339917 scopus 로고    scopus 로고
    • Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity
    • Pfister JA, Ma C, Morrison BE, D'Mello SR. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One 2008;3:e4090.
    • (2008) PLoS One , vol.3 , pp. e4090
    • Pfister, J.A.1    Ma, C.2    Morrison, B.E.3    D'Mello, S.R.4
  • 202
    • 34247130540 scopus 로고    scopus 로고
    • Distribution of histone deacetylases 1-11 in the rat brain
    • Broide RS, Redwine JM, Aftahi N, et al. Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci 2007;31:47-58.
    • (2007) J Mol Neurosci , vol.31 , pp. 47-58
    • Broide, R.S.1    Redwine, J.M.2    Aftahi, N.3
  • 203
    • 84865274411 scopus 로고    scopus 로고
    • The neurobiology of sirtuins and their role in neurodegeneration
    • Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 2012;33:494-501.
    • (2012) Trends Pharmacol Sci , vol.33 , pp. 494-501
    • Donmez, G.1
  • 204
    • 80054123174 scopus 로고    scopus 로고
    • Protective effects and mechanisms of sirtuins in the nervous system
    • Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 2011;95:373-395.
    • (2011) Prog Neurobiol , vol.95 , pp. 373-395
    • Zhang, F.1    Wang, S.2    Gan, L.3
  • 205
    • 33846122993 scopus 로고    scopus 로고
    • Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug
    • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007;25:84-90.
    • (2007) Nat Biotechnol , vol.25 , pp. 84-90
    • Marks, P.A.1    Breslow, R.2
  • 206
    • 77955355838 scopus 로고    scopus 로고
    • Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A
    • Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 2010;132:10842-10846.
    • (2010) J Am Chem Soc , vol.132 , pp. 10842-10846
    • Butler, K.V.1    Kalin, J.2    Brochier, C.3
  • 207
    • 34547122494 scopus 로고    scopus 로고
    • HDAC inhibitors: clinical update and mechanism-based potential
    • Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 2007;74:659-671.
    • (2007) Biochem Pharmacol , vol.74 , pp. 659-671
    • Glaser, K.B.1
  • 208
    • 0344640906 scopus 로고    scopus 로고
    • Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation
    • Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003;100:4389-4394.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 4389-4394
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3
  • 209
    • 0036735385 scopus 로고    scopus 로고
    • FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases
    • Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 2002;62:4916-4921.
    • (2002) Cancer Res , vol.62 , pp. 4916-4921
    • Furumai, R.1    Matsuyama, A.2    Kobashi, N.3
  • 210
    • 34547864236 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors: molecular mechanisms of action
    • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007;26:5541-5552.
    • (2007) Oncogene , vol.26 , pp. 5541-5552
    • Xu, W.S.1    Parmigiani, R.B.2    Marks, P.A.3
  • 211
    • 6344222799 scopus 로고    scopus 로고
    • Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor
    • Vannini A, Volpari C, Filocamo G, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 2004;101:15064-15069.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15064-15069
    • Vannini, A.1    Volpari, C.2    Filocamo, G.3
  • 212
    • 55749103407 scopus 로고    scopus 로고
    • The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice
    • Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci USA 2008;105:15564-15569.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15564-15569
    • Thomas, E.A.1    Coppola, G.2    Desplats, P.A.3
  • 213
    • 0041571570 scopus 로고    scopus 로고
    • Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
    • Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 2003;42:9249-9256.
    • (2003) Biochemistry , vol.42 , pp. 9249-9256
    • Sauve, A.A.1    Schramm, V.L.2
  • 214
    • 0035910031 scopus 로고    scopus 로고
    • Identification of a small molecule inhibitor of Sir2p
    • Bedalov A, Gatbonton T, Irvine WP, et al. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001;98:15113-15118.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15113-15118
    • Bedalov, A.1    Gatbonton, T.2    Irvine, W.P.3
  • 215
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • Grozinger CM, Chao ED, Blackwell HE, et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001;276:38837-38843.
    • (2001) J Biol Chem , vol.276 , pp. 38837-38843
    • Grozinger, C.M.1    Chao, E.D.2    Blackwell, H.E.3
  • 216
    • 79961053798 scopus 로고    scopus 로고
    • A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase
    • Taylor DM, Balabadra U, Xiang Z, et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem Biol 2011;6:540-546.
    • (2011) ACS Chem Biol , vol.6 , pp. 540-546
    • Taylor, D.M.1    Balabadra, U.2    Xiang, Z.3
  • 217
    • 84866897522 scopus 로고    scopus 로고
    • Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors
    • Friden-Saxin M, Seifert T, Landergren MR, et al. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors. J Med Chem 2012;55:7104-7113.
    • (2012) J Med Chem , vol.55 , pp. 7104-7113
    • Friden-Saxin, M.1    Seifert, T.2    Landergren, M.R.3
  • 218
    • 0036173896 scopus 로고    scopus 로고
    • Interaction of Huntington disease protein with transcriptional activator Sp1
    • Li SH, Cheng AL, Zhou H, et al. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 2002;22:1277-1287.
    • (2002) Mol Cell Biol , vol.22 , pp. 1277-1287
    • Li, S.H.1    Cheng, A.L.2    Zhou, H.3
  • 219
    • 0032833981 scopus 로고    scopus 로고
    • Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin
    • Boutell JM, Thomas P, Neal JW, et al. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum Mol Genet 1999;8:1647-1655.
    • (1999) Hum Mol Genet , vol.8 , pp. 1647-1655
    • Boutell, J.M.1    Thomas, P.2    Neal, J.W.3
  • 220
    • 0141742228 scopus 로고    scopus 로고
    • The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor
    • Takano H, Gusella JF. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 2002;3:15.
    • (2002) BMC Neurosci , vol.3 , pp. 15
    • Takano, H.1    Gusella, J.F.2
  • 221
    • 0037150687 scopus 로고    scopus 로고
    • Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease
    • Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002;296:2238-2243.
    • (2002) Science , vol.296 , pp. 2238-2243
    • Dunah, A.W.1    Jeong, H.2    Griffin, A.3
  • 223
    • 0035909330 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
    • Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.
    • (2001) Nature , vol.413 , pp. 739-743
    • Steffan, J.S.1    Bodai, L.2    Pallos, J.3
  • 224
    • 23944438950 scopus 로고    scopus 로고
    • The AXH domain of ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins
    • Tsuda H, Jafar-Nejad H, Patel AJ, et al. The AXH domain of ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell 2005;122:633-644.
    • (2005) Cell , vol.122 , pp. 633-644
    • Tsuda, H.1    Jafar-Nejad, H.2    Patel, A.J.3
  • 225
    • 33845657872 scopus 로고    scopus 로고
    • ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology
    • Lam YC, Bowman AB, Jafar-Nejad P, et al. ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 2006;127:1335-1347.
    • (2006) Cell , vol.127 , pp. 1335-1347
    • Lam, Y.C.1    Bowman, A.B.2    Jafar-Nejad, P.3
  • 226
    • 25144468986 scopus 로고    scopus 로고
    • Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1
    • Mizutani A, Wang L, Rajan H, et al. Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J 2005;24:3339-3351.
    • (2005) EMBO J , vol.24 , pp. 3339-3351
    • Mizutani, A.1    Wang, L.2    Rajan, H.3
  • 227
    • 33750815242 scopus 로고    scopus 로고
    • RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice
    • Serra HG, Duvick L, Zu T, et al. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 2006;127:697-708.
    • (2006) Cell , vol.127 , pp. 697-708
    • Serra, H.G.1    Duvick, L.2    Zu, T.3
  • 228
    • 0030716768 scopus 로고    scopus 로고
    • The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1
    • Matilla A, Koshy BT, Cummings CJ, et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 1997;389:974-978.
    • (1997) Nature , vol.389 , pp. 974-978
    • Matilla, A.1    Koshy, B.T.2    Cummings, C.J.3
  • 229
    • 0034703397 scopus 로고    scopus 로고
    • Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein
    • Davidson JD, Riley B, Burright EN, et al. Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet 2000;9:2305-2312.
    • (2000) Hum Mol Genet , vol.9 , pp. 2305-2312
    • Davidson, J.D.1    Riley, B.2    Burright, E.N.3
  • 230
    • 0034701797 scopus 로고    scopus 로고
    • A novel protein with RNA-binding motifs interacts with ataxin-2
    • Shibata H, Huynh DP, Pulst SM. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet 2000;9:1303-1313.
    • (2000) Hum Mol Genet , vol.9 , pp. 1303-1313
    • Shibata, H.1    Huynh, D.P.2    Pulst, S.M.3
  • 231
    • 77956155218 scopus 로고    scopus 로고
    • Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS
    • Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:1069-1075.
    • (2010) Nature , vol.466 , pp. 1069-1075
    • Elden, A.C.1    Kim, H.J.2    Hart, M.P.3
  • 232
    • 34247229733 scopus 로고    scopus 로고
    • Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules
    • Nonhoff U, Ralser M, Welzel F, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007;18:1385-1396.
    • (2007) Mol Biol Cell , vol.18 , pp. 1385-1396
    • Nonhoff, U.1    Ralser, M.2    Welzel, F.3
  • 233
    • 84866179163 scopus 로고    scopus 로고
    • ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice
    • Damrath E, Heck MV, Gispert S, et al. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet 2012;8:e1002920.
    • (2012) PLoS Genet , vol.8 , pp. e1002920
    • Damrath, E.1    Heck, M.V.2    Gispert, S.3
  • 234
    • 79960118539 scopus 로고    scopus 로고
    • FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3
    • Araujo J, Breuer P, Dieringer S, et al. FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 2011;20:2928-2941.
    • (2011) Hum Mol Genet , vol.20 , pp. 2928-2941
    • Araujo, J.1    Breuer, P.2    Dieringer, S.3
  • 235
    • 0042691818 scopus 로고    scopus 로고
    • Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis
    • Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 2003;23:6469-6483.
    • (2003) Mol Cell Biol , vol.23 , pp. 6469-6483
    • Doss-Pepe, E.W.1    Stenroos, E.S.2    Johnson, W.G.3    Madura, K.4
  • 236
    • 0033818112 scopus 로고    scopus 로고
    • Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription
    • Shimohata T, Nakajima T, Yamada M, et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 2000;26:29-36.
    • (2000) Nat Genet , vol.26 , pp. 29-36
    • Shimohata, T.1    Nakajima, T.2    Yamada, M.3
  • 237
    • 33750962224 scopus 로고    scopus 로고
    • Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation
    • Evert BO, Araujo J, Vieira-Saecker AM, et al. Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci 2006;26:11474-11486.
    • (2006) J Neurosci , vol.26 , pp. 11474-11486
    • Evert, B.O.1    Araujo, J.2    Vieira-Saecker, A.M.3
  • 238
    • 17944370599 scopus 로고    scopus 로고
    • Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7
    • La Spada AR, Fu YH, Sopher BL, et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 2001;31:913-927.
    • (2001) Neuron , vol.31 , pp. 913-927
    • La Spada, A.R.1    Fu, Y.H.2    Sopher, B.L.3
  • 239
    • 14344276400 scopus 로고    scopus 로고
    • Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions
    • Lebre AS, Jamot L, Takahashi J, et al. Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions. Hum Mol Genet 2001;10:1201-1213.
    • (2001) Hum Mol Genet , vol.10 , pp. 1201-1213
    • Lebre, A.S.1    Jamot, L.2    Takahashi, J.3
  • 240
    • 84874732300 scopus 로고    scopus 로고
    • Cytoplasmic location of alpha1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death
    • Takahashi M, Obayashi M, Ishiguro T, et al. Cytoplasmic location of alpha1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death. PLoS One 2013;8:e50121.
    • (2013) PLoS One , vol.8 , pp. e50121
    • Takahashi, M.1    Obayashi, M.2    Ishiguro, T.3
  • 241
    • 84859861243 scopus 로고    scopus 로고
    • Role of the CCAAT-binding protein NFY in SCA17 pathogenesis
    • Lee LC, Chen CM, Wang HC, et al. Role of the CCAAT-binding protein NFY in SCA17 pathogenesis. PLoS One 2012;7:e35302.
    • (2012) PLoS One , vol.7 , pp. e35302
    • Lee, L.C.1    Chen, C.M.2    Wang, H.C.3
  • 242
    • 27144552720 scopus 로고    scopus 로고
    • Mutational analysis of BTAF1-TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants
    • Klejman MP, Zhao X, van Schaik FM, et al. Mutational analysis of BTAF1-TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants. Nucleic Acids Res 2005;33:5426-5436.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5426-5436
    • Klejman, M.P.1    Zhao, X.2    van Schaik, F.M.3
  • 243
    • 0032784653 scopus 로고    scopus 로고
    • The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription
    • Alen P, Claessens F, Verhoeven G, et al. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 1999;19:6085-6097.
    • (1999) Mol Cell Biol , vol.19 , pp. 6085-6097
    • Alen, P.1    Claessens, F.2    Verhoeven, G.3
  • 244
    • 0034617058 scopus 로고    scopus 로고
    • p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation
    • Fu M, Wang C, Reutens AT, et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 2000;275:20853-20860.
    • (2000) J Biol Chem , vol.275 , pp. 20853-20860
    • Fu, M.1    Wang, C.2    Reutens, A.T.3
  • 245
    • 5044238220 scopus 로고    scopus 로고
    • Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells
    • Masiello D, Chen SY, Xu Y, et al. Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells. Mol Endocrinol 2004;18:2388-2401.
    • (2004) Mol Endocrinol , vol.18 , pp. 2388-2401
    • Masiello, D.1    Chen, S.Y.2    Xu, Y.3
  • 246
    • 0030790495 scopus 로고    scopus 로고
    • Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF
    • McEwan IJ, Gustafsson J. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci USA 1997;94:8485-8490.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 8485-8490
    • McEwan, I.J.1    Gustafsson, J.2
  • 247
    • 44649140352 scopus 로고    scopus 로고
    • Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates
    • Wang L, Charroux B, Kerridge S, Tsai CC. Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep 2008;9:555-562.
    • (2008) EMBO Rep , vol.9 , pp. 555-562
    • Wang, L.1    Charroux, B.2    Kerridge, S.3    Tsai, C.C.4
  • 248
    • 0031807249 scopus 로고    scopus 로고
    • Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins
    • Wood JD, Yuan J, Margolis RL, et al. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 1998;11:149-160.
    • (1998) Mol Cell Neurosci , vol.11 , pp. 149-160
    • Wood, J.D.1    Yuan, J.2    Margolis, R.L.3
  • 249
    • 0034605071 scopus 로고    scopus 로고
    • Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription
    • Wood JD, Nucifora FC Jr, Duan K, et al. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J Cell Biol 2000;150:939-948.
    • (2000) J Cell Biol , vol.150 , pp. 939-948
    • Wood, J.D.1    Nucifora, F.C.2    Duan, K.3
  • 250
    • 0037452775 scopus 로고    scopus 로고
    • Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease
    • Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041-2046.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 2041-2046
    • Hockly, E.1    Richon, V.M.2    Woodman, B.3
  • 251
    • 33644830913 scopus 로고    scopus 로고
    • Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity
    • Bates EA, Victor M, Jones AK, et al. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 2006;26:2830-2838.
    • (2006) J Neurosci , vol.26 , pp. 2830-2838
    • Bates, E.A.1    Victor, M.2    Jones, A.K.3
  • 252
    • 34447317536 scopus 로고    scopus 로고
    • Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models
    • Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 2007;16:1293-1306.
    • (2007) Hum Mol Genet , vol.16 , pp. 1293-1306
    • Sadri-Vakili, G.1    Bouzou, B.2    Benn, C.L.3
  • 253
    • 53249114029 scopus 로고    scopus 로고
    • Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
    • Pallos J, Bodai L, Lukacsovich T, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 2008;17:3767-3775.
    • (2008) Hum Mol Genet , vol.17 , pp. 3767-3775
    • Pallos, J.1    Bodai, L.2    Lukacsovich, T.3
  • 254
    • 70349195820 scopus 로고    scopus 로고
    • Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington's disease
    • Zadori D, Geisz A, Vamos E, et al. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington's disease. Pharmacol Biochem Behav 2009;94:148-153.
    • (2009) Pharmacol Biochem Behav , vol.94 , pp. 148-153
    • Zadori, D.1    Geisz, A.2    Vamos, E.3
  • 255
    • 78349291479 scopus 로고    scopus 로고
    • Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease
    • Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol Dis 2011;41:43-50.
    • (2011) Neurobiol Dis , vol.41 , pp. 43-50
    • Hathorn, T.1    Snyder-Keller, A.2    Messer, A.3
  • 256
    • 0142157600 scopus 로고    scopus 로고
    • Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice
    • Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003;23:9418-9427.
    • (2003) J Neurosci , vol.23 , pp. 9418-9427
    • Ferrante, R.J.1    Kubilus, J.K.2    Lee, J.3
  • 257
    • 19944431703 scopus 로고    scopus 로고
    • Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease
    • Gardian G, Browne SE, Choi DK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem 2005;280:556-563.
    • (2005) J Biol Chem , vol.280 , pp. 556-563
    • Gardian, G.1    Browne, S.E.2    Choi, D.K.3
  • 258
    • 84862819579 scopus 로고    scopus 로고
    • Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease
    • Jia H, Pallos J, Jacques V, et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease. Neurobiol Dis 2012;46:351-361.
    • (2012) Neurobiol Dis , vol.46 , pp. 351-361
    • Jia, H.1    Pallos, J.2    Jacques, V.3
  • 259
    • 82155182012 scopus 로고    scopus 로고
    • SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease
    • Mielcarek M, Benn CL, Franklin SA, et al. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease. PLoS One 2011;6:e27746.
    • (2011) PLoS One , vol.6 , pp. e27746
    • Mielcarek, M.1    Benn, C.L.2    Franklin, S.A.3
  • 260
    • 84870378784 scopus 로고    scopus 로고
    • Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems
    • Jia H, Kast RJ, Steffan JS, Thomas EA. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum Mol Genet 2012;21:5280-5293.
    • (2012) Hum Mol Genet , vol.21 , pp. 5280-5293
    • Jia, H.1    Kast, R.J.2    Steffan, J.S.3    Thomas, E.A.4
  • 261
    • 80054772539 scopus 로고    scopus 로고
    • Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease
    • Chiu CT, Liu G, Leeds P, Chuang DM. Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease. Neuropsychopharmacology 2011;36:2406-2421.
    • (2011) Neuropsychopharmacology , vol.36 , pp. 2406-2421
    • Chiu, C.T.1    Liu, G.2    Leeds, P.3    Chuang, D.M.4
  • 262
    • 77952413052 scopus 로고    scopus 로고
    • SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis
    • Luthi-Carter R, Taylor DM, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci USA 2010;107:7927-7932.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7927-7932
    • Luthi-Carter, R.1    Taylor, D.M.2    Pallos, J.3
  • 263
    • 84871706585 scopus 로고    scopus 로고
    • The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models
    • Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models. Cell Rep 2012;2:1492-1497.
    • (2012) Cell Rep , vol.2 , pp. 1492-1497
    • Chopra, V.1    Quinti, L.2    Kim, J.3
  • 264
    • 78650613146 scopus 로고    scopus 로고
    • HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3
    • Chou AH, Chen SY, Yeh TH, et al. HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol Dis 2011;41:481-488.
    • (2011) Neurobiol Dis , vol.41 , pp. 481-488
    • Chou, A.H.1    Chen, S.Y.2    Yeh, T.H.3
  • 265
    • 84873874848 scopus 로고    scopus 로고
    • Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4
    • Yi J, Zhang L, Tang B, et al. Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. PLoS One 2013;8:e54792.
    • (2013) PLoS One , vol.8 , pp. e54792
    • Yi, J.1    Zhang, L.2    Tang, B.3
  • 266
    • 84922644566 scopus 로고    scopus 로고
    • Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation
    • Chou AH, Chen YL, Hu SH, et al. Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation. Brain Res 2014;1583:220-229.
    • (2014) Brain Res , vol.1583 , pp. 220-229
    • Chou, A.H.1    Chen, Y.L.2    Hu, S.H.3
  • 267
    • 2942733520 scopus 로고    scopus 로고
    • Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy
    • Minamiyama M, Katsuno M, Adachi H, et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2004;13:1183-1192.
    • (2004) Hum Mol Genet , vol.13 , pp. 1183-1192
    • Minamiyama, M.1    Katsuno, M.2    Adachi, H.3
  • 268
    • 33744965475 scopus 로고    scopus 로고
    • Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA
    • Ying M, Xu R, Wu X, et al. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 2006;281:12580-12586.
    • (2006) J Biol Chem , vol.281 , pp. 12580-12586
    • Ying, M.1    Xu, R.2    Wu, X.3
  • 269
    • 66049101024 scopus 로고    scopus 로고
    • Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development
    • Montgomery RL, Hsieh J, Barbosa AC, et al. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 2009;106:7876-7881.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 7876-7881
    • Montgomery, R.L.1    Hsieh, J.2    Barbosa, A.C.3
  • 270
    • 67649797866 scopus 로고    scopus 로고
    • HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction
    • Ye F, Chen Y, Hoang T, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009;12:829-838.
    • (2009) Nat Neurosci , vol.12 , pp. 829-838
    • Ye, F.1    Chen, Y.2    Hoang, T.3
  • 271
    • 84899489243 scopus 로고    scopus 로고
    • HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia
    • Jacob C, Lotscher P, Engler S, et al. HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia. J Neurosci 2014;34:6112-6122.
    • (2014) J Neurosci , vol.34 , pp. 6112-6122
    • Jacob, C.1    Lotscher, P.2    Engler, S.3
  • 272
    • 58149389397 scopus 로고    scopus 로고
    • HDAC4 regulates neuronal survival in normal and diseased retinas
    • Chen B, Cepko CL. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 2009;323:256-259.
    • (2009) Science , vol.323 , pp. 256-259
    • Chen, B.1    Cepko, C.L.2
  • 273
    • 84887959502 scopus 로고    scopus 로고
    • Injury-induced HDAC5 nuclear export is essential for axon regeneration
    • Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 2013;155:894-908.
    • (2013) Cell , vol.155 , pp. 894-908
    • Cho, Y.1    Sloutsky, R.2    Naegle, K.M.3    Cavalli, V.4
  • 274
    • 77958569746 scopus 로고    scopus 로고
    • Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development
    • Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 2010;5:e12908.
    • (2010) PLoS One , vol.5 , pp. e12908
    • Tapia, M.1    Wandosell, F.2    Garrido, J.J.3
  • 275
    • 84885615382 scopus 로고    scopus 로고
    • Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation
    • Ageta-Ishihara N, Miyata T, Ohshima C, et al. Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nat Commun 2013;4:2532.
    • (2013) Nat Commun , vol.4 , pp. 2532
    • Ageta-Ishihara, N.1    Miyata, T.2    Ohshima, C.3
  • 276
    • 77951863880 scopus 로고    scopus 로고
    • Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons
    • Sugo N, Oshiro H, Takemura M, et al. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 2010;31:1521-1532.
    • (2010) Eur J Neurosci , vol.31 , pp. 1521-1532
    • Sugo, N.1    Oshiro, H.2    Takemura, M.3
  • 277
    • 84888004300 scopus 로고    scopus 로고
    • Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3
    • Li XH, Chen C, Tu Y, et al. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol 2013;48:490-499.
    • (2013) Mol Neurobiol , vol.48 , pp. 490-499
    • Li, X.H.1    Chen, C.2    Tu, Y.3
  • 278
    • 77953724950 scopus 로고    scopus 로고
    • Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells
    • Sugino T, Maruyama M, Tanno M, et al. Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett 2010;584:2821-2826.
    • (2010) FEBS Lett , vol.584 , pp. 2821-2826
    • Sugino, T.1    Maruyama, M.2    Tanno, M.3
  • 279
    • 84867131638 scopus 로고    scopus 로고
    • SIRT1 regulates dendritic development in hippocampal neurons
    • Codocedo JF, Allard C, Godoy JA, et al. SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 2012;7:e47073.
    • (2012) PLoS One , vol.7 , pp. e47073
    • Codocedo, J.F.1    Allard, C.2    Godoy, J.A.3
  • 280
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 2008;105:15599-15604.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15599-15604
    • Hisahara, S.1    Chiba, S.2    Matsumoto, H.3
  • 281
    • 42349085704 scopus 로고    scopus 로고
    • Sirt1 contributes critically to the redox-dependent fate of neural progenitors
    • Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008;10:385-394.
    • (2008) Nat Cell Biol , vol.10 , pp. 385-394
    • Prozorovski, T.1    Schulze-Topphoff, U.2    Glumm, R.3
  • 282
    • 80055085172 scopus 로고    scopus 로고
    • Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
    • Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 2011;108:E952-E961.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. E952-E961
    • Beirowski, B.1    Gustin, J.2    Armour, S.M.3
  • 284
    • 65549123471 scopus 로고    scopus 로고
    • HDAC2 negatively regulates memory formation and synaptic plasticity
    • Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55-60.
    • (2009) Nature , vol.459 , pp. 55-60
    • Guan, J.S.1    Haggarty, S.J.2    Giacometti, E.3
  • 285
    • 84907289343 scopus 로고    scopus 로고
    • HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels
    • Jiang Y, Hsieh J. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels. Proc Natl Acad Sci USA 2014;111:13541-13546.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 13541-13546
    • Jiang, Y.1    Hsieh, J.2
  • 286
    • 84875974245 scopus 로고    scopus 로고
    • HDAC3 is a negative regulator of cocaine-context-associated memory formation
    • Rogge GA, Singh H, Dang R, Wood MA. HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci 2013;33:6623-6632.
    • (2013) J Neurosci , vol.33 , pp. 6623-6632
    • Rogge, G.A.1    Singh, H.2    Dang, R.3    Wood, M.A.4
  • 287
    • 26944474790 scopus 로고    scopus 로고
    • Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum
    • Kumar A, Choi KH, Renthal W, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005;48:303-314.
    • (2005) Neuron , vol.48 , pp. 303-314
    • Kumar, A.1    Choi, K.H.2    Renthal, W.3
  • 288
    • 84856643478 scopus 로고    scopus 로고
    • Loss of deacetylation activity of Hdac6 affects emotional behavior in mice
    • Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS One 2012;7:e30924.
    • (2012) PLoS One , vol.7 , pp. e30924
    • Fukada, M.1    Hanai, A.2    Nakayama, A.3
  • 289
    • 84876256827 scopus 로고    scopus 로고
    • Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues
    • Lu M, Sarruf DA, Li P, et al. Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J Biol Chem 2013;288:10722-10735.
    • (2013) J Biol Chem , vol.288 , pp. 10722-10735
    • Lu, M.1    Sarruf, D.A.2    Li, P.3
  • 290
    • 79959726080 scopus 로고    scopus 로고
    • Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function
    • Wu D, Qiu Y, Gao X, et al. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. PLoS One 2011;6:e21759.
    • (2011) PLoS One , vol.6 , pp. e21759
    • Wu, D.1    Qiu, Y.2    Gao, X.3
  • 291
    • 45549096918 scopus 로고    scopus 로고
    • SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
    • Li Y, Xu W, McBurney MW, Longo VD. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 2008;8:38-48.
    • (2008) Cell Metab , vol.8 , pp. 38-48
    • Li, Y.1    Xu, W.2    McBurney, M.W.3    Longo, V.D.4
  • 292
    • 84874815449 scopus 로고    scopus 로고
    • SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus
    • Saharan S, Jhaveri DJ, Bartlett PF. SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J Neurosci Res 2013;91:642-659.
    • (2013) J Neurosci Res , vol.91 , pp. 642-659
    • Saharan, S.1    Jhaveri, D.J.2    Bartlett, P.F.3
  • 293
    • 77956644726 scopus 로고    scopus 로고
    • SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
    • Ramadori G, Fujikawa T, Fukuda M, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab 2010;12:78-87.
    • (2010) Cell Metab , vol.12 , pp. 78-87
    • Ramadori, G.1    Fujikawa, T.2    Fukuda, M.3
  • 294
    • 84896074276 scopus 로고    scopus 로고
    • Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice
    • Sasaki T, Kikuchi O, Shimpuku M, et al. Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia 2014;57:819-831.
    • (2014) Diabetologia , vol.57 , pp. 819-831
    • Sasaki, T.1    Kikuchi, O.2    Shimpuku, M.3
  • 295
    • 68549085061 scopus 로고    scopus 로고
    • Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection
    • Kakefuda K, Fujita Y, Oyagi A, et al. Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun 2009;387:784-788.
    • (2009) Biochem Biophys Res Commun , vol.387 , pp. 784-788
    • Kakefuda, K.1    Fujita, Y.2    Oyagi, A.3
  • 296
    • 84878584955 scopus 로고    scopus 로고
    • Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain
    • Rafalski VA, Ho PP, Brett JO, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 2013;15:614-624.
    • (2013) Nat Cell Biol , vol.15 , pp. 614-624
    • Rafalski, V.A.1    Ho, P.P.2    Brett, J.O.3
  • 297
    • 84879391795 scopus 로고    scopus 로고
    • SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
    • Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013;153:1448-1460.
    • (2013) Cell , vol.153 , pp. 1448-1460
    • Chang, H.C.1    Guarente, L.2
  • 298
    • 72849130743 scopus 로고    scopus 로고
    • Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
    • Cohen DE, Supinski AM, Bonkowski MS, et al. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 2009;23:2812-2817.
    • (2009) Genes Dev , vol.23 , pp. 2812-2817
    • Cohen, D.E.1    Supinski, A.M.2    Bonkowski, M.S.3
  • 299
    • 77955344258 scopus 로고    scopus 로고
    • SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
    • Satoh A, Brace CS, Ben-Josef G, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci 2010;30:10220-10232.
    • (2010) J Neurosci , vol.30 , pp. 10220-10232
    • Satoh, A.1    Brace, C.S.2    Ben-Josef, G.3
  • 300
    • 77956185062 scopus 로고    scopus 로고
    • A novel pathway regulates memory and plasticity via SIRT1 and miR-134
    • Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010;466:1105-1109.
    • (2010) Nature , vol.466 , pp. 1105-1109
    • Gao, J.1    Wang, W.Y.2    Mao, Y.W.3
  • 301
    • 84885156997 scopus 로고    scopus 로고
    • Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action
    • Ferguson D, Koo JW, Feng J, et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action. J Neurosci 2013;33:16088-16098.
    • (2013) J Neurosci , vol.33 , pp. 16088-16098
    • Ferguson, D.1    Koo, J.W.2    Feng, J.3
  • 302
    • 84915750006 scopus 로고    scopus 로고
    • Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid
    • Shih J, Mason A, Liu L, et al. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem 2014;131:573-581.
    • (2014) J Neurochem , vol.131 , pp. 573-581
    • Shih, J.1    Mason, A.2    Liu, L.3
  • 303
    • 78650724968 scopus 로고    scopus 로고
    • Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
    • Schwer B, Schumacher B, Lombard DB, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 2010;107:21790-21794.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 21790-21794
    • Schwer, B.1    Schumacher, B.2    Lombard, D.B.3
  • 304
    • 84902440245 scopus 로고    scopus 로고
    • SIRT6 is required for normal retinal function
    • Silberman DM, Ross K, Sande PH, et al. SIRT6 is required for normal retinal function. PLoS One 2014;9:e98831.
    • (2014) PLoS One , vol.9 , pp. e98831
    • Silberman, D.M.1    Ross, K.2    Sande, P.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.