-
3
-
-
84860686738
-
A 22 nm IA multi-CPU and GPU system-on-chip
-
S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers, I. Stolero, and A. Subbiah, "A 22 nm IA multi-CPU and GPU system-on-chip," in Dig. Tech Papers Int. Solid-State Circuits Conf., 2012, pp. 56-57.
-
(2012)
Dig. Tech Papers Int. Solid-State Circuits Conf.
, pp. 56-57
-
-
Damaraju, S.1
George, V.2
Jahagirdar, S.3
Khondker, T.4
Milstrey, R.5
Sarkar, S.6
Siers, S.7
Stolero, I.8
Subbiah, A.9
-
4
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004. (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
5
-
-
19944428003
-
Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
-
DOI 10.1021/jp040650f
-
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," J. Phys. Chem. B, vol. 108, pp. 19912-19916, 2004. (Pubitemid 40079151)
-
(2004)
Journal of Physical Chemistry B
, vol.108
, Issue.52
, pp. 19912-19916
-
-
Berger, C.1
Song, Z.2
Li, T.3
Li, X.4
Ogbazghi, A.Y.5
Feng, R.6
Dai, Z.7
Alexei, N.8
Conrad, M.E.H.9
First, P.N.10
De Heer, W.A.11
-
6
-
-
36149007340
-
The band theory of graphite
-
P. R. Wallace, "The band theory of graphite," Phys. Rev., vol. 71, pp. 622-634, 1947.
-
(1947)
Phys. Rev.
, vol.71
, pp. 622-634
-
-
Wallace, P.R.1
-
7
-
-
80053011262
-
Dunnste Kohlenstoff-Folien
-
H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, "Du?nnste Kohlenstoff-Folien," Z. Naturforschg., vol. 17b, pp. 150-153, 1962.
-
(1962)
Z. Naturforschg.
, vol.17 B
, pp. 150-153
-
-
Boehm, H.P.1
Clauss, A.2
Fischer, G.O.3
Hofmann, U.4
-
8
-
-
18744393673
-
Platinum surface LEED rings
-
J. W. May, "Platinum surface LEED rings," Surf. Sci., vol. 17, pp. 267-270, 1969.
-
(1969)
Surf. Sci.
, vol.17
, pp. 267-270
-
-
May, J.W.1
-
9
-
-
25744467427
-
LEED and Auger electron observations of the SiC(0001) surface
-
A. J. van Bommel, J. E. Crombeen, and A. van Tooren, "LEED and Auger electron observations of the SiC(0001) surface," Surf. Sci., vol. 48, pp. 463-472, 1975.
-
(1975)
Surf. Sci.
, vol.48
, pp. 463-472
-
-
Van Bommel, A.J.1
Crombeen, J.E.2
Van Tooren, A.3
-
10
-
-
0042305949
-
Nomenclature and terminology of graphitic intercalation compounds
-
H.-P. Boehm, R. Setton, and E. Stumpp, "Nomenclature and terminology of graphitic intercalation compounds," Pure Appl. Chem., vol. 66, pp. 1893-1901, 1994.
-
(1994)
Pure Appl. Chem.
, vol.66
, pp. 1893-1901
-
-
Boehm, H.-P.1
Setton, R.2
Stumpp, E.3
-
11
-
-
34547841212
-
A graphene field-effect device
-
Apr
-
M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, "A graphene field-effect device," IEEE Electron Device Lett., vol. 28, no. 4, pp. 282-284, Apr. 2007.
-
(2007)
IEEE Electron Device Lett.
, vol.28
, Issue.4
, pp. 282-284
-
-
Lemme, M.C.1
Echtermeyer, T.J.2
Baus, M.3
Kurz, H.4
-
12
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science, vol. 319, pp. 1229-1232, 2008. (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
13
-
-
76249106631
-
100-GHz transistors from wafer-scale epitaxial grapheme
-
Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, "100-GHz transistors from wafer-scale epitaxial grapheme," Science, vol. 327, p. 662, 2010.
-
(2010)
Science
, vol.327
, pp. 662
-
-
Lin, Y.-M.1
Dimitrakopoulos, C.2
Jenkins, K.A.3
Farmer, D.B.4
Chiu, H.-Y.5
Grill, A.6
Avouris, P.7
-
14
-
-
77956939304
-
High-speed graphene transistors with a self-aligned nanowire gate
-
L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, "High-speed graphene transistors with a self-aligned nanowire gate," Nature, vol. 467, pp. 305-308, 2010.
-
(2010)
Nature
, vol.467
, pp. 305-308
-
-
Liao, L.1
Lin, Y.-C.2
Bao, M.3
Cheng, R.4
Bai, J.5
Liu, Y.6
Qu, Y.7
Wang, K.L.8
Huang, Y.9
Duan, X.10
-
15
-
-
79958719398
-
Wafer-scale graphene integrated circuit
-
Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, "Wafer-scale graphene integrated circuit," Science, vol. 332, pp. 1294-1297, 2011.
-
(2011)
Science
, vol.332
, pp. 1294-1297
-
-
Lin, Y.-M.1
Valdes-Garcia, A.2
Han, S.-J.3
Farmer, D.B.4
Meric, I.5
Sun, Y.6
Wu, Y.7
Dimitrakopoulos, C.8
Grill, A.9
Avouris, P.10
Jenkins, K.A.11
-
16
-
-
84863927930
-
High-frequency self-aligned graphene transistors with transferred gate stacks
-
R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, "High-frequency self-aligned graphene transistors with transferred gate stacks," Proc. Nat. Acad. Sci., vol. 109, pp. 11588-11592, 2012.
-
(2012)
Proc. Nat. Acad. Sci.
, vol.109
, pp. 11588-11592
-
-
Cheng, R.1
Bai, J.2
Liao, L.3
Zhou, H.4
Chen, Y.5
Liu, L.6
Lin, Y.-C.7
Jiang, S.8
Huang, Y.9
Duan, X.10
-
17
-
-
33847690144
-
The rise of graphene
-
DOI 10.1038/nmat1849, PII NMAT1849
-
A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Mater., vol. 6, pp. 183-191, 2007. (Pubitemid 46353764)
-
(2007)
Nature Materials
, vol.6
, Issue.3
, pp. 183-191
-
-
Geim, A.K.1
Novoselov, K.S.2
-
18
-
-
59949098337
-
The electronic properties of graphene
-
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109-162
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
19
-
-
78449299206
-
Graphene: Electronic and photonic properties and devices
-
P. Avouris, "Graphene: Electronic and photonic properties and devices," Nano Lett., vol. 10, pp. 4285-4294, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 4285-4294
-
-
Avouris, P.1
-
20
-
-
77955231284
-
Graphene transistors
-
F. Schwierz, "Graphene transistors," Nature Nanotechnol., vol. 5, pp. 487-496, 2010.
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 487-496
-
-
Schwierz, F.1
-
21
-
-
84870943403
-
-
[Online]
-
Web of Knowledge. [Online]. Available: http://apps.webofknowledge.com/
-
Web of Knowledge
-
-
-
22
-
-
79958830526
-
Micrometer-scale ballistic transport in encapsulated graphene at room temperature
-
A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, "Micrometer-scale ballistic transport in encapsulated graphene at room temperature," Nano Lett., vol. 11, pp. 2396-2399, 2011.
-
(2011)
Nano Lett.
, vol.11
, pp. 2396-2399
-
-
Mayorov, A.S.1
Gorbachev, R.V.2
Morozov, S.V.3
Britnell, L.4
Jalil, R.5
Ponomarenko, L.A.6
Blake, P.7
Novoselov, K.S.8
Watanabe, K.9
Taniguchi, T.10
Geim, A.K.11
-
23
-
-
78650444412
-
Limits on charge carrier mobility in suspended graphene due to flexural phonons
-
E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, "Limits on charge carrier mobility in suspended graphene due to flexural phonons," Phys. Rev. Lett., vol. 105, 2010, 266601.
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 266601
-
-
Castro, E.V.1
Ochoa, H.2
Katsnelson, M.I.3
Gorbachev, R.V.4
Elias, D.C.5
Novoselov, K.S.6
Geim, A.K.7
Guinea, F.8
-
24
-
-
84858309767
-
Super carbon
-
N. Savage, "Super carbon," Nature, vol. 483, pp. S30-S31, 2012.
-
(2012)
Nature
, vol.483
-
-
Savage, N.1
-
25
-
-
84858324768
-
Beyond sticky tape
-
R. Van Noorden, "Beyond sticky tape," Nature, vol. 483, pp. S32-S33, 2012.
-
(2012)
Nature
, vol.483
-
-
Van Noorden, R.1
-
26
-
-
84858327196
-
Back to analogue
-
K. Bourzac, "Back to analogue," Nature, vol. 483, pp. S34-S36, 2012.
-
(2012)
Nature
, vol.483
-
-
Bourzac, K.1
-
27
-
-
84858315035
-
Come into the light
-
N. Savage, "Come into the light," Nature, vol. 483, pp. S38-S39, 2012.
-
(2012)
Nature
, vol.483
-
-
Savage, N.1
-
28
-
-
85080847469
-
Taking charge
-
P. Gwynne and T. Palacios, "Taking charge," Nature, vol. 483, pp. S40-S41, 2012.
-
(2012)
Nature
, vol.483
-
-
Gwynne, P.1
Palacios, T.2
-
29
-
-
84858327083
-
Learning from silicon
-
M. Segal, "Learning from silicon," Nature, vol. 483, pp. S43-S44, 2012.
-
(2012)
Nature
, vol.483
-
-
Segal, M.1
-
30
-
-
84857881592
-
The application of graphene as electrodes in electrical and optical devices
-
G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, "The application of graphene as electrodes in electrical and optical devices," Nanotechnology, vol. 23, 2012, 112001.
-
(2012)
Nanotechnology
, vol.23
, pp. 112001
-
-
Jo, G.1
Choe, M.2
Lee, S.3
Park, W.4
Kahng, Y.H.5
Lee, T.6
-
31
-
-
77956434425
-
High-performance flexible graphene field effect transistors with ion gel gate dielectrics
-
B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, "High-performance flexible graphene field effect transistors with ion gel gate dielectrics," Nano Lett., vol. 10, pp. 3464-3466, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 3464-3466
-
-
Kim, B.J.1
Jang, H.2
Lee, S.-K.3
Hong, B.H.4
Ahn, J.-H.5
Cho, J.H.6
-
32
-
-
74849089912
-
High mobility, printable, solution-processed graphene electronics
-
S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, "High mobility, printable, solution-processed graphene electronics," Nano Lett., vol. 10, pp. 92-98, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 92-98
-
-
Wang, S.1
Ang, P.K.2
Wang, Z.3
Tang, A.L.L.4
Thong, J.T.L.5
Loh, K.P.6
-
33
-
-
77953019723
-
Scalability of atomic-thin-body (ATB) transistors based on graphene nanoribbons
-
Jun
-
Q. Zhang, Y. Lu, H. G. Xing, S. J. Koester, and S. O. Koswatta, "Scalability of atomic-thin-body (ATB) transistors based on graphene nanoribbons," IEEE Electron Device Lett., vol. 31, no. 6, pp. 531-533, Jun. 2010.
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.6
, pp. 531-533
-
-
Zhang, Q.1
Lu, Y.2
Xing, H.G.3
Koester, S.J.4
Koswatta, S.O.5
-
34
-
-
77957570472
-
Graphene nanoribbon schottky-barrier FETs for end-of-roadmap CMOS: Challenges and opportunities
-
Q. Zhang, Y. Lu, G. H. Xing, C. A. Richter, S. J. Koester, and S. O. Koswatta, "Graphene nanoribbon schottky-barrier FETs for end-of-roadmap CMOS: Challenges and opportunities," in Proc. Device Res. Conf., 2010, pp. 75-76.
-
Proc. Device Res. Conf.
, vol.2010
, pp. 75-76
-
-
Zhang, Q.1
Lu, Y.2
Xing, G.H.3
Richter, C.A.4
Koester, S.J.5
Koswatta, S.O.6
-
36
-
-
80052619975
-
On the importance of bandgap formation in graphene for analog device applications
-
Sep
-
D. Das and J. Appenzeller, "On the importance of bandgap formation in graphene for analog device applications," IEEE Trans. Nanotechnol., vol. 10, no. 5, pp. 1093-1098, Sep. 2011.
-
(2011)
IEEE Trans. Nanotechnol.
, vol.10
, Issue.5
, pp. 1093-1098
-
-
Das, D.1
Appenzeller, J.2
-
37
-
-
0014744373
-
Microwave properties of a Schottky-barrier field-effect transistor
-
P. Wolf, "Microwave properties of a Schottky-barrier field-effect transistor," IBM J. Res. Develop., vol. 14, pp. 125-141, 1970.
-
(1970)
IBM J. Res. Develop.
, vol.14
, pp. 125-141
-
-
Wolf, P.1
-
38
-
-
0024699745
-
Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs
-
Jul
-
P. J. Tasker and B. Hughes, "Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs," IEEE Electron Device Lett., vol. 10, no. 7, pp. 291-293, Jul. 1989.
-
(1989)
IEEE Electron Device Lett.
, vol.10
, Issue.7
, pp. 291-293
-
-
Tasker, P.J.1
Hughes, B.2
-
39
-
-
0024751374
-
Bias dependence of the MODFET intrinsic model elements values at microwave frequencies
-
DOI 10.1109/16.40909
-
B. Hughes and P. J. Tasker, "Bias dependence of the MODFET intrinsic model elements values at microwave frequencies," IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2267-2273, Oct. 1989. (Pubitemid 20641319)
-
(1989)
IEEE Transactions on Electron Devices
, vol.36
, Issue.10
, pp. 2267-2273
-
-
Hughes Brian1
Tasker Paul, J.2
-
40
-
-
0024170238
-
Design, fabrication, characterization of ultra high speed AlGaAs/InGaAs MODFETs
-
L. D. Nguyen, P. J. Tasker, D. C. Radulescu, and L. F. Eastman, "Design, fabrication, characterization of ultra high speed AlGaAs/InGaAs MODFETs," in Tech. Dig. Int. Electron Devices Meeting, 1988, pp. 176-179.
-
(1988)
Tech. Dig. Int. Electron Devices Meeting
, pp. 176-179
-
-
Nguyen, L.D.1
Tasker, P.J.2
Radulescu, D.C.3
Eastman, L.F.4
-
41
-
-
38849201768
-
Observation of electron-hole puddles in graphene using scanning single-electron transistor
-
J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, "Observation of electron-hole puddles in graphene using scanning single-electron transistor," Nature Phys., vol. 4, pp. 144-148, 2007.
-
(2007)
Nature Phys.
, vol.4
, pp. 144-148
-
-
Martin, J.1
Akerman, N.2
Ulbricht, G.3
Lohmann, T.4
Smet, J.H.5
Von Klitzing, K.6
Yacoby, A.7
-
42
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
-
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, "Current saturation in zero-bandgap, top-gated graphene field-effect transistors," Nature Nanotechnol., vol. 3, pp. 654-659, 2008.
-
(2008)
Nature Nanotechnol.
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.Y.2
Young, A.F.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.L.6
-
43
-
-
34548446361
-
Carrier statistics and quantum capacitance of graphene sheets and ribbons
-
T. Fang, A. Konar, H. Xing, and D. Jena, "Carrier statistics and quantum capacitance of graphene sheets and ribbons," Appl. Phys. Lett., vol. 91, 2007, 092109.
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 092109
-
-
Fang, T.1
Konar, A.2
Xing, H.3
Jena, D.4
-
44
-
-
35948971778
-
Quasiparticle energies and band gaps in graphene nanoribbons
-
L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, "Quasiparticle energies and band gaps in graphene nanoribbons," Phys. Rev. Lett., vol. 99, 2007, 186801.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 186801
-
-
Yang, L.1
Park, C.-H.2
Son, Y.-W.3
Cohen, M.L.4
Louie, S.G.5
-
45
-
-
35348815666
-
Coulomb blockade in graphene nanoribbons
-
F. Sols, F. Guinea, and A. H. Castro Neto, "Coulomb blockade in graphene nanoribbons," Phys. Rev. Lett., vol. 99, 2007, 166803.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 166803
-
-
Sols, F.1
Guinea, F.2
Castro Neto, A.H.3
-
46
-
-
75849164584
-
Electron transport in disordered graphene nanoribbons
-
M. Han, J. C. Brant, and P. Kim, "Electron transport in disordered graphene nanoribbons," Phys. Rev. Lett., vol. 104, 2010, 056801.
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 056801
-
-
Han, M.1
Brant, J.C.2
Kim, P.3
-
47
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
M. Y. Han B. Ozyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Phys. Rev. Lett., vol. 98, 2007, 206805.
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 206805
-
-
Han, M.Y.1
Ozyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
48
-
-
77952326721
-
Graphene nanoribbon devices and quantum heterojunction devices
-
P. Kim, M. Y. Han, A. F. Young, I. Meric, and K. L. Shepard, "Graphene nanoribbon devices and quantum heterojunction devices," in Tech. Dig. Int. Electron Devices Meeting, 2009, pp. 241-244.
-
(2009)
Tech. Dig. Int. Electron Devices Meeting
, pp. 241-244
-
-
Kim, P.1
Han, M.Y.2
Young, A.F.3
Meric, I.4
Shepard, K.L.5
-
49
-
-
81555207231
-
A role for graphene in silicon-based semiconductor devices
-
K. Kim, J.-Y. Choi, S.-H. Cho, and H.-J. Chung, "A role for graphene in silicon-based semiconductor devices," Nature, vol. 479, pp. 338-344, 2011.
-
(2011)
Nature
, vol.479
, pp. 338-344
-
-
Kim, K.1
Choi, J.-Y.2
Cho, S.-H.3
Chung, H.-J.4
-
50
-
-
79960860461
-
Graphene field-effect transistors
-
D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, "Graphene field-effect transistors," J. Phys. D, Appl. Phys., vol. 44, 2011, 313001.
-
(2011)
J. Phys. D, Appl. Phys.
, vol.44
, pp. 313001
-
-
Reddy, D.1
Register, L.F.2
Carpenter, G.D.3
Banerjee, S.K.4
-
51
-
-
36249007086
-
Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
-
E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Netro, "Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect," Phys. Rev. Lett., vol. 99, 2007, 216802.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 216802
-
-
Castro, E.V.1
Novoselov, K.S.2
Morozov, S.V.3
Peres, N.M.R.4
Dos Santos Lopes, J.M.B.5
Nilsson, J.6
Guinea, F.7
Geim, A.K.8
Castro Netro, A.H.9
-
52
-
-
66149191163
-
Ab initio study of gap opening and screening effects in gated bilayer graphene
-
P. Gava, M. Lazzeri, A. M. Saitta, and F. Mauri, "Ab initio study of gap opening and screening effects in gated bilayer graphene," Phys. Rev. B, vol. 79, 2009, 165431.
-
(2009)
Phys. Rev. B
, vol.79
, pp. 165431
-
-
Gava, P.1
Lazzeri, M.2
Saitta, A.M.3
Mauri, F.4
-
53
-
-
84869057712
-
Direct graphene growth on oxides: Interfacial interactions and band gap formation
-
J. A. Kelber, M. Zhou, S. Gaddam, F. L. Pasquale, L. M. Kong, and P. A. Dowben, "Direct graphene growth on oxides: Interfacial interactions and band gap formation," ECS Trans., vol. 45, no. 4, pp. 49-61, 2012.
-
(2012)
ECS Trans.
, vol.45
, Issue.4
, pp. 49-61
-
-
Kelber, J.A.1
Zhou, M.2
Gaddam, S.3
Pasquale, F.L.4
Kong, L.M.5
Dowben, P.A.6
-
54
-
-
84876121650
-
Electrostatically-reversible polarity of dual-gated graphene transistors with He ion irradiated channel: Toward reconfigurable CMOS applications
-
S. Nakaharai, T. Iijima, S. Ogawa, S. Suzuki, K. Tsukagoshi, S. Sato, and N. Yokoyama, "Electrostatically-reversible polarity of dual-gated graphene transistors with He ion irradiated channel: Toward reconfigurable CMOS applications," in Tech. Dig. Int. Electron Devices Meeting, 2012, pp. 72-75.
-
(2012)
Tech. Dig. Int. Electron Devices Meeting
, pp. 72-75
-
-
Nakaharai, S.1
Iijima, T.2
Ogawa, S.3
Suzuki, S.4
Tsukagoshi, K.5
Sato, S.6
Yokoyama, N.7
-
55
-
-
0842309728
-
Device physics at the scaling limit: What matters?"
-
M. Lundstrom, "Device physics at the scaling limit: What matters?" in Tech. Dig. Int. Electron Devices Meeting, 2003, pp. 789-792.
-
(2003)
Tech. Dig. Int. Electron Devices Meeting
, pp. 789-792
-
-
Lundstrom, M.1
-
56
-
-
47949124921
-
Charge transport in chemically doped 2D graphene
-
A. Lherbier, X. Blasé, Y.-M. Niquet, F. Triozon, and S. Roche, "Charge transport in chemically doped 2D graphene," Phys. Rev. Lett., vol. 101, 2008, 036808.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 036808
-
-
Lherbier, A.1
Blasé, X.2
Niquet, Y.-M.3
Triozon, F.4
Roche, S.5
-
57
-
-
77957707136
-
Effect of high-κ gate dielectrics on charge transport in graphene-based field-effect transistors
-
A. Konar, T. Fang, and D. Jena, "Effect of high-κ gate dielectrics on charge transport in graphene-based field-effect transistors," Phys. Rev. B, vol. 82, 2010, 115452.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 115452
-
-
Konar, A.1
Fang, T.2
Jena, D.3
-
58
-
-
80053906519
-
Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons
-
M.-W. Lin, C. Ling, L. A. Agapito, N. Kioussis, Y. Zhang, M. M.-C. Cheng, W. L. Wang, E. Kaxiras, and Z. Zhou, "Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons," Phys. Rev. B, vol. 84, 2011, 125411.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 125411
-
-
Lin, M.-W.1
Ling, C.2
Agapito, L.A.3
Kioussis, N.4
Zhang, Y.5
Cheng, M.M.-C.6
Wang, W.L.7
Kaxiras, E.8
Zhou, Z.9
-
59
-
-
46049090269
-
Armchair graphene nanoribbons: Electronic structure and electric-field modulation
-
H. Raza and E. Kan, "Armchair graphene nanoribbons: Electronic structure and electric-field modulation," Phys. Rev. B, vol. 77, 2008, 245434.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 245434
-
-
Raza, H.1
Kan, E.2
-
60
-
-
41849125958
-
2
-
DOI 10.1038/nnano.2008.58, PII NNANO200858
-
J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnol., vol. 3, pp. 206-209, 2008. (Pubitemid 351499398)
-
(2008)
Nature Nanotechnology
, vol.3
, Issue.4
, pp. 206-209
-
-
Chen, J.-H.1
Jang, C.2
Xiao, S.3
Ishigami, M.4
Fuhrer, M.S.5
-
61
-
-
77951044011
-
High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors
-
L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, and X. Duan, "High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors," Proc. Nat. Acad. Sci., vol. 107, pp. 6711-6715, 2010.
-
(2010)
Proc. Nat. Acad. Sci.
, vol.107
, pp. 6711-6715
-
-
Liao, L.1
Bai, J.2
Qu, Y.3
Lin, Y.-C.4
Li, Y.5
Huang, Y.6
Duan, X.7
-
62
-
-
80052688432
-
High performance graphene FETs with self-aligned buried gates fabricated on scalable patterned Ni-catalyzed graphene
-
Y. Wang, B.-C. Huang, M. Zhang, C. Miao, Y.-H. Xie, and J. C. S. Woo, "High performance graphene FETs with self-aligned buried gates fabricated on scalable patterned Ni-catalyzed graphene," in Dig. Symp. Very Large Scale Integr. (VLSI) Technol., 2011, pp. 116-117.
-
(2011)
Dig. Symp. Very Large Scale Integr. (VLSI) Technol.
, pp. 116-117
-
-
Wang, Y.1
Huang, B.-C.2
Zhang, M.3
Miao, C.4
Xie, Y.-H.5
Woo, J.C.S.6
-
63
-
-
33646685492
-
Analysis of graphene nanoribbons as a channel material for field-effect transistors
-
B. Obradovic, R. Kotlyar, F. Heinz, T. Rakshit, M. D. Giles, M. A. Stettler, and D. E. Nikonov, "Analysis of graphene nanoribbons as a channel material for field-effect transistors," Appl. Phys. Lett., vol. 88, 2006, 142102.
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 142102
-
-
Obradovic, B.1
Kotlyar, R.2
Heinz, F.3
Rakshit, T.4
Giles, M.D.5
Stettler, M.A.6
Nikonov, D.E.7
-
64
-
-
56349108496
-
Mobility in semiconducting nanoribbons: Phonon, impurity edge roughness scattering
-
T. Fang, A. Konar, H. Xing, and D. Jena, "Mobility in semiconducting nanoribbons: Phonon, impurity edge roughness scattering," Phys. Rev. B, vol. 78, 2008, 205403.
-
(2008)
Phys. Rev. B
, vol.78
, pp. 205403
-
-
Fang, T.1
Konar, A.2
Xing, H.3
Jena, D.4
-
65
-
-
82655172688
-
Electron transport properties of bilayer graphene
-
X. Li, K. M. Borysenko, M. B. Nardelli, and K. W. Kim, "Electron transport properties of bilayer graphene," Phys. Rev. B, vol. 84, 2011, 195453.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 195453
-
-
Li, X.1
Borysenko, K.M.2
Nardelli, M.B.3
Kim, K.W.4
-
66
-
-
28844440496
-
Band structure, phonon scattering, performance limit of single-walled carbon nanotube transistors
-
X. Zhou, J.-Y. Park, S. Huang, J. Liu, and P. L. McEuen, "Band structure, phonon scattering, performance limit of single-walled carbon nanotube transistors," Phys. Rev. Lett., vol. 95, 2005, 146805.
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146805
-
-
Zhou, X.1
Park, J.-Y.2
Huang, S.3
Liu, J.4
McEuen, P.L.5
-
67
-
-
18244399604
-
Electron-phonon interaction and transport in semiconducting carbon nanotubes
-
V. Perebeinos, J. Tersoff, and P. Avouris, "Electron-phonon interaction and transport in semiconducting carbon nanotubes," Phys. Rev. Lett., vol. 94, 2005, 0786802.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 0786802
-
-
Perebeinos, V.1
Tersoff, J.2
Avouris, P.3
-
68
-
-
23144448854
-
Progress toward development of all-printed RFID tags: Materials, processes, and devices
-
DOI 10.1109/JPROC.2005.850305, Flexible Electronics Technology Part 1: Systems and Applications
-
V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, and S. K. Volkman, "Progress toward development of all-printed RFID tags: Materials, processes, devices," Proc. IEEE, vol. 93, no. 7, pp. 1330-1338, Jul. 2005. (Pubitemid 41084578)
-
(2005)
Proceedings of the IEEE
, vol.93
, Issue.7
, pp. 1330-1338
-
-
Subramanian, V.1
Frechet, J.M.J.2
Chang, P.C.3
Huang, D.C.4
Lee, J.B.5
Molesa, S.E.6
Murphy, A.R.7
Redinger, D.R.8
Volkman, S.K.9
-
69
-
-
79961152088
-
Recent progress of high performance organic thin film field-effect transistors
-
Q. Meng, H. Dong, W. Hu, and D. Zhu, "Recent progress of high performance organic thin film field-effect transistors," J. Mater. Chem., vol. 21, pp. 11708-11721, 2011.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 11708-11721
-
-
Meng, Q.1
Dong, H.2
Hu, W.3
Zhu, D.4
-
70
-
-
84860385148
-
Inkjet-printed graphene electronics
-
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hshieh, S. J. Jung, F. Bonaccorso, P. J. Paul, D. P. Chu, and A. C. Ferrari, "Inkjet-printed graphene electronics," ACS Nano, vol. 6, pp. 2992-3006, 2012.
-
(2012)
ACS Nano
, vol.6
, pp. 2992-3006
-
-
Torrisi, F.1
Hasan, T.2
Wu, W.3
Sun, Z.4
Lombardo, A.5
Kulmala, T.S.6
Hshieh, G.-W.7
Jung, S.J.8
Bonaccorso, F.9
Paul, P.J.10
Chu, D.P.11
Ferrari, A.C.12
-
71
-
-
84858193756
-
Flexible gigahertz transistors derived from solution-based single-layer graphene
-
C. Sire, F. Ardiaca, S. Lepilliet, J.-W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, and V. Derycke, "Flexible gigahertz transistors derived from solution-based single-layer graphene," Nano Lett., vol. 12, pp. 1184-1188, 2012.
-
(2012)
Nano Lett.
, vol.12
, pp. 1184-1188
-
-
Sire, C.1
Ardiaca, F.2
Lepilliet, S.3
Seo, J.-W.T.4
Hersam, M.C.5
Dambrine, G.6
Happy, H.7
Derycke, V.8
-
72
-
-
84879888733
-
State-of-the-art graphene transistors on hexagonal boron nitride, high-k, polymeric films for flexible analog nanoelectronics
-
J. Lee, K. N. Parrish, S. F. Chowdhury, T.-J. Ha, Y. Hao, L. Tao, A. Dodabalapur, R. S. Ruoff, and D. Akinwande, "State-of-the-art graphene transistors on hexagonal boron nitride, high-k, polymeric films for flexible analog nanoelectronics," in Tech. Dig. Int. Electron Devices Meeting, 2012, pp. 343-346.
-
(2012)
Tech. Dig. Int. Electron Devices Meeting
, pp. 343-346
-
-
Lee, J.1
Parrish, K.N.2
Chowdhury, S.F.3
Ha, T.-J.4
Hao, Y.5
Tao, L.6
Dodabalapur, A.7
Ruoff, R.S.8
Akinwande, D.9
-
73
-
-
84859798281
-
Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics
-
J. Lee, L. Tao, Y. Hao, R. S. Ruoff, and D. Akinwande, "Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics," Appl. Phys. Lett., vol. 100, 2012, 152104.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 152104
-
-
Lee, J.1
Tao, L.2
Hao, Y.3
Ruoff, R.S.4
Akinwande, D.5
-
74
-
-
77956212768
-
Mobility and saturation velocity in graphene on SiO2
-
V. E. Dorgan, M.-H. Bae, and E. Pop, "Mobility and saturation velocity in graphene on SiO2," Appl. Phys. Lett., vol. 97, 2010, 082112.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 082112
-
-
Dorgan, V.E.1
Bae, M.-H.2
Pop, E.3
-
75
-
-
70349097243
-
Velocity saturation in intrinsic graphene
-
R. S. Shishir and D. K. Ferry, "Velocity saturation in intrinsic graphene," J. Phys., Condens. Matter, vol. 21, 2009, 344201.
-
(2009)
J. Phys., Condens. Matter
, vol.21
, pp. 344201
-
-
Shishir, R.S.1
Ferry, D.K.2
-
76
-
-
79951843150
-
Low-field mobility and high-field drift velocity in graphene nanoribbons and graphene bilayers
-
M. Bresciani, A. Paussa, P. Palestri, D. Esseni, and L. Selmi, "Low-field mobility and high-field drift velocity in graphene nanoribbons and graphene bilayers," in Tech. Dig. Int. Electron Devices Meeting, 2010, pp. 724-727.
-
(2010)
Tech. Dig. Int. Electron Devices Meeting
, pp. 724-727
-
-
Bresciani, M.1
Paussa, A.2
Palestri, P.3
Esseni, D.4
Selmi, L.5
-
77
-
-
83755184030
-
Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations
-
A. Betti, G. Fiori, and G. Iannaccone, "Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations," Appl. Phys. Lett., vol. 99, 2011, 242108.
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 242108
-
-
Betti, A.1
Fiori, G.2
Iannaccone, G.3
-
78
-
-
77952329312
-
Metal/graphene contact as a performance killer of ultra-high mobility grapheneVAnalysis of intrinsic mobility and contact resistance
-
K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, "Metal/graphene contact as a performance killer of ultra-high mobility grapheneVAnalysis of intrinsic mobility and contact resistance," in Tech. Dig. Int. Electron Devices Meeting, 2009, pp. 565-568.
-
(2009)
Tech. Dig. Int. Electron Devices Meeting
, pp. 565-568
-
-
Nagashio, K.1
Nishimura, T.2
Kita, K.3
Toriumi, A.4
-
79
-
-
79952445612
-
The origin and limits of metal-graphene junction resistance
-
F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, "The origin and limits of metal-graphene junction resistance," Nature Nanotechnol., vol. 6, pp. 179-184, 2011.
-
(2011)
Nature Nanotechnol.
, vol.6
, pp. 179-184
-
-
Xia, F.1
Perebeinos, V.2
Lin, Y.-M.3
Wu, Y.4
Avouris, P.5
-
80
-
-
84876159652
-
Record high conversion gain ambipolar graphene mixer at 10 GHz using scaled gate oxide
-
H. Madan, M. J. Hollander, M. LaBella, R. Cavalero, D. Snyder, J. A. Robinson, and S. Datta, "Record high conversion gain ambipolar graphene mixer at 10 GHz using scaled gate oxide," in Tech. Dig. Int. Electron Devices Meeting, 2012, pp. 76-79.
-
(2012)
Tech. Dig. Int. Electron Devices Meeting
, pp. 76-79
-
-
Madan, H.1
Hollander, M.J.2
Labella, M.3
Cavalero, R.4
Snyder, D.5
Robinson, J.A.6
Datta, S.7
-
81
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, pp. 902-907, 2008.
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
82
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition," Nano Lett., vol. 10, pp. 1645-1651, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 1645-1651
-
-
Cai, W.1
Moore, A.L.2
Zhu, Y.3
Li, X.4
Chen, S.5
Shi, L.6
Ruoff, R.S.7
-
83
-
-
84866307416
-
Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/ dielectric heterojunctions
-
R. Mao, B. D. Kong, K. W. Kim, T. Jayasekera, A. Calzolari, and M. B. Nardelli, "Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/ dielectric heterojunctions," Appl. Phys. Lett., vol. 101, 2012, 113111.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 113111
-
-
Mao, R.1
Kong, B.D.2
Kim, K.W.3
Jayasekera, T.4
Calzolari, A.5
Nardelli, M.B.6
-
84
-
-
84859078649
-
Estimating Kapitza resistance between Si-SiO2 interface using molecular dynamics simulations
-
Aug
-
S. S. Mahajan, G. Subbarayan, and B. G. Sammakia, "Estimating Kapitza resistance between Si-SiO2 interface using molecular dynamics simulations," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 8, pp. 1132-1139, Aug. 2011.
-
(2011)
IEEE Trans. Compon. Packag. Manuf. Technol.
, vol.1
, Issue.8
, pp. 1132-1139
-
-
Mahajan, S.S.1
Subbarayan, G.2
Sammakia, B.G.3
-
85
-
-
64549111675
-
RF performance of top-gated, zero-bandgap graphene field-effect transistors
-
DOI: 10.1109/IEDM.2008.4796738.
-
I. Meric, N. Baklitskaya, P. Kim, and K. L. Shepard, "RF performance of top-gated, zero-bandgap graphene field-effect transistors," in Tech. Dig. Int. Electron Devices Meeting, 2008, DOI: 10.1109/IEDM.2008.4796738.
-
(2008)
Tech. Dig. Int. Electron Devices Meeting
-
-
Meric, I.1
Baklitskaya, N.2
Kim, P.3
Shepard, K.L.4
-
86
-
-
77952403431
-
Development of graphene FETs for high frequency electronics
-
Y.-M. Lin, K. Jenkins, D. Farmer, A. Valdes-Garcia, P. Avouris, C.-Y. Sung, H.-Y. Chiu, and B. Ek, "Development of graphene FETs for high frequency electronics," in Tech. Dig. Int. Electron Devices Meeting, 2009, pp. 237-240.
-
(2009)
Tech. Dig. Int. Electron Devices Meeting
, pp. 237-240
-
-
Lin, Y.-M.1
Jenkins, K.2
Farmer, D.3
Valdes-Garcia, A.4
Avouris, P.5
Sung, C.-Y.6
Chiu, H.-Y.7
Ek, B.8
-
87
-
-
84862277776
-
State-of-the-art graphene high-frequency electronics
-
Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin, "State-of-the-art graphene high-frequency electronics," Nano Lett., vol. 12, pp. 3062-3067, 2012.
-
(2012)
Nano Lett.
, vol.12
, pp. 3062-3067
-
-
Wu, Y.1
Jenkins, K.A.2
Valdes-Garcia, A.3
Farmer, D.B.4
Zhu, Y.5
Bol, A.A.6
Dimitrakopoulos, C.7
Zhu, W.8
Xia, F.9
Avouris, P.10
Lin, Y.-M.11
-
88
-
-
67649304648
-
Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates
-
Jun
-
J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, Jr., and D. K. Gaskill, "Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates," IEEE Electron Device Lett., vol. 30, no. 6, pp. 650-652, Jun. 2009.
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.6
, pp. 650-652
-
-
Moon, J.S.1
Curtis, D.2
Hu, M.3
Wong, D.4
McGuire, C.5
Campbell, P.M.6
Jernigan, G.7
Tedesco, J.L.8
Vanmil, B.9
Myers-Ward, R.10
Eddy Jr., C.11
Gaskill, D.K.12
-
89
-
-
79951830639
-
RF performance of pre-patterned locally-embedded-back-gate graphene devices
-
J. Lee, H.-J. Chung, J. Lee, H. Shin, J. Heo, H. Yang, S.-H. Lee, S. Seo, J. Shin, U.-I. Chung, I. Yoo, and K. Kim, "RF performance of pre-patterned locally-embedded-back-gate graphene devices," in Tech. Dig. Int. Electron Devices Meeting, 2010, pp. 568-571.
-
Tech. Dig. Int. Electron Devices Meeting
, vol.2010
, pp. 568-571
-
-
Lee, J.1
Chung, H.-J.2
Lee, J.3
Shin, H.4
Heo, J.5
Yang, H.6
Lee, S.-H.7
Seo, S.8
Shin, J.9
Chung, U.-I.10
Yoo, I.11
Kim, K.12
-
90
-
-
79953758358
-
High-frequency, scaled graphene transistors on diamond-like carbon
-
Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, "High-frequency, scaled graphene transistors on diamond-like carbon," Nature, vol. 472, pp. 74-78, 2011.
-
(2011)
Nature
, vol.472
, pp. 74-78
-
-
Wu, Y.1
Lin, Y.-M.2
Bol, A.A.3
Jenkins, K.A.4
Xia, F.5
Farmer, D.B.6
Zhu, Y.7
Avouris, P.8
-
91
-
-
84857484181
-
FT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0:7Ga0:3As MHEMTs with gm max > 2.7 mS/μm
-
D.-H. Kim, B. Brar, and J. A. del Alamo, "fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0:7Ga0:3As MHEMTs with gm max > 2.7 mS/μm," in Tech. Dig. Int. Electron Devices Meeting, 2011, pp. 319-322.
-
Tech. Dig. Int. Electron Devices Meeting
, vol.2011
, pp. 319-322
-
-
Kim, D.-H.1
Brar, B.2
Del Alamo, J.A.3
-
92
-
-
77955172642
-
30-nm InAs PHEMTs with fT = 644 GHz and fmax = 681 GHz
-
Aug
-
D.-H. Kim and J. A. del Alamo, "30-nm InAs PHEMTs with fT = 644 GHz and fmax = 681 GHz," IEEE Electron Device Lett., vol. 31, no. 8, pp. 806-808, Aug. 2010.
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.8
, pp. 806-808
-
-
Kim, D.-H.1
Del Alamo, J.A.2
-
93
-
-
50249158596
-
Record RF performance of 45-nm SOI CMOS technology
-
Springer, and G. Freeman
-
S. Lee, B. Jagannathan, S. Narasimha, A. Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, J. Kim, J.-O. Plouchart, J. Pekarik, S. Springer, and G. Freeman, "Record RF performance of 45-nm SOI CMOS technology," in Tech. Dig. Int. Electron Devices Meeting, 2007, pp. 255-258.
-
(2007)
Tech. Dig. Int. Electron Devices Meeting
, pp. 255-258
-
-
Lee, S.1
Jagannathan, B.2
Narasimha, S.3
Chou, A.4
Zamdmer, N.5
Johnson, J.6
Williams, R.7
Wagner, L.8
Kim, J.9
Plouchart, J.-O.10
Pekarik S, J.11
-
94
-
-
0024753982
-
Characterization of ultra-high-speed AlGaAs/InGaAs (on GaAs) MODFETs
-
Oct
-
L. D. Nguyen, P. J. Tasker, D. C. Radulescu, and L. F. Eastman, "Characterization of ultra-high-speed AlGaAs/InGaAs (on GaAs) MODFETs," IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2243-2248, Oct. 1989.
-
(1989)
IEEE Trans. Electron Devices
, vol.36
, Issue.10
, pp. 2243-2248
-
-
Nguyen, L.D.1
Tasker, P.J.2
Radulescu, D.C.3
Eastman, L.F.4
-
95
-
-
84864722935
-
High-frequency performance of scaled carbon nanotube array field-effect transistors
-
M. Steiner, M. Engel, Y.-M. Lin, Y. Wu, K. Jenkins, D. B. Farmer, J. J. Humes, N. L. Yoder, J.-W. T. Seo, A. A. Green, M. C. Hersam, R. Krupke, and P. Avouris, "High-frequency performance of scaled carbon nanotube array field-effect transistors," Appl. Phys. Lett., vol. 101, 2012, 053123.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 053123
-
-
Steiner, M.1
Engel, M.2
Lin, Y.-M.3
Wu, Y.4
Jenkins, K.5
Farmer, D.B.6
Humes, J.J.7
Yoder, N.L.8
Seo, J.-W.T.9
Green, A.A.10
Hersam, M.C.11
Krupke, R.12
Avouris, P.13
-
96
-
-
34547688875
-
RF transistors: Recent developments and roadmap toward terahertz applications
-
DOI 10.1016/j.sse.2007.05.020, PII S0038110107001803
-
F. Schwierz and J. J. Liou, "RF transistors: Recent developments and roadmap toward terahertz applications," Solid-State Electron., vol. 51, pp. 1079-1091, 2007. (Pubitemid 47212257)
-
(2007)
Solid-State Electronics
, vol.51
, Issue.8
, pp. 1079-1091
-
-
Schwierz, F.1
Liou, J.J.2
-
97
-
-
80053560287
-
Enhanced performance in epitaxial graphene FETs with optimized channel morphology
-
Oct
-
Y.-M. Lin, D. B. Farmer, K. A. Jenkins, Y. Wu, J. L. Tedesco, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, C. Dimitrakopoulos, and P. Avouris, "Enhanced performance in epitaxial graphene FETs with optimized channel morphology," IEEE Electron Device Lett., vol. 32, no. 10, pp. 1343-1345, Oct. 2011.
-
(2011)
IEEE Electron Device Lett.
, vol.32
, Issue.10
, pp. 1343-1345
-
-
Lin, Y.-M.1
Farmer, D.B.2
Jenkins, K.A.3
Wu, Y.4
Tedesco, J.L.5
Myers-Ward, R.L.6
Eddy Jr., C.R.7
Gaskill, D.K.8
Dimitrakopoulos, C.9
Avouris, P.10
-
98
-
-
84864239983
-
High performance of graphene field effect transistors with saturating IV-characteristics
-
I. Meric, C. R. Dean, S.-J. Han, L. Wang, K. A. Jenkins, J. Hone, and K. L. Shepard, "High performance of graphene field effect transistors with saturating IV-characteristics," in Tech. Dig. Int. Electron Devices Meeting, 2011, pp. 15-18.
-
(2011)
Tech. Dig. Int. Electron Devices Meeting
, pp. 15-18
-
-
Meric, I.1
Dean, C.R.2
Han, S.-J.3
Wang, L.4
Jenkins, K.A.5
Hone, J.6
Shepard, K.L.7
-
99
-
-
84863022032
-
Record high RF performance for epitaxial graphene transistors
-
Y. Wu, D. B. Farmer, A. Valdes-Garcia, W. J. Zhu, K. A. Jenkins, C. Dimitrakopoulos, P. Avouris, and Y.-M. Lin, "Record high RF performance for epitaxial graphene transistors," in Tech. Dig. Int. Electron Devices Meeting, 2011, pp. 528-530.
-
(2011)
Tech. Dig. Int. Electron Devices Meeting
, pp. 528-530
-
-
Wu, Y.1
Farmer, D.B.2
Valdes-Garcia, A.3
Zhu, W.J.4
Jenkins, K.A.5
Dimitrakopoulos, C.6
Avouris, P.7
Lin, Y.-M.8
-
100
-
-
48649087261
-
Sub 50 nm InP HEMT device with fmax greater than 1 THz
-
R. Lai, X. B. Mei, W. R. Deal, W. Yoshida, Y. M. Kim, P. H. Liu, J. Lee, J. Uyeda, V. Radisic, M. Lange, T. Gaier, L. Samoska, and A. Fung, "Sub 50 nm InP HEMT device with fmax greater than 1 THz," in Tech. Dig. Int. Electron Devices Meeting, 2007, pp. 609-611.
-
(2007)
Tech. Dig. Int. Electron Devices Meeting
, pp. 609-611
-
-
Lai, R.1
Mei, X.B.2
Deal, W.R.3
Yoshida, W.4
Kim, Y.M.5
Liu, P.H.6
Lee, J.7
Uyeda, J.8
Radisic, V.9
Lange, M.10
Gaier, T.11
Samoska, L.12
Fung, A.13
-
101
-
-
79953766791
-
Industry-compatible graphene transistors
-
F. Schwierz, "Industry-compatible graphene transistors," Nature, vol. 472, pp. 41-42, 2011.
-
(2011)
Nature
, vol.472
, pp. 41-42
-
-
Schwierz, F.1
-
103
-
-
77955232280
-
Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels
-
S. Thiele, J. A. Schaefer, and F. Schwierz, "Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels," J. Appl. Phys., vol. 107, 2010, 094505.
-
(2010)
J. Appl. Phys.
, vol.107
, pp. 094505
-
-
Thiele, S.1
Schaefer, J.A.2
Schwierz, F.3
-
104
-
-
80054954449
-
Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications
-
Nov
-
D. Jimenez and O. Moldovan, "Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications," IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 4049-4052, Nov. 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.11
, pp. 4049-4052
-
-
Jimenez, D.1
Moldovan, O.2
-
105
-
-
79955548348
-
Compact virtual-source current-voltage model for top- and back-gated graphene field-effect transistors
-
May
-
H. Wang, A. Hsu, J. Kong, D. A. Antoniadis, and T. Palacios, "Compact virtual-source current-voltage model for top- and back-gated graphene field-effect transistors," IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1523-1533, May 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.5
, pp. 1523-1533
-
-
Wang, H.1
Hsu, A.2
Kong, J.3
Antoniadis, D.A.4
Palacios, T.5
-
106
-
-
80051944170
-
Modeling of the steady state characteristics of large-area graphene field-effect transistors
-
S. Thiele and F. Schwierz, "Modeling of the steady state characteristics of large-area graphene field-effect transistors," J. Appl. Phys., vol. 110, 2011, 034506.
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 034506
-
-
Thiele, S.1
Schwierz, F.2
-
107
-
-
13844275618
-
In search of 'forever', continued transistor scaling one new material at a time
-
Feb
-
S. E. Thompson, R. S. Chau, T. Ghani, K. Mistry, S. Tyagi, and M. T. Bohr, "In search of 'forever', continued transistor scaling one new material at a time," IEEE Trans. Semicond. Manuf., vol. 18, no. 1, pp. 26-36, Feb. 2005.
-
(2005)
IEEE Trans. Semicond. Manuf.
, vol.18
, Issue.1
, pp. 26-36
-
-
Thompson, S.E.1
Chau, R.S.2
Ghani, T.3
Mistry, K.4
Tyagi, S.5
Bohr, M.T.6
-
108
-
-
79957493556
-
Impact of contact resistance on the transconductance and linearity of graphene transistors
-
K. N. Parrish and D. Akinwande, "Impact of contact resistance on the transconductance and linearity of graphene transistors," Appl. Phys. Lett., vol. 98, 2011, 183505.
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 183505
-
-
Parrish, K.N.1
Akinwande, D.2
-
109
-
-
79951830645
-
RF performance of short channel graphene field-effect transistor
-
Y. Q. Wu, Y.-M. Lin, K. A. Jenkins, J. A. Ott, C. Dimitrakopoulos, D. B. Farmer, F. Xia, A. Grill, D. A. Antoniadis, and P. Avouris, "RF performance of short channel graphene field-effect transistor," in Tech. Dig. Int. Electron Devices Meeting, 2010, pp. 226-228.
-
Tech. Dig. Int. Electron Devices Meeting
, vol.2010
, pp. 226-228
-
-
Wu, Y.Q.1
Lin, Y.-M.2
Jenkins, K.A.3
Ott, J.A.4
Dimitrakopoulos, C.5
Farmer, D.B.6
Xia, F.7
Grill, A.8
Antoniadis, D.A.9
Avouris, P.10
-
110
-
-
76549096845
-
High field transport properties of 2D and nanoribbon graphene FETs
-
K. Tahy, S. Koswatta, T. Fang, Q. Zhang, H. G. Xing, and D. Jena, "High field transport properties of 2D and nanoribbon graphene FETs," in Proc. Device Res. Conf., 2009, pp. 207-208.
-
(2009)
Proc. Device Res. Conf.
, pp. 207-208
-
-
Tahy, K.1
Koswatta, S.2
Fang, T.3
Zhang, Q.4
Xing, H.G.5
Jena, D.6
-
111
-
-
67650423945
-
Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition
-
Jul
-
J. Kedzierski, P.-L. Hsu, A. Reina, J. Kong, P. Healey, P. Wyatt, and C. Keast, "Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition," IEEE Electron Device Lett., vol. 30, no. 7, pp. 745-747, Jul. 2009.
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.7
, pp. 745-747
-
-
Kedzierski, J.1
Hsu, P.-L.2
Reina, A.3
Kong, J.4
Healey, P.5
Wyatt, P.6
Keast, C.7
-
112
-
-
84856241232
-
Ultimate RF performance potential of carbon electronics
-
Oct
-
S. O. Koswatta, A. Valdes-Garcia, M. B. Steiner, Y.-M. Lin, and P. Avouris, "Ultimate RF performance potential of carbon electronics," IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pt. 2, pp. 2739-2750, Oct. 2011.
-
(2011)
IEEE Trans. Microw. Theory Tech.
, vol.59
, Issue.10 PART 2
, pp. 2739-2750
-
-
Koswatta, S.O.1
Valdes-Garcia, A.2
Steiner, M.B.3
Lin, Y.-M.4
Avouris, P.5
-
113
-
-
84859135564
-
Three-terminal graphene negative differential resistance devices
-
Y. Wu, D. B. Farmer, W. Zhu, S.-J. Han, C. D. Dimitrakopoulos, A. A. Bol, P. Avouris, and Y.-M. Lin, "Three-terminal graphene negative differential resistance devices," ACS Nano, vol. 6, pp. 2610-2616, 2012.
-
(2012)
ACS Nano
, vol.6
, pp. 2610-2616
-
-
Wu, Y.1
Farmer, D.B.2
Zhu, W.3
Han, S.-J.4
Dimitrakopoulos, C.D.5
Bol, A.A.6
Avouris, P.7
Lin, Y.-M.8
-
114
-
-
84864655973
-
An exactly solvable model for the graphene transistor in the quantum capacitance limit
-
K. Parrish and D. Akinwande, "An exactly solvable model for the graphene transistor in the quantum capacitance limit," Appl. Phys. Lett., vol. 101, 2012, 053501.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 053501
-
-
Parrish, K.1
Akinwande, D.2
-
115
-
-
79951949483
-
Low-phase-noise graphene FETs in ambipolar RF applications
-
Mar
-
J. S. Moon, D. Curtis, D. Zehnder, S. Kim, D. K. Gaskill, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, Jr., P. M. Campbell, K.-M. Lee, and P. Asbeck, "Low-phase-noise graphene FETs in ambipolar RF applications," IEEE Electron Device Lett., vol. 32, no. 3, pp. 270-272, Mar. 2011.
-
(2011)
IEEE Electron Device Lett.
, vol.32
, Issue.3
, pp. 270-272
-
-
Moon, J.S.1
Curtis, D.2
Zehnder, D.3
Kim, S.4
Gaskill, D.K.5
Jernigan, G.G.6
Myers-Ward, R.L.7
Eddy Jr., C.R.8
Campbell, P.M.9
Lee, K.-M.10
Asbeck, P.11
-
116
-
-
84861090242
-
Graphene electronics for RF applications
-
May-Jun
-
H. Wang, A. L. Hsu, and T. Palacios, "Graphene electronics for RF applications," IEEE Microw. Mag., vol. 13, no. 4, pp. 114-125, May-Jun. 2012.
-
(2012)
IEEE Microw. Mag.
, vol.13
, Issue.4
, pp. 114-125
-
-
Wang, H.1
Hsu, A.L.2
Palacios, T.3
-
117
-
-
77956173102
-
Graphene-based ambipolar RF mixers
-
Sep
-
H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, "Graphene-based ambipolar RF mixers," IEEE Electron Device Lett., vol. 31, no. 9, pp. 906-908, Sep. 2010.
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.9
, pp. 906-908
-
-
Wang, H.1
Hsu, A.2
Wu, J.3
Kong, J.4
Palacios, T.5
-
118
-
-
84655166979
-
A subharmonic graphene FET mixer
-
Jan
-
O. Habibpour, S. Cherednichenko, J. Vukusic, K. Yhland, and J. Stake, "A subharmonic graphene FET mixer," IEEE Electron Device Lett., vol. 33, no. 1, pp. 71-73, Jan. 2012.
-
(2012)
IEEE Electron Device Lett.
, vol.33
, Issue.1
, pp. 71-73
-
-
Habibpour, O.1
Cherednichenko, S.2
Vukusic, J.3
Yhland, K.4
Stake, J.5
-
119
-
-
84874822668
-
Gigahertz ambiploar frequency multiplier based on CVD graphene
-
H. Wang, A. Hsu, K. K. Kang, J. Kong, and T. Palacios, "Gigahertz ambiploar frequency multiplier based on CVD graphene," in Tech. Dig. Int. Electron Devices Meeting, 2010, pp. 572-575.
-
(2010)
Tech. Dig. Int. Electron Devices Meeting
, pp. 572-575
-
-
Wang, H.1
Hsu, A.2
Kang, K.K.3
Kong, J.4
Palacios, T.5
-
120
-
-
84872102690
-
Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates
-
N. Petrone, I. Meric, J. Hone, and K. L. Shepard, "Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates," Nano Lett., vol. 13, pp. 121-125, 2013.
-
(2013)
Nano Lett.
, vol.13
, pp. 121-125
-
-
Petrone, N.1
Meric, I.2
Hone, J.3
Shepard, K.L.4
-
121
-
-
84862825729
-
Graphene-side-gate-engineering
-
Mar
-
C.-T. Chen, T. Low, H.-Y. Chiu, and W. Zhu, "Graphene-side-gate- engineering," IEEE Electron Device Lett., vol. 33, no. 3, pp. 330-332, Mar. 2012.
-
(2012)
IEEE Electron Device Lett.
, vol.33
, Issue.3
, pp. 330-332
-
-
Chen, C.-T.1
Low, T.2
Chiu, H.-Y.3
Zhu, W.4
-
122
-
-
84865852822
-
Side-gate graphene field-effect transistors with high transconductance
-
B. Hahnlein, B. Handel, J. Pezoldt, H. To?pfer, R. Granzner, and F. Schwierz, "Side-gate graphene field-effect transistors with high transconductance," Appl. Phys. Lett., vol. 101, 2012, 093504.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 093504
-
-
Hahnlein, B.1
Handel, B.2
Pezoldt, J.3
Topfer, H.4
Granzner, R.5
Schwierz, F.6
-
123
-
-
76749150089
-
Graphene field-effect transistors with high on/off ratio and large transport band gap at room temperature
-
F. Xia, D. B. Farmer, Y.-M. Lin, and P. Avouris, "Graphene field-effect transistors with high on/off ratio and large transport band gap at room temperature," Nano Lett., vol. 10, pp. 715-718, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 715-718
-
-
Xia, F.1
Farmer, D.B.2
Lin, Y.-M.3
Avouris, P.4
-
124
-
-
79960203495
-
High on/off ratios in bilayer graphene field effect transistors realized by surface dopants
-
B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, and H. Kurz, "High on/off ratios in bilayer graphene field effect transistors realized by surface dopants," Nano Lett., vol. 11, pp. 2640-2643, 2011.
-
(2011)
Nano Lett.
, vol.11
, pp. 2640-2643
-
-
Szafranek, B.N.1
Schall, D.2
Otto, M.3
Neumaier, D.4
Kurz, H.5
-
125
-
-
79958004324
-
Enhanced logic performance with semiconducting bilayer graphene channels
-
S.-L. Li, H. Miyazaki, H. Hiura, C. Liu, and K. Tsukagoshi, "Enhanced logic performance with semiconducting bilayer graphene channels," ACS Nano, vol. 5, pp. 500-506, 2011.
-
(2011)
ACS Nano
, vol.5
, pp. 500-506
-
-
Li, S.-L.1
Miyazaki, H.2
Hiura, H.3
Liu, C.4
Tsukagoshi, K.5
-
126
-
-
84858233159
-
Current saturation and voltage gain in bilayer graphene field effect transistors
-
B. N. Szafranek, G. Fiori, D. Schall, D. Neumaier, and H. Kurz, "Current saturation and voltage gain in bilayer graphene field effect transistors," Nano Lett., vol. 12, pp. 1324-1328, 2012.
-
(2012)
Nano Lett.
, vol.12
, pp. 1324-1328
-
-
Szafranek, B.N.1
Fiori, G.2
Schall, D.3
Neumaier, D.4
Kurz, H.5
-
127
-
-
36849090846
-
Interlayer asymmetry gap in the electronic band structure of bilayer graphene
-
E. McCann, "Interlayer asymmetry gap in the electronic band structure of bilayer graphene," Phys. Stat. Sol. (b), vol. 244, pp. 4112-4117, 2007.
-
(2007)
Phys. Stat. Sol. (B)
, vol.244
, pp. 4112-4117
-
-
McCann, E.1
-
128
-
-
84875524556
-
Bilayer graphene by bonding CVD graphene to epitaxial grapheme
-
G. G. Jernigan, T. J. Anderson, J. T. Robinson, J. D. Caldwell, J. C. Culbertson, R. Myers-Ward, A. L. Davidson, M. G. Ancona, V. D. Wheeler, L. O. Nyakiti, A. L. Friedman, P. M. Campbell, and D. K. Gaskill, "Bilayer graphene by bonding CVD graphene to epitaxial graphene," J. Vac. Sci. Technol. B, vol. 30, 2012, 03D110.
-
(2012)
J. Vac. Sci. Technol. B
, vol.30
-
-
Jernigan, G.G.1
Anderson, T.J.2
Robinson, J.T.3
Caldwell, J.D.4
Culbertson, J.C.5
Myers-Ward, R.6
Davidson, A.L.7
Ancona, M.G.8
Wheeler, V.D.9
Nyakiti, L.O.10
Friedman, A.L.11
Campbell, P.M.12
Gaskill, D.K.13
-
129
-
-
84866687131
-
High-yield chemical vapor deposition growth of high-quality large-are AB-stacked bilayer graphene
-
L. Liu, H. Zhou, R. Cheng, W. J. Yu, Y. Liu, Y. Chen, J. Shaw, X. Zhong, Y. Huang, and X. Duan, "High-yield chemical vapor deposition growth of high-quality large-are AB-stacked bilayer graphene," ACS Nano, vol. 6, pp. 8241-8249, 2012.
-
(2012)
ACS Nano
, vol.6
, pp. 8241-8249
-
-
Liu, L.1
Zhou, H.2
Cheng, R.3
Yu, W.J.4
Liu, Y.5
Chen, Y.6
Shaw, J.7
Zhong, X.8
Huang, Y.9
Duan, X.10
-
130
-
-
77952405296
-
Perspectives of graphene nanoelectronics: Probing technological options with modeling
-
G. Iannaccone, G. Fiori, M. Macucci, P. Michetti, M. Cheli, A. Betti, and P. Marconcini, "Perspectives of graphene nanoelectronics: Probing technological options with modeling," in Tech. Dig. Int. Electron Devices Meeting, 2009, pp. 245-248.
-
(2009)
Tech. Dig. Int. Electron Devices Meeting
, pp. 245-248
-
-
Iannaccone, G.1
Fiori, G.2
Macucci, M.3
Michetti, P.4
Cheli, M.5
Betti, A.6
Marconcini, P.7
-
131
-
-
77952375703
-
Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics
-
L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, "Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics," Nano Lett., vol. 10, pp. 1917-1921, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 1917-1921
-
-
Liao, L.1
Bai, J.2
Cheng, R.3
Lin, Y.-C.4
Jiang, S.5
Huang, Y.6
Duan, X.7
-
132
-
-
44149119344
-
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, "Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors," Phys. Rev. Lett., vol. 100, 2008, 206803.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 206803
-
-
Wang, X.1
Ouyang, Y.2
Li, X.3
Wang, H.4
Guo, J.5
Dai, H.6
-
133
-
-
66449113901
-
Rational fabrication of graphene nanoribbons using a nanowire etch mask
-
J. Bai, X. Duan, and Y. Huang, "Rational fabrication of graphene nanoribbons using a nanowire etch mask," Nano Lett., vol. 9, pp. 2083-2087, 2009.
-
(2009)
Nano Lett.
, vol.9
, pp. 2083-2087
-
-
Bai, J.1
Duan, X.2
Huang, Y.3
-
134
-
-
34147162745
-
Performance projections for ballistic graphene nanoribbon field-effect transistors
-
DOI 10.1109/TED.2007.891872
-
G. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, "Performance projection for ballistic graphene nanoribbon field-effect transistors," IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 677-682, Apr. 2007. (Pubitemid 46563359)
-
(2007)
IEEE Transactions on Electron Devices
, vol.54
, Issue.4
, pp. 677-682
-
-
Liang, G.1
Neophytou, N.2
Nikonov, D.E.3
Lundstrom, M.S.4
-
135
-
-
34548052241
-
Effects of edge roughness in graphene nanoribbon transistors
-
Y. Yoon and J. Guo, "Effects of edge roughness in graphene nanoribbon transistors," Appl. Phys. Lett., vol. 91, 2007, 073103.
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 073103
-
-
Yoon, Y.1
Guo, J.2
-
136
-
-
38849173919
-
Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
-
D. Basu, M. J. Gilbert, L. F. Register, S. K. Banerjee, and A. H. MacDonald, "Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors," Appl. Phys. Lett., vol. 92, 2008, 042114.
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 042114
-
-
Basu, D.1
Gilbert, M.J.2
Register, L.F.3
Banerjee, S.K.4
Macdonald, A.H.5
-
137
-
-
77952289665
-
Facile synthesis of high-quality graphene nanoribbons
-
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, "Facile synthesis of high-quality graphene nanoribbons," Nature Nanotechnol., vol. 5, pp. 321-325, 2010.
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 321-325
-
-
Jiao, L.1
Wang, X.2
Diankov, G.3
Wang, H.4
Dai, H.5
-
138
-
-
81555207228
-
Tunnel field-effect transistors as energy-efficient electronic switches
-
A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, pp. 329-337, 2011.
-
(2011)
Nature
, vol.479
, pp. 329-337
-
-
Ionescu, A.M.1
Riel, H.2
-
139
-
-
66749176622
-
Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness
-
M. Luisier and G. Klimeck, "Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness," Appl. Phys. Lett., vol. 94, 2009, 223505.
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 223505
-
-
Luisier, M.1
Klimeck, G.2
-
140
-
-
72049110509
-
Ultralow-voltage bilayer graphene tunnel FET
-
Oct
-
G. Fiori and G. Iannaccone, "Ultralow-voltage bilayer graphene tunnel FET," IEEE Electron Device Lett., vol. 30, no. 10, pp. 1096-1098, Oct. 2009.
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.10
, pp. 1096-1098
-
-
Fiori, G.1
Iannaccone, G.2
-
141
-
-
59649089945
-
Bilayer pseudospin field-effect transistor (BiSFET): A proposed new logic device
-
Feb
-
S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. H. MacDonald, "Bilayer pseudospin field-effect transistor (BiSFET): A proposed new logic device," IEEE Electron Device Lett., vol. 30, no. 2, pp. 158-160, Feb. 2009.
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.2
, pp. 158-160
-
-
Banerjee, S.K.1
Register, L.F.2
Tutuc, E.3
Reddy, D.4
Macdonald, A.H.5
-
142
-
-
77950295990
-
Bilayer pseudospin field-effect transistor: Applications to Boolean logic
-
Apr
-
D. Reddy, L. F. Register, E. Tutuc, and S. K. Banerjee, "Bilayer pseudospin field-effect transistor: Applications to Boolean logic," IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 755-764, Apr. 2010.
-
(2010)
IEEE Trans. Electron Devices
, vol.57
, Issue.4
, pp. 755-764
-
-
Reddy, D.1
Register, L.F.2
Tutuc, E.3
Banerjee, S.K.4
-
143
-
-
78649987428
-
Device and architecture outlook for beyond CMOS switches
-
Dec
-
K. Bernstein, R. K. Cavin, III, W. Porod, A. Seabaugh, and J. Welser, "Device and architecture outlook for beyond CMOS switches," Proc. IEEE, vol. 98, no. 12, pp. 2169-2184, Dec. 2010.
-
(2010)
Proc. IEEE
, vol.98
, Issue.12
, pp. 2169-2184
-
-
Bernstein, K.1
Cavin Iii, R.K.2
Porod, W.3
Seabaugh, A.4
Welser, J.5
-
144
-
-
84857567921
-
Field-effect tunneling transistor based on vertical graphene heterostructures
-
L. Britnell, R. V. Gorbatchev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, "Field-effect tunneling transistor based on vertical graphene heterostructures," Science, vol. 335, pp. 947-950, 2011.
-
(2011)
Science
, vol.335
, pp. 947-950
-
-
Britnell, L.1
Gorbatchev, R.V.2
Jalil, R.3
Belle, B.D.4
Schedin, F.5
Mishchenko, A.6
Georgiou, T.7
Katsnelson, M.I.8
Eaves, L.9
Morozov, S.V.10
Peres, N.M.R.11
Leist, J.12
Geim, A.K.13
Novoselov, K.S.14
Ponomarenko, L.A.15
-
145
-
-
84860383292
-
Vertical graphene base transistor
-
May
-
W. Mehr, J. Dabrowski, J. C. Scheytt, G. Lippert, Y.-H. Xie, M. C. Lemme, M. Ostling, and G. Lupina, "Vertical graphene base transistor," IEEE Electron Device Lett., vol. 33, no. 5, pp. 691-693, May 2012.
-
(2012)
IEEE Electron Device Lett.
, vol.33
, Issue.5
, pp. 691-693
-
-
Mehr, W.1
Dabrowski, J.2
Scheytt, J.C.3
Lippert, G.4
Xie, Y.-H.5
Lemme, M.C.6
Ostling, M.7
Lupina, G.8
-
146
-
-
84862815077
-
Delay analysis of graphene field-effect transistors
-
Mar
-
H. Wang, A. Hsu, D. S. Lee, K. K. Kim, J. Kong, and T. Palacios, "Delay analysis of graphene field-effect transistors," IEEE Electron Device Lett., vol. 33, no. 3, pp. 324-326, Mar. 2012.
-
(2012)
IEEE Electron Device Lett.
, vol.33
, Issue.3
, pp. 324-326
-
-
Wang, H.1
Hsu, A.2
Lee, D.S.3
Kim, K.K.4
Kong, J.5
Palacios, T.6
-
147
-
-
79961057526
-
New directions in science and technology
-
A. H. Castro Neto and K. Novoselov, "New directions in science and technology," Rep. Progr. Phys., vol. 74, 2011, 082501.
-
(2011)
Rep. Progr. Phys.
, vol.74
, pp. 082501
-
-
Castro Neto, A.H.1
Novoselov, K.2
-
148
-
-
84869074729
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
-
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnol., vol. 7, pp. 699-712, 2012.
-
(2012)
Nature Nanotechnol.
, vol.7
, pp. 699-712
-
-
Wang, Q.H.1
Kalantar-Zadeh, K.2
Kis, A.3
Coleman, J.N.4
Strano, M.S.5
-
149
-
-
23044442056
-
Two-dimensional atomic crystals
-
DOI 10.1073/pnas.0502848102
-
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Nat. Acad. Sci., vol. 102, pp. 10451-10453, 2005. (Pubitemid 41061574)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.30
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
Booth, T.J.4
Khotkevich, V.V.5
Morozov, S.V.6
Geim, A.K.7
-
150
-
-
77950480784
-
Frictional characteristics of atomically thin sheets
-
C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. W. Carpick, and J. Hone, "Frictional characteristics of atomically thin sheets," Science, vol. 328, pp. 76-80, 2010.
-
(2010)
Science
, vol.328
, pp. 76-80
-
-
Lee, C.1
Li, Q.2
Kalb, W.3
Liu, X.-Z.4
Berger, H.5
Carpick, R.W.6
Hone, J.7
-
151
-
-
79551634368
-
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
-
J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
-
(2011)
Science
, vol.331
, pp. 568-571
-
-
Coleman, J.N.1
Lotya, M.2
O'Neill, A.3
Bergin, S.D.4
King, P.J.5
Khan, U.6
Young, K.7
Gaucher, A.8
De, S.9
Smith, R.J.10
Shvets, I.V.11
Arora, S.K.12
Stanton, G.13
Kim, H.-Y.14
Lee, K.15
Kim, G.T.16
Duesberg, G.S.17
Hallam, T.18
Boland, J.J.19
Wang, J.J.20
Donegan, J.F.21
Grunlan, J.C.22
Moriarty, G.23
Shmeliov, A.24
Nicholls, R.J.25
Perkins, J.M.26
Grieveson, E.M.27
Theuwissen, K.28
McComb, D.W.29
Nellist, P.D.30
Nicolosi, V.31
more..
-
152
-
-
79952406873
-
Single-layer MoS2 transistors
-
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnol., vol. 6, pp. 147-150, 2011.
-
(2011)
Nature Nanotechnol.
, vol.6
, pp. 147-150
-
-
Radisavljevic, B.1
Radenovic, A.2
Brivio, J.3
Giacometti, V.4
Kis, A.5
-
153
-
-
84862776831
-
MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric
-
Apr
-
H. Liu and P. D. Ye, "MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric," IEEE Electron Device Lett., vol. 33, no. 4, pp. 546-548, Apr. 2012.
-
(2012)
IEEE Electron Device Lett.
, vol.33
, Issue.4
, pp. 546-548
-
-
Liu, H.1
Ye, P.D.2
-
154
-
-
80052090759
-
Performance limits of monolayer transition metal dichalcogenide transistors
-
Sep
-
L. B. Kumar, Y. Ouyang, and J. Guo, "Performance limits of monolayer transition metal dichalcogenide transistors," IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3042-3047, Sep. 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.9
, pp. 3042-3047
-
-
Kumar, L.B.1
Ouyang, Y.2
Guo, J.3
-
155
-
-
80052790285
-
How good can monolayer MoS2 transistors be?
-
Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?" Nano Lett., vol. 11, pp. 3768-3773, 2011.
-
(2011)
Nano Lett.
, vol.11
, pp. 3768-3773
-
-
Yoon, Y.1
Ganapathi, K.2
Salahuddin, S.3
|