메뉴 건너뛰기




Volumn 6, Issue 3, 2011, Pages 147-150

Single-layer MoS2 transistors

Author keywords

[No Author keywords available]

Indexed keywords

ENERGY GAP; ENERGY HARVESTING; GATE DIELECTRICS; GRAPHENE; GRAPHENE TRANSISTORS; LAYERED SEMICONDUCTORS; MOLYBDENUM COMPOUNDS; MONOLAYERS; NANORIBBONS; STRAINED SILICON;

EID: 79952406873     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2010.279     Document Type: Article
Times cited : (13834)

References (40)
  • 4
    • 27744475163 scopus 로고    scopus 로고
    • Experimental observation of the quantum Hall effect and Berry's phase in graphene
    • DOI 10.1038/nature04235, PII N04235
    • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201-204 (2005). (Pubitemid 41599868)
    • (2005) Nature , vol.438 , Issue.7065 , pp. 201-204
    • Zhang, Y.1    Tan, Y.-W.2    Stormer, H.L.3    Kim, P.4
  • 5
    • 70449627005 scopus 로고    scopus 로고
    • Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
    • Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192-195 (2009).
    • (2009) Nature , vol.462 , pp. 192-195
    • Du, X.1    Skachko, I.2    Duerr, F.3    Luican, A.4    Andrei, E.Y.5
  • 6
    • 43049170468 scopus 로고    scopus 로고
    • Ultrahigh electron mobility in suspended graphene
    • Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351-355 (2008).
    • (2008) Solid State Commun. , vol.146 , pp. 351-355
    • Bolotin, K.I.1
  • 7
    • 79952442014 scopus 로고    scopus 로고
    • The International Technology Roadmap for Semiconductors
    • The International Technology Roadmap for Semiconductors. Error! Hyperlink reference not valid. (2009).
    • (2009) Error! Hyperlink Reference Not Valid.
  • 8
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 206805
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 9
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • DOI 10.1126/science.1150878
    • Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008). (Pubitemid 351323015)
    • (2008) Science , vol.319 , Issue.5867 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3    Lee, S.4    Dai, H.5
  • 10
    • 65249133533 scopus 로고    scopus 로고
    • Narrow graphene nanoribbons from carbon nanotubes
    • Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
    • (2009) Nature , vol.458 , pp. 877-880
    • Jiao, L.1    Zhang, L.2    Wang, X.3    Diankov, G.4    Dai, H.5
  • 11
    • 35348815666 scopus 로고    scopus 로고
    • Coulomb blockade in graphene nanoribbons
    • Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 166803
    • Sols, F.1    Guinea, F.2    Neto, A.H.C.3
  • 12
    • 34548052241 scopus 로고    scopus 로고
    • Effect ofedge roughness in graphene nanoribbon transistors
    • Yoon, Y. & Guo, J. Effect ofedge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).
    • (2007) Appl. Phys. Lett. , vol.91 , pp. 073103
    • Yoon, Y.1    Guo, J.2
  • 13
    • 33646685492 scopus 로고    scopus 로고
    • Analysis of graphene nanoribbons as a channel material for field-effect transistors
    • Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).
    • (2006) Appl. Phys. Lett. , vol.88 , pp. 142102
    • Obradovic, B.1
  • 14
    • 67149121054 scopus 로고    scopus 로고
    • Direct observation of a widely tunable bandgap in bilayer graphene
    • Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
    • (2009) Nature , vol.459 , pp. 820-823
    • Zhang, Y.1
  • 18
    • 77951069162 scopus 로고    scopus 로고
    • Nano Lett.
    • 2. Nano Lett. 10, 1271-1275 (2010).
    • (2010) 2. , vol.10 , pp. 1271-1275
    • Splendiani, A.1
  • 20
    • 36849096704 scopus 로고
    • 2 several molecular layers thick
    • 2 several molecular layers thick. J. Appl. Phys. 37, 1928-1929 (1966).
    • (1966) J. Appl. Phys. , vol.37 , pp. 1928-1929
    • Frindt, R.F.1
  • 22
    • 0027592103 scopus 로고
    • 2 on mica: Studies by means of scanning force microscopy
    • DOI 10.1016/0039-6028(93)90875-K
    • 2 on mica: studies by means of scanning force microscopy Surf. Sci. Lett. 289, L595-L598 (1993). (Pubitemid 23668123)
    • (1993) Surface Science , vol.289 , Issue.1-2
    • Schumacher, A.1    Scandella, L.2    Kruse, N.3    Prins, R.4
  • 23
    • 1542733380 scopus 로고
    • Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides
    • Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86, 463-467 (1982).
    • (1982) J. Phys. Chem. , vol.86 , pp. 463-467
    • Kam, K.K.1    Parkinson, B.A.2
  • 26
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487-496 (2010).
    • (2010) Nature Nanotech. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 29
    • 33846295541 scopus 로고    scopus 로고
    • Realization and electrical characterization of ultrathin crystals oflayered transition-metal dichalcogenides
    • Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals oflayered transition-metal dichalcogenides. J. App. Phys. 101, 014507 (2007).
    • (2007) J. App. Phys. , vol.101 , pp. 014507
    • Ayari, A.1    Cobas, E.2    Ogundadegbe, O.3    Fuhrer, M.S.4
  • 30
    • 0000070925 scopus 로고
    • Mobility of charge carriers in semiconducting layer structures
    • Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743-755 (1967).
    • (1967) Phys. Rev. , vol.163 , pp. 743-755
    • Fivaz, R.1    Mooser, E.2
  • 31
    • 34047094264 scopus 로고    scopus 로고
    • Enhancement ofcarrier mobility in semiconductor nanostructures by dielectric engineering
    • Debdeep, J. & Aniruddha, K. Enhancement ofcarrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 136805
    • Debdeep, J.1    Aniruddha, K.2
  • 33
    • 35348909664 scopus 로고    scopus 로고
    • The high-k solution
    • DOI 10.1109/MSPEC.2007.4337663
    • Bohr, M. T., Chau, R. S., Ghani, T. & Mistry, K. The high-k solution. IEEE Spectrum 44, 29-35 (2007). (Pubitemid 47570274)
    • (2007) IEEE Spectrum , vol.44 , Issue.10 , pp. 29-35
    • Bohr, M.T.1    Chau, R.S.2    Ghani, T.3    Mistry, K.4
  • 34
    • 50249185641 scopus 로고    scopus 로고
    • A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging
    • Mistry, K. et al. A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE Tech. Dig. IEDM 247-250 (2007).
    • (2007) IEEE Tech. Dig. IEDM , pp. 247-250
    • Mistry, K.1
  • 37
    • 63149094559 scopus 로고    scopus 로고
    • Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm
    • Gomez, L., Aberg, I. & Hoyt, J. L. Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm. IEEE Electron Dev. Lett. 28, 285-287 (2007).
    • (2007) IEEE Electron Dev. Lett. , vol.28 , pp. 285-287
    • Gomez, L.1    Aberg, I.2    Hoyt, J.L.3
  • 38
    • 0141605054 scopus 로고    scopus 로고
    • High-performance thin-film transistors using semiconductor nanowires and nanoribbons
    • DOI 10.1038/nature01996
    • Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274-278 (2003). (Pubitemid 37158399)
    • (2003) Nature , vol.425 , Issue.6955 , pp. 274-278
    • Duan, X.1    Niu, C.2    Sahi, V.3    Chen, J.4    Parce, J.W.5    Empedocles, S.6    Goldman, J.L.7
  • 39
    • 77956939304 scopus 로고    scopus 로고
    • High-speed graphene transistors with a self-aligned nanowire gate
    • Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305-308 (2010).
    • (2010) Nature , vol.467 , pp. 305-308
    • Liao, L.1
  • 40
    • 77957908617 scopus 로고    scopus 로고
    • Boron nitride substrates for high-quality graphene electronics
    • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722-726 (2010).
    • (2010) Nature Nanotech. , vol.5 , pp. 722-726
    • Dean, C.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.