-
1
-
-
79955779584
-
mTOR links oncogenic signaling to tumor cell metabolism
-
21301797,; PMID
-
Yecies JL, Manning BD. mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med 2011; 89:221-8; PMID:21301797; http://dx.doi.org/10.1007/s00109-011-0726-6
-
(2011)
J Mol Med
, vol.89
, pp. 221-228
-
-
Yecies, J.L.1
Manning, B.D.2
-
2
-
-
84894523716
-
Making new contacts: the mTOR network in metabolism and signalling crosstalk
-
24556838,; PMID
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15:155-62; PMID:24556838; http://dx.doi.org/10.1038/nrm3757
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
3
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
12150925,; PMID
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-75; PMID:12150925; http://dx.doi.org/10.1016/S0092-8674(02)00808-5
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
4
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
12150926,; PMID
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-89; PMID:12150926; http://dx.doi.org/10.1016/S0092-8674(02)00833-4
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
5
-
-
84860454425
-
Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c
-
22521878,; PMID
-
Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA, Hall MN. Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c. Cell Metab 2012; 15:725-38; PMID:22521878; http://dx.doi.org/10.1016/j.cmet.2012.03.015
-
(2012)
Cell Metab
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
Cornu, M.2
Cybulski, N.3
Polak, P.4
Betz, C.5
Trapani, F.6
Terracciano, L.7
Heim, M.H.8
Ruegg, M.A.9
Hall, M.N.10
-
6
-
-
79960470913
-
mTOR complex 2 signaling and functions
-
21670596,; PMID
-
Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011; 10:2305-16; PMID:21670596; http://dx.doi.org/10.4161/cc.10.14.16586
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
7
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
22461615,; PMID
-
Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335:1638-43; PMID:22461615; http://dx.doi.org/10.1126/science.1215135
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
Ye, L.2
Katajisto, P.3
Goncalves, M.D.4
Saitoh, M.5
Stevens, D.M.6
Davis, J.G.7
Salmon, A.B.8
Richardson, A.9
Ahima, R.S.10
-
8
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. MolCell 2006; 22:159-68
-
(2006)
MolCell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
Markhard, A.L.7
Sabatini, D.M.8
-
9
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
18604198,; PMID
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; PMID:18604198; http://dx.doi.org/10.1038/ncb1753
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
10
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
18497260,; PMID
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-501; PMID:18497260; http://dx.doi.org/10.1126/science.1157535
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
11
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
22980980,; PMID
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150:1196-208; PMID:22980980; http://dx.doi.org/10.1016/j.cell.2012.07.032
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
12
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
24095279,; PMID
-
Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013; 52:495-505; PMID:24095279; http://dx.doi.org/10.1016/j.molcel.2013.09.016
-
(2013)
Mol Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
Spooner, E.7
Sabatini, D.M.8
-
13
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
22749528,; PMID
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47:349-58; PMID:22749528; http://dx.doi.org/10.1016/j.molcel.2012.05.043
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
Hall, M.N.7
-
14
-
-
84903158167
-
Regulation of mTORC1 by amino acids
-
24698685,; PMID
-
Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell biol 2014; 24:400-6; PMID:24698685; http://dx.doi.org/10.1016/j.tcb.2014.03.003
-
(2014)
Trends Cell biol
, vol.24
, pp. 400-406
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
15
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. CurrBiol 2005; 15:702-13; http://dx.doi.org/10.1016/j.cub.2005.02.053
-
(2005)
CurrBiol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
16
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
24529380,; PMID
-
Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014; 156:786-99; PMID:24529380; http://dx.doi.org/10.1016/j.cell.2014.01.024
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
17
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
12869586,; PMID
-
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17:1829-34; PMID:12869586; http://dx.doi.org/10.1101/gad.1110003
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
18
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
24529379,; PMID
-
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156:771-85; PMID:24529379; http://dx.doi.org/10.1016/j.cell.2013.11.049
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
19
-
-
84859778293
-
mTOR Signaling in Growth Control and Disease
-
22500797,; PMID
-
Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell 2012; 149:274-93; PMID:22500797; http://dx.doi.org/10.1016/j.cell.2012.03.017
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
20
-
-
84900800420
-
AMPK: regulating energy balance at the cellular and whole body levels
-
24583766,; PMID
-
Hardie DG, Ashford ML. AMPK: regulating energy balance at the cellular and whole body levels. Physiology 2014; 29:99-107; PMID:24583766; http://dx.doi.org/10.1152/physiol.00050.2013
-
(2014)
Physiology
, vol.29
, pp. 99-107
-
-
Hardie, D.G.1
Ashford, M.L.2
-
21
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
18439900,; PMID
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26; PMID:18439900; http://dx.doi.org/10.1016/j.molcel.2008.03.003
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
22
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
14651849,; PMID
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577-90; PMID:14651849; http://dx.doi.org/10.1016/S0092-8674(03)00929-2
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
23
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
23142078,; PMID
-
Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY, et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 2013; 49:172-85; PMID:23142078
-
(2013)
Mol Cell
, vol.49
, pp. 172-185
-
-
Kim, S.G.1
Hoffman, G.R.2
Poulogiannis, G.3
Buel, G.R.4
Jang, Y.J.5
Lee, K.W.6
Kim, B.Y.7
Erikson, R.L.8
Cantley, L.C.9
Choo, A.Y.10
-
24
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
16847060,; PMID
-
Schieke SM, Phillips D, McCoy JP, Jr., Aponte AM, Shen RF, Balaban RS, Finkel T. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281:27643-52; PMID:16847060; http://dx.doi.org/10.1074/jbc.M603536200
-
(2006)
J Biol Chem
, vol.281
, pp. 27643-27652
-
-
Schieke, S.M.1
Phillips, D.2
McCoy, J.P.3
Aponte, A.M.4
Shen, R.F.5
Balaban, R.S.6
Finkel, T.7
-
25
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
18046414,; PMID
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450:736-40; PMID:18046414; http://dx.doi.org/10.1038/nature06322
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
26
-
-
84887415150
-
mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
24206664,; PMID
-
Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013; 18:698-711; PMID:24206664; http://dx.doi.org/10.1016/j.cmet.2013.10.001
-
(2013)
Cell Metab
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
Sikstrom, K.4
Zheng, L.5
Alain, T.6
Gandin, V.7
Avizonis, D.8
Arguello, M.9
Zakaria, C.10
-
27
-
-
53449092586
-
A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression
-
18650261,; PMID
-
Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC, 3rd. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol 2008; 295:C836-43; PMID:18650261; http://dx.doi.org/10.1152/ajpcell.00554.2007
-
(2008)
Am J Physiol Cell Physiol
, vol.295
, pp. C836-C843
-
-
Buller, C.L.1
Loberg, R.D.2
Fan, M.H.3
Zhu, Q.4
Park, J.L.5
Vesely, E.6
Inoki, K.7
Guan, K.L.8
Brosius, F.C.9
-
28
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
23663782,; PMID
-
Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013; 153:840-54; PMID:23663782; http://dx.doi.org/10.1016/j.cell.2013.04.023
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
Chapski, D.J.6
Jeong, S.M.7
Dempsey, J.M.8
Parkhitko, A.9
Morrison, T.10
-
29
-
-
84862777192
-
The translational landscape of mTOR signalling steers cancer initiation and metastasis
-
22367541,; PMID
-
Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485:55-61; PMID:22367541; http://dx.doi.org/10.1038/nature10912
-
(2012)
Nature
, vol.485
, pp. 55-61
-
-
Hsieh, A.C.1
Liu, Y.2
Edlind, M.P.3
Ingolia, N.T.4
Janes, M.R.5
Sher, A.6
Shi, E.Y.7
Stumpf, C.R.8
Christensen, C.9
Bonham, M.J.10
-
30
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
19339977,; PMID
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307-18; PMID:19339977; http://dx.doi.org/10.1038/nrm2672
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
31
-
-
84859366546
-
mTOR signaling regulates the processing of pre-rRNA in human cells
-
22121221,; PMID
-
Iadevaia V, Zhang Z, Jan E, Proud CG. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res 2012; 40:2527-39; PMID:22121221; http://dx.doi.org/10.1093/nar/gkr1040
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 2527-2539
-
-
Iadevaia, V.1
Zhang, Z.2
Jan, E.3
Proud, C.G.4
-
32
-
-
84863045210
-
Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis
-
22260684,; PMID
-
Iadevaia V, Huo Y, Zhang Z, Foster LJ, Proud CG. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans 2012; 40:168-72; PMID:22260684; http://dx.doi.org/10.1042/BST20110682
-
(2012)
Biochem Soc Trans
, vol.40
, pp. 168-172
-
-
Iadevaia, V.1
Huo, Y.2
Zhang, Z.3
Foster, L.J.4
Proud, C.G.5
-
33
-
-
0026323221
-
Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control
-
2014251,; PMID
-
Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A 1991; 88:3319-23; PMID:2014251; http://dx.doi.org/10.1073/pnas.88.8.3319
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 3319-3323
-
-
Levy, S.1
Avni, D.2
Hariharan, N.3
Perry, R.P.4
Meyuhas, O.5
-
34
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
22552098,; PMID
-
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012; 485:109-13; PMID:22552098; http://dx.doi.org/10.1038/nature11083
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
Chantranupong, L.2
Keys, H.R.3
Wang, T.4
Gray, N.S.5
Sabatini, D.M.6
-
35
-
-
84893912480
-
Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation
-
24532714,; PMID
-
Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation. Genes Dev 2014; 28:357-71; PMID:24532714; http://dx.doi.org/10.1101/gad.231407.113
-
(2014)
Genes Dev
, vol.28
, pp. 357-371
-
-
Tcherkezian, J.1
Cargnello, M.2
Romeo, Y.3
Huttlin, E.L.4
Lavoie, G.5
Gygi, S.P.6
Roux, P.P.7
-
36
-
-
59249097362
-
The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner
-
19047368,; PMID
-
Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, Ruegg MA, Hall MN, Meyuhas O. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009; 29:640-9; PMID:19047368; http://dx.doi.org/10.1128/MCB.00980-08
-
(2009)
Mol Cell Biol
, vol.29
, pp. 640-649
-
-
Patursky-Polischuk, I.1
Stolovich-Rain, M.2
Hausner-Hanochi, M.3
Kasir, J.4
Cybulski, N.5
Avruch, J.6
Ruegg, M.A.7
Hall, M.N.8
Meyuhas, O.9
-
37
-
-
84901700198
-
Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner
-
24627160,; PMID
-
Miloslavski R, Cohen E, Avraham A, Iluz Y, Hayouka Z, Kasir J, Mudhasani R, Jones SN, Cybulski N, Ruegg MA, et al. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. J Mol Cell Biol 2014; 6:255-66; PMID:24627160; http://dx.doi.org/10.1093/jmcb/mju008
-
(2014)
J Mol Cell Biol
, vol.6
, pp. 255-266
-
-
Miloslavski, R.1
Cohen, E.2
Avraham, A.3
Iluz, Y.4
Hayouka, Z.5
Kasir, J.6
Mudhasani, R.7
Jones, S.N.8
Cybulski, N.9
Ruegg, M.A.10
-
39
-
-
2442574729
-
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
-
15071500,; PMID
-
Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershey JW. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004; 23:1761-9; PMID:15071500; http://dx.doi.org/10.1038/sj.emboj.7600193
-
(2004)
EMBO J
, vol.23
, pp. 1761-1769
-
-
Raught, B.1
Peiretti, F.2
Gingras, A.C.3
Livingstone, M.4
Shahbazian, D.5
Mayeur, G.L.6
Polakiewicz, R.D.7
Sonenberg, N.8
Hershey, J.W.9
-
40
-
-
66349138290
-
Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals
-
19289497,; PMID
-
Kroczynska B, Kaur S, Katsoulidis E, Majchrzak-Kita B, Sassano A, Kozma SC, Fish EN, Platanias LC. Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals. Mol Cell Biol 2009; 29:2865-75; PMID:19289497; http://dx.doi.org/10.1128/MCB.01537-08
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2865-2875
-
-
Kroczynska, B.1
Kaur, S.2
Katsoulidis, E.3
Majchrzak-Kita, B.4
Sassano, A.5
Kozma, S.C.6
Fish, E.N.7
Platanias, L.C.8
-
41
-
-
0035200856
-
Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation
-
Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J, Meyuhas O. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. MolCell Biol 2001; 21:8671-83
-
(2001)
MolCell Biol
, vol.21
, pp. 8671-8683
-
-
Tang, H.1
Hornstein, E.2
Stolovich, M.3
Levy, G.4
Livingstone, M.5
Templeton, D.6
Avruch, J.7
Meyuhas, O.8
-
42
-
-
84896629473
-
Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
-
23318442,; PMID
-
Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, Cagnard N, Carpentier W, Kiss T, Meyuhas O, et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014; 33:474-83; PMID:23318442; http://dx.doi.org/10.1038/onc.2012.606
-
(2014)
Oncogene
, vol.33
, pp. 474-483
-
-
Chauvin, C.1
Koka, V.2
Nouschi, A.3
Mieulet, V.4
Hoareau-Aveilla, C.5
Dreazen, A.6
Cagnard, N.7
Carpentier, W.8
Kiss, T.9
Meyuhas, O.10
-
43
-
-
26244464326
-
PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP
-
16007182,; PMID
-
Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 2005; 24:6465-81; PMID:16007182
-
(2005)
Oncogene
, vol.24
, pp. 6465-6481
-
-
Porstmann, T.1
Griffiths, B.2
Chung, Y.L.3
Delpuech, O.4
Griffiths, J.R.5
Downward, J.6
Schulze, A.7
-
44
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
18762023,; PMID
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8:224-36; PMID:18762023; http://dx.doi.org/10.1016/j.cmet.2008.07.007
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
Griffiths, J.R.7
Chung, Y.L.8
Schulze, A.9
-
45
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
20670887,; PMID
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-83; PMID:20670887; http://dx.doi.org/10.1016/j.molcel.2010.06.022
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
Triantafellow, E.7
Ma, Q.8
Gorski, R.9
Cleaver, S.10
-
46
-
-
79959996153
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
21723501,; PMID
-
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14:21-32; PMID:21723501; http://dx.doi.org/10.1016/j.cmet.2011.06.002
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
Zhang, H.H.2
Menon, S.3
Liu, S.4
Yecies, D.5
Lipovsky, A.I.6
Gorgun, C.7
Kwiatkowski, D.J.8
Hotamisligil, G.S.9
Lee, C.H.10
-
47
-
-
84856471735
-
SREBPs: metabolic integrators in physiology and metabolism
-
22154484,; PMID
-
Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012; 23:65-72; PMID:22154484; http://dx.doi.org/10.1016/j.tem.2011.10.004
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 65-72
-
-
Jeon, T.I.1
Osborne, T.F.2
-
48
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
23429703,; PMID
-
Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339:1323-8; PMID:23429703; http://dx.doi.org/10.1126/science.1228792
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
49
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
23429704,; PMID
-
Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, Prescianotto-Baschong C, Sauer U, Jenoe P, Hall MN. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013; 339:1320-3; PMID:23429704; http://dx.doi.org/10.1126/science.1228771
-
(2013)
Science
, vol.339
, pp. 1320-1323
-
-
Robitaille, A.M.1
Christen, S.2
Shimobayashi, M.3
Cornu, M.4
Fava, L.L.5
Moes, S.6
Prescianotto-Baschong, C.7
Sauer, U.8
Jenoe, P.9
Hall, M.N.10
-
50
-
-
0028036698
-
Insulin receptor substrate-1 mediates phosphatidylinositol 3'-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation
-
7961833,; PMID
-
Myers MG, Jr., Grammer TC, Wang LM, Sun XJ, Pierce JH, Blenis J, White MF. Insulin receptor substrate-1 mediates phosphatidylinositol 3'-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J Biol Chem 1994; 269:28783-9; PMID:7961833
-
(1994)
J Biol Chem
, vol.269
, pp. 28783-28789
-
-
Myers, M.G.1
Grammer, T.C.2
Wang, L.M.3
Sun, X.J.4
Pierce, J.H.5
Blenis, J.6
White, M.F.7
-
51
-
-
4544343980
-
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
-
Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. CurrBiol 2004; 14:1650-6; http://dx.doi.org/10.1016/j.cub.2004.08.026
-
(2004)
CurrBiol
, vol.14
, pp. 1650-1656
-
-
Shah, O.J.1
Wang, Z.2
Hunter, T.3
-
52
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
15249583,; PMID
-
Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004; 166:213-23; PMID:15249583; http://dx.doi.org/10.1083/jcb.200403069
-
(2004)
J Cell Biol
, vol.166
, pp. 213-223
-
-
Harrington, L.S.1
Findlay, G.M.2
Gray, A.3
Tolkacheva, T.4
Wigfield, S.5
Rebholz, H.6
Barnett, J.7
Leslie, N.R.8
Cheng, S.9
Shepherd, P.R.10
-
53
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
21659604,; PMID
-
Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332:1317-22; PMID:21659604; http://dx.doi.org/10.1126/science.1199498
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
Peterson, T.R.7
Choi, Y.8
Gray, N.S.9
Yaffe, M.B.10
-
54
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
21659605,; PMID
-
Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332:1322-6; PMID:21659605; http://dx.doi.org/10.1126/science.1199484
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villen, J.6
Kubica, N.7
Hoffman, G.R.8
Cantley, L.C.9
Gygi, S.P.10
-
55
-
-
0033582929
-
Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor
-
10102273,; PMID
-
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96:857-68; PMID:10102273; http://dx.doi.org/10.1016/S0092-8674(00)80595-4
-
(1999)
Cell
, vol.96
, pp. 857-868
-
-
Brunet, A.1
Bonni, A.2
Zigmond, M.J.3
Lin, M.Z.4
Juo, P.5
Hu, L.S.6
Anderson, M.J.7
Arden, K.C.8
Blenis, J.9
Greenberg, M.E.10
-
56
-
-
80053285628
-
Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway
-
21954288,; PMID
-
Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M, Koromilas AE. Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway. Sci signal 2011; 4:ra62; PMID:21954288; http://dx.doi.org/10.1126/scisignal.2001630
-
(2011)
Sci signal
, vol.4
, pp. ra62
-
-
Mounir, Z.1
Krishnamoorthy, J.L.2
Wang, S.3
Papadopoulou, B.4
Campbell, S.5
Muller, W.J.6
Hatzoglou, M.7
Koromilas, A.E.8
-
57
-
-
84860468095
-
Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
-
22444729,; PMID
-
Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 2012; 22:274-82; PMID:22444729; http://dx.doi.org/10.1016/j.tcb.2012.02.006
-
(2012)
Trends Cell Biol
, vol.22
, pp. 274-282
-
-
Appenzeller-Herzog, C.1
Hall, M.N.2
-
58
-
-
79957534572
-
Targeting hypoxia in cancer therapy
-
21606941,; PMID
-
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11:393-410; PMID:21606941; http://dx.doi.org/10.1038/nrc3064
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 393-410
-
-
Wilson, W.R.1
Hay, M.P.2
-
59
-
-
84877927481
-
mTOR in aging, metabolism, and cancer
-
23317514,; PMID
-
Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin genet Dev 2013; 23:53-62; PMID:23317514; http://dx.doi.org/10.1016/j.gde.2012.12.005
-
(2013)
Curr Opin genet Dev
, vol.23
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
60
-
-
10644291664
-
Mitochondrial dysfunction in cancer
-
16120430,; PMID
-
Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion 2004; 4:755-62; PMID:16120430; http://dx.doi.org/10.1016/j.mito.2004.07.027
-
(2004)
Mitochondrion
, vol.4
, pp. 755-762
-
-
Modica-Napolitano, J.S.1
Singh, K.K.2
-
61
-
-
0347627375
-
Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma
-
14639607,; PMID
-
Kumimoto H, Yamane Y, Nishimoto Y, Fukami H, Shinoda M, Hatooka S, Ishizaki K. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer J Int du Cancer 2004; 108:228-31; PMID:14639607; http://dx.doi.org/10.1002/ijc.11564
-
(2004)
Int J Cancer J Int du Cancer
, vol.108
, pp. 228-231
-
-
Kumimoto, H.1
Yamane, Y.2
Nishimoto, Y.3
Fukami, H.4
Shinoda, M.5
Hatooka, S.6
Ishizaki, K.7
-
62
-
-
84877851087
-
AMPK: a contextual oncogene or tumor suppressor?
-
23644529,; PMID
-
Liang J, Mills GB. AMPK: a contextual oncogene or tumor suppressor? Cancer Res 2013; 73:2929-35; PMID:23644529; http://dx.doi.org/10.1158/0008-5472.CAN-12-3876
-
(2013)
Cancer Res
, vol.73
, pp. 2929-2935
-
-
Liang, J.1
Mills, G.B.2
-
63
-
-
84900312241
-
Endoplasmic reticulum stress in malignancy
-
24823636,; PMID
-
Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell 2014; 25:563-73; PMID:24823636; http://dx.doi.org/10.1016/j.ccr.2014.03.015
-
(2014)
Cancer Cell
, vol.25
, pp. 563-573
-
-
Clarke, H.J.1
Chambers, J.E.2
Liniker, E.3
Marciniak, S.J.4
-
64
-
-
33751285479
-
The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth
-
16861899,; PMID
-
Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 2006; 5:723-8; PMID:16861899; http://dx.doi.org/10.4161/cbt.5.7.2967
-
(2006)
Cancer Biol Ther
, vol.5
, pp. 723-728
-
-
Fels, D.R.1
Koumenis, C.2
-
65
-
-
36849066978
-
Hypoxia and cancer
-
18026916,; PMID
-
Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med 2007; 85:1301-7; PMID:18026916; http://dx.doi.org/10.1007/s00109-007-0281-3
-
(2007)
J Mol Med
, vol.85
, pp. 1301-1307
-
-
Brahimi-Horn, M.C.1
Chiche, J.2
Pouyssegur, J.3
-
66
-
-
84870733168
-
Protein folding in the endoplasmic reticulum
-
23637286,; PMID
-
Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harbor perspectives Biol 2013; 5:a013201; PMID:23637286; http://dx.doi.org/10.1101/cshperspect.a013201
-
(2013)
Cold Spring Harbor perspectives Biol
, vol.5
, pp. a013201
-
-
Braakman, I.1
Hebert, D.N.2
-
67
-
-
0037330932
-
Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153)
-
12370080,; PMID
-
van der Sanden MH, Houweling M, van Golde LM, Vaandrager AB. Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem J 2003; 369:643-50; PMID:12370080; http://dx.doi.org/10.1042/BJ20020285
-
(2003)
Biochem J
, vol.369
, pp. 643-650
-
-
van der Sanden, M.H.1
Houweling, M.2
van Golde, L.M.3
Vaandrager, A.B.4
-
68
-
-
33847034466
-
Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells
-
17283163,; PMID
-
Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ. Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 2007; 67:1262-9; PMID:17283163; http://dx.doi.org/10.1158/0008-5472.CAN-06-1794
-
(2007)
Cancer Res
, vol.67
, pp. 1262-1269
-
-
Little, J.L.1
Wheeler, F.B.2
Fels, D.R.3
Koumenis, C.4
Kridel, S.J.5
-
69
-
-
73349106233
-
Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response
-
19948500,; PMID
-
Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 2009; 187:525-36; PMID:19948500; http://dx.doi.org/10.1083/jcb.200907074
-
(2009)
J Cell Biol
, vol.187
, pp. 525-536
-
-
Schuck, S.1
Prinz, W.A.2
Thorn, K.S.3
Voss, C.4
Walter, P.5
-
70
-
-
0029949512
-
Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells
-
8665507,; PMID
-
Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 1996; 56:2745-7; PMID:8665507
-
(1996)
Cancer Res
, vol.56
, pp. 2745-2747
-
-
Pizer, E.S.1
Jackisch, C.2
Wood, F.D.3
Pasternack, G.R.4
Davidson, N.E.5
Kuhajda, F.P.6
-
71
-
-
65549096661
-
De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy
-
19352381,; PMID
-
Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British J Cancer 2009; 100:1369-72; PMID:19352381; http://dx.doi.org/10.1038/sj.bjc.6605007
-
(2009)
British J Cancer
, vol.100
, pp. 1369-1372
-
-
Mashima, T.1
Seimiya, H.2
Tsuruo, T.3
-
72
-
-
12444279265
-
On the origin of cancer cells
-
13298683,; PMID
-
Warburg O. On the origin of cancer cells. Science 1956; 123:309-14; PMID:13298683; http://dx.doi.org/10.1126/science.123.3191.309
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
73
-
-
84868019043
-
Cancer cell metabolism: one hallmark, many faces
-
23009760,; PMID
-
Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012; 2:881-98; PMID:23009760; http://dx.doi.org/10.1158/2159-8290.CD-12-0345
-
(2012)
Cancer Discov
, vol.2
, pp. 881-898
-
-
Cantor, J.R.1
Sabatini, D.M.2
-
74
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
21508971,; PMID
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11:325-37; PMID:21508971; http://dx.doi.org/10.1038/nrc3038
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
75
-
-
84872478184
-
Expression of glucose transporters in cancers
-
23266512,; PMID
-
Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta 2013; 1835:164-9; PMID:23266512
-
(2013)
Biochim Biophys Acta
, vol.1835
, pp. 164-169
-
-
Szablewski, L.1
-
76
-
-
79961069521
-
Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo
-
21826239,; PMID
-
Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, Ilkun O, Pereira R, Abel ED, Anderson SM. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PloS One 2011; 6:e23205; PMID:21826239; http://dx.doi.org/10.1371/journal.pone.0023205
-
(2011)
PloS One
, vol.6
-
-
Young, C.D.1
Lewis, A.S.2
Rudolph, M.C.3
Ruehle, M.D.4
Jackman, M.R.5
Yun, U.J.6
Ilkun, O.7
Pereira, R.8
Abel, E.D.9
Anderson, S.M.10
-
77
-
-
40649104735
-
Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
-
18342602,; PMID
-
Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, Manning BD, Hotamisligil GS. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 2008; 29:541-51; PMID:18342602; http://dx.doi.org/10.1016/j.molcel.2007.12.023
-
(2008)
Mol Cell
, vol.29
, pp. 541-551
-
-
Ozcan, U.1
Ozcan, L.2
Yilmaz, E.3
Duvel, K.4
Sahin, M.5
Manning, B.D.6
Hotamisligil, G.S.7
-
78
-
-
84856111924
-
The unfolded protein response: controlling cell fate decisions under ER stress and beyond
-
22251901,; PMID
-
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13:89-102; PMID:22251901
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 89-102
-
-
Hetz, C.1
-
79
-
-
0032509216
-
Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors
-
9837962,; PMID
-
Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273:33741-9; PMID:9837962; http://dx.doi.org/10.1074/jbc.273.50.33741
-
(1998)
J Biol Chem
, vol.273
, pp. 33741-33749
-
-
Yoshida, H.1
Haze, K.2
Yanagi, H.3
Yura, T.4
Mori, K.5
-
80
-
-
34548172495
-
Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1
-
17765680,; PMID
-
Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 2007; 13:365-76; PMID:17765680; http://dx.doi.org/10.1016/j.devcel.2007.07.018
-
(2007)
Dev Cell
, vol.13
, pp. 365-376
-
-
Yamamoto, K.1
Sato, T.2
Matsui, T.3
Sato, M.4
Okada, T.5
Yoshida, H.6
Harada, A.7
Mori, K.8
-
81
-
-
0033590451
-
Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
-
9930704,; PMID
-
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397:271-4; PMID:9930704; http://dx.doi.org/10.1038/16729
-
(1999)
Nature
, vol.397
, pp. 271-274
-
-
Harding, H.P.1
Zhang, Y.2
Ron, D.3
-
82
-
-
0027729197
-
Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling
-
7935356,; PMID
-
Prostko CR, Brostrom MA, Brostrom CO. Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling. Mol Cell Biochem 1993; 127-128:255-65; PMID:7935356
-
(1993)
Mol Cell Biochem
, pp. 255-265
-
-
Prostko, C.R.1
Brostrom, M.A.2
Brostrom, C.O.3
-
83
-
-
33845459165
-
Autophagy is activated for cell survival after endoplasmic reticulum stress
-
17030611,; PMID
-
Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26:9220-31; PMID:17030611; http://dx.doi.org/10.1128/MCB.01453-06
-
(2006)
Mol Cell Biol
, vol.26
, pp. 9220-9231
-
-
Ogata, M.1
Hino, S.2
Saito, A.3
Morikawa, K.4
Kondo, S.5
Kanemoto, S.6
Murakami, T.7
Taniguchi, M.8
Tanii, I.9
Yoshinaga, K.10
-
84
-
-
34548299555
-
Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability
-
17620365,; PMID
-
Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007; 171:513-24; PMID:17620365; http://dx.doi.org/10.2353/ajpath.2007.070188
-
(2007)
Am J Pathol
, vol.171
, pp. 513-524
-
-
Ding, W.X.1
Ni, H.M.2
Gao, W.3
Yoshimori, T.4
Stolz, D.B.5
Ron, D.6
Yin, X.M.7
-
85
-
-
79955804227
-
Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer disease
-
21252911,; PMID
-
Nijholt DA, de Graaf TR, van Haastert ES, Oliveira AO, Berkers CR, Zwart R, Ovaa H, Baas F, Hoozemans JJ, Scheper W. Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer disease. Cell Death Differ 2011; 18:1071-81; PMID:21252911; http://dx.doi.org/10.1038/cdd.2010.176
-
(2011)
Cell Death Differ
, vol.18
, pp. 1071-1081
-
-
Nijholt, D.A.1
de Graaf, T.R.2
van Haastert, E.S.3
Oliveira, A.O.4
Berkers, C.R.5
Zwart, R.6
Ovaa, H.7
Baas, F.8
Hoozemans, J.J.9
Scheper, W.10
-
86
-
-
26444494585
-
Endoplasmic reticulum stress compromises the ubiquitin-proteasome system
-
16103128,; PMID
-
Menendez-Benito V, Verhoef LG, Masucci MG, Dantuma NP. Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 2005; 14:2787-99; PMID:16103128; http://dx.doi.org/10.1093/hmg/ddi312
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2787-2799
-
-
Menendez-Benito, V.1
Verhoef, L.G.2
Masucci, M.G.3
Dantuma, N.P.4
-
87
-
-
78650174233
-
The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
-
20616807,; PMID
-
Kang YJ, Lu MK, Guan KL. The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 2011; 18:133-44; PMID:20616807; http://dx.doi.org/10.1038/cdd.2010.82
-
(2011)
Cell Death Differ
, vol.18
, pp. 133-144
-
-
Kang, Y.J.1
Lu, M.K.2
Guan, K.L.3
-
88
-
-
65949106140
-
Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner
-
19420259,; PMID
-
Di Nardo A, Kramvis I, Cho N, Sadowski A, Meikle L, Kwiatkowski DJ, Sahin M. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J Neurosci 2009; 29:5926-37; PMID:19420259; http://dx.doi.org/10.1523/JNEUROSCI.0778-09.2009
-
(2009)
J Neurosci
, vol.29
, pp. 5926-5937
-
-
Di Nardo, A.1
Kramvis, I.2
Cho, N.3
Sadowski, A.4
Meikle, L.5
Kwiatkowski, D.J.6
Sahin, M.7
-
89
-
-
17144417669
-
TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death
-
15775988,; PMID
-
Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 2005; 24:1243-55; PMID:15775988; http://dx.doi.org/10.1038/sj.emboj.7600596
-
(2005)
EMBO J
, vol.24
, pp. 1243-1255
-
-
Ohoka, N.1
Yoshii, S.2
Hattori, T.3
Onozaki, K.4
Hayashi, H.5
-
90
-
-
79952119614
-
ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor
-
21343617,; PMID
-
Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, Wu J, Lin HK, Sarbassov dos D. ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011; 4:ra10; PMID:21343617; http://dx.doi.org/10.1126/scisignal.2001731
-
(2011)
Sci Signal
, vol.4
, pp. ra10
-
-
Chen, C.H.1
Shaikenov, T.2
Peterson, T.R.3
Aimbetov, R.4
Bissenbaev, A.K.5
Lee, S.W.6
Wu, J.7
Lin, H.K.8
Sarbassov dos, D.9
-
91
-
-
84855696465
-
mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway
-
21779001,; PMID
-
Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ 2012; 19:310-20; PMID:21779001; http://dx.doi.org/10.1038/cdd.2011.98
-
(2012)
Cell Death Differ
, vol.19
, pp. 310-320
-
-
Kato, H.1
Nakajima, S.2
Saito, Y.3
Takahashi, S.4
Katoh, R.5
Kitamura, M.6
-
92
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
20965423,; PMID
-
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mole Cell 2010; 40:294-309; PMID:20965423; http://dx.doi.org/10.1016/j.molcel.2010.09.022
-
(2010)
Mole Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
Wong, W.J.2
Simon, M.C.3
-
93
-
-
0029761644
-
Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
-
8756616,; PMID
-
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16:4604-13; PMID:8756616
-
(1996)
Mol Cell Biol
, vol.16
, pp. 4604-4613
-
-
Forsythe, J.A.1
Jiang, B.H.2
Iyer, N.V.3
Agani, F.4
Leung, S.W.5
Koos, R.D.6
Semenza, G.L.7
-
94
-
-
0037530130
-
Hypoxia-induced angiogenesis during carcinogenesis
-
12542982,; PMID
-
Choi KS, Bae MK, Jeong JW, Moon HE, Kim KW. Hypoxia-induced angiogenesis during carcinogenesis. J Biochem Mol Biol 2003; 36:120-7; PMID:12542982; http://dx.doi.org/10.5483/BMBRep.2003.36.1.120
-
(2003)
J Biochem Mol Biol
, vol.36
, pp. 120-127
-
-
Choi, K.S.1
Bae, M.K.2
Jeong, J.W.3
Moon, H.E.4
Kim, K.W.5
-
95
-
-
84939884427
-
mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3
-
Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2014; http://dx.doi.org/10.1038/onc.2014.164
-
(2014)
Oncogene
-
-
Dodd, K.M.1
Yang, J.2
Shen, M.H.3
Sampson, J.R.4
Tee, A.R.5
-
96
-
-
84891469248
-
Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP
-
24164895,; PMID
-
Sakamoto T, Weng JS, Hara T, Yoshino S, Kozuka-Hata H, Oyama M, Seiki M. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol 2014; 34:30-42; PMID:24164895; http://dx.doi.org/10.1128/MCB.01169-13
-
(2014)
Mol Cell Biol
, vol.34
, pp. 30-42
-
-
Sakamoto, T.1
Weng, J.S.2
Hara, T.3
Yoshino, S.4
Kozuka-Hata, H.5
Oyama, M.6
Seiki, M.7
-
97
-
-
40649114443
-
Hypoxia induces a novel signature of chromatin modifications and global repression of transcription
-
18294659,; PMID
-
Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutation Res 2008; 640:174-9; PMID:18294659; http://dx.doi.org/10.1016/j.mrfmmm.2008.01.001
-
(2008)
Mutation Res
, vol.640
, pp. 174-179
-
-
Johnson, A.B.1
Denko, N.2
Barton, M.C.3
-
98
-
-
84893216650
-
AMPK: a cellular energy sensor primarily regulated by AMP
-
24450630,; PMID
-
Gowans GJ, Hardie DG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans 2014; 42:71-5; PMID:24450630; http://dx.doi.org/10.1042/BST20130244
-
(2014)
Biochem Soc Trans
, vol.42
, pp. 71-75
-
-
Gowans, G.J.1
Hardie, D.G.2
-
99
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
22436748,; PMID
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13:251-62; PMID:22436748; http://dx.doi.org/10.1038/nrm3311
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
100
-
-
78649231611
-
mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha
-
21095582,; PMID
-
Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 2010; 40:509-20; PMID:21095582; http://dx.doi.org/10.1016/j.molcel.2010.10.030
-
(2010)
Mol Cell
, vol.40
, pp. 509-520
-
-
Cam, H.1
Easton, J.B.2
High, A.3
Houghton, P.J.4
-
101
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
15545625,; PMID
-
Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG, Jr. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18:2893-904; PMID:15545625; http://dx.doi.org/10.1101/gad.1256804
-
(2004)
Genes Dev
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
Manning, B.D.4
Reiling, J.H.5
Hafen, E.6
Witters, L.A.7
Ellisen, L.W.8
Kaelin, W.G.J.9
-
102
-
-
21744459535
-
Regulation of mTOR and cell growth in response to energy stress by REDD1
-
15988001,; PMID
-
Sofer A, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25:5834-45; PMID:15988001; http://dx.doi.org/10.1128/MCB.25.14.5834-5845.2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 5834-5845
-
-
Sofer, A.1
Lei, K.2
Johannessen, C.M.3
Ellisen, L.W.4
-
103
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
18198340,; PMID
-
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008; 22:239-51; PMID:18198340; http://dx.doi.org/10.1101/gad.1617608
-
(2008)
Genes Dev
, vol.22
, pp. 239-251
-
-
DeYoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
104
-
-
84878034403
-
mTORC1 dependent regulation of REDD1 protein stability
-
Tan CY, Hagen T. mTORC1 dependent regulation of REDD1 protein stability. PloS One 2013; 8:e63970
-
(2013)
PloS One
, vol.8
-
-
Tan, C.Y.1
Hagen, T.2
-
105
-
-
41249094257
-
Rapid Turnover of the mTOR Complex 1 (mTORC1) Repressor REDD1 and Activation of mTORC1 Signaling following Inhibition of Protein Synthesis
-
Kimball SR, Do AN, Kutzler L, Cavener DR, Jefferson LS. Rapid Turnover of the mTOR Complex 1 (mTORC1) Repressor REDD1 and Activation of mTORC1 Signaling following Inhibition of Protein Synthesis. JBiolChem 2008; 2-8; 283:3465-75
-
(2008)
JBiolChem
, vol.283
, pp. 3465-3475
-
-
Kimball, S.R.1
Do, A.N.2
Kutzler, L.3
Cavener, D.R.4
Jefferson, L.S.5
-
106
-
-
58049216350
-
Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2
-
18945681,; PMID
-
Toschi A, Lee E, Gadir N, Ohh M, Foster DA. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem 2008; 283:34495-9; PMID:18945681; http://dx.doi.org/10.1074/jbc.C800170200
-
(2008)
J Biol Chem
, vol.283
, pp. 34495-34499
-
-
Toschi, A.1
Lee, E.2
Gadir, N.3
Ohh, M.4
Foster, D.A.5
-
107
-
-
84860701457
-
In vivo up-regulation of the unfolded protein response after hypoxia
-
22450154,; PMID
-
Tagliavacca L, Caretti A, Bianciardi P, Samaja M. In vivo up-regulation of the unfolded protein response after hypoxia. Biochim Biophys Acta 2012; 1820:900-6; PMID:22450154; http://dx.doi.org/10.1016/j.bbagen.2012.02.016
-
(2012)
Biochim Biophys Acta
, vol.1820
, pp. 900-906
-
-
Tagliavacca, L.1
Caretti, A.2
Bianciardi, P.3
Samaja, M.4
-
108
-
-
84870554511
-
Oxidative stress and cancer: an overview
-
23123177, ME LL.,; PMID
-
Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, ME LL. Oxidative stress and cancer: an overview. Ageing Res Rev 2013; 12:376-90; PMID:23123177; http://dx.doi.org/10.1016/j.arr.2012.10.004
-
(2013)
Ageing Res Rev
, vol.12
, pp. 376-390
-
-
Sosa, V.1
Moline, T.2
Somoza, R.3
Paciucci, R.4
Kondoh, H.5
-
109
-
-
80053558155
-
The importance of mitochondrial DNA in aging and cancer
-
21584235,; PMID
-
Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011; 2011:407536; PMID:21584235; http://dx.doi.org/10.4061/2011/407536
-
(2011)
J Aging Res
, vol.2011
, pp. 407536
-
-
Desler, C.1
Marcker, M.L.2
Singh, K.K.3
Rasmussen, L.J.4
-
110
-
-
83455228665
-
Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice
-
22056359,; PMID
-
Woo DK, Green PD, Santos JH, D'Souza AD, Walther Z, Martin WD, Christian BE, Chandel NS, Shadel GS. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 2012; 180:24-31; PMID:22056359; http://dx.doi.org/10.1016/j.ajpath.2011.10.003
-
(2012)
Am J Pathol
, vol.180
, pp. 24-31
-
-
Woo, D.K.1
Green, P.D.2
Santos, J.H.3
D'Souza, A.D.4
Walther, Z.5
Martin, W.D.6
Christian, B.E.7
Chandel, N.S.8
Shadel, G.S.9
-
111
-
-
0031032817
-
Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress
-
9012815,; PMID
-
Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997; 94:514-9; PMID:9012815; http://dx.doi.org/10.1073/pnas.94.2.514
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 514-519
-
-
Yakes, F.M.1
Van Houten, B.2
-
112
-
-
77950083955
-
Heteroplasmic mitochondrial DNA mutations in normal and tumour cells
-
20200521,; PMID
-
He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA, Jr., Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010; 464:610-4; PMID:20200521; http://dx.doi.org/10.1038/nature08802
-
(2010)
Nature
, vol.464
, pp. 610-614
-
-
He, Y.1
Wu, J.2
Dressman, D.C.3
Iacobuzio-Donahue, C.4
Markowitz, S.D.5
Velculescu, V.E.6
Diaz, L.A.7
Kinzler, K.W.8
Vogelstein, B.9
Papadopoulos, N.10
-
113
-
-
84865560511
-
Spectrum of somatic mitochondrial mutations in five cancers
-
22891333,; PMID
-
Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A 2012; 109:14087-91; PMID:22891333; http://dx.doi.org/10.1073/pnas.1211502109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 14087-14091
-
-
Larman, T.C.1
DePalma, S.R.2
Hadjipanayis, A.G.3
Protopopov, A.4
Zhang, J.5
Gabriel, S.B.6
Chin, L.7
Seidman, C.E.8
Kucherlapati, R.9
Seidman, J.G.10
-
114
-
-
0043029566
-
Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications
-
12886229,; PMID
-
Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 2003; 17:1437-47; PMID:12886229; http://dx.doi.org/10.1038/sj.leu.2403043
-
(2003)
Leukemia
, vol.17
, pp. 1437-1447
-
-
Carew, J.S.1
Zhou, Y.2
Albitar, M.3
Carew, J.D.4
Keating, M.J.5
Huang, P.6
-
115
-
-
84871186542
-
Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3alpha/β and Bax, leading to permeability transition pore opening and tumor cell death
-
Chiara F, Gambalunga A, Sciacovelli M, Nicolli A, Ronconi L, Fregona D, Bernardi P, Rasola A, Trevisan A. Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3alpha/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death Dis 2012; 3:e444
-
(2012)
Cell Death Dis
, vol.3
, pp. e444
-
-
Chiara, F.1
Gambalunga, A.2
Sciacovelli, M.3
Nicolli, A.4
Ronconi, L.5
Fregona, D.6
Bernardi, P.7
Rasola, A.8
Trevisan, A.9
-
116
-
-
67650071137
-
Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
-
19478820,; PMID
-
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8:579-91; PMID:19478820; http://dx.doi.org/10.1038/nrd2803
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 579-591
-
-
Trachootham, D.1
Alexandre, J.2
Huang, P.3
-
117
-
-
0036285034
-
c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability
-
12049739,; PMID
-
Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9:1031-44; PMID:12049739; http://dx.doi.org/10.1016/S1097-2765(02)00520-8
-
(2002)
Mol Cell
, vol.9
, pp. 1031-1044
-
-
Vafa, O.1
Wade, M.2
Kern, S.3
Beeche, M.4
Pandita, T.K.5
Hampton, G.M.6
Wahl, G.M.7
-
118
-
-
84857790798
-
ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence
-
21841825,; PMID
-
Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al Ghuzlan A, Bidart JM, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 2012; 31:1117-29; PMID:21841825; http://dx.doi.org/10.1038/onc.2011.327
-
(2012)
Oncogene
, vol.31
, pp. 1117-1129
-
-
Weyemi, U.1
Lagente-Chevallier, O.2
Boufraqech, M.3
Prenois, F.4
Courtin, F.5
Caillou, B.6
Talbot, M.7
Dardalhon, M.8
Al Ghuzlan, A.9
Bidart, J.M.10
-
119
-
-
84871608812
-
ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence
-
Kodama R, Kato M, Furuta S, Ueno S, Zhang Y, Matsuno K, Yabe-Nishimura C, Tanaka E, Kamata T. ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cell 2013; 18:32-41; http://dx.doi.org/10.1111/gtc.12015
-
(2013)
Genes Cell
, vol.18
, pp. 32-41
-
-
Kodama, R.1
Kato, M.2
Furuta, S.3
Ueno, S.4
Zhang, Y.5
Matsuno, K.6
Yabe-Nishimura, C.7
Tanaka, E.8
Kamata, T.9
-
120
-
-
84866873298
-
PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1
-
23049865,; PMID
-
Goo CK, Lim HY, Ho QS, Too HP, Clement MV, Wong KP. PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PloS One 2012; 7:e45806; PMID:23049865; http://dx.doi.org/10.1371/journal.pone.0045806
-
(2012)
PloS One
, vol.7
-
-
Goo, C.K.1
Lim, H.Y.2
Ho, Q.S.3
Too, H.P.4
Clement, M.V.5
Wong, K.P.6
-
121
-
-
0030980641
-
Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts
-
9054359,; PMID
-
Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275:1649-52; PMID:9054359; http://dx.doi.org/10.1126/science.275.5306.1649
-
(1997)
Science
, vol.275
, pp. 1649-1652
-
-
Irani, K.1
Xia, Y.2
Zweier, J.L.3
Sollott, S.J.4
Der, C.J.5
Fearon, E.R.6
Sundaresan, M.7
Finkel, T.8
Goldschmidt-Clermont, P.J.9
-
122
-
-
34250329446
-
Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability
-
17510393,; PMID
-
Kopnin PB, Agapova LS, Kopnin BP, Chumakov PM. Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 2007; 67:4671-8; PMID:17510393; http://dx.doi.org/10.1158/0008-5472.CAN-06-2466
-
(2007)
Cancer Res
, vol.67
, pp. 4671-4678
-
-
Kopnin, P.B.1
Agapova, L.S.2
Kopnin, B.P.3
Chumakov, P.M.4
-
123
-
-
84902281301
-
Thiol-based redox switches
-
24657586,; PMID
-
Groitl B, Jakob U. Thiol-based redox switches. Biochim Biophys Acta 2014; 1844:1335-43; PMID:24657586; http://dx.doi.org/10.1016/j.bbapap.2014.03.007
-
(2014)
Biochim Biophys Acta
, vol.1844
, pp. 1335-1343
-
-
Groitl, B.1
Jakob, U.2
-
124
-
-
23344451043
-
Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death
-
15941719,; PMID
-
Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 2005; 280:28775-84; PMID:15941719; http://dx.doi.org/10.1074/jbc.M505362200
-
(2005)
J Biol Chem
, vol.280
, pp. 28775-28784
-
-
Moon, J.C.1
Hah, Y.S.2
Kim, W.Y.3
Jung, B.G.4
Jang, H.H.5
Lee, J.R.6
Kim, S.Y.7
Lee, Y.M.8
Jeon, M.G.9
Kim, C.W.10
-
125
-
-
84875181661
-
Oxidants, antioxidants and the current incurability of metastatic cancers
-
23303309,; PMID
-
Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013; 3:120144; PMID:23303309; http://dx.doi.org/10.1098/rsob.120144
-
(2013)
Open Biol
, vol.3
, pp. 120144
-
-
Watson, J.1
-
126
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
21734707,; PMID
-
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475:106-9; PMID:21734707; http://dx.doi.org/10.1038/nature10189
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
DeNicola, G.M.1
Karreth, F.A.2
Humpton, T.J.3
Gopinathan, A.4
Wei, C.5
Frese, K.6
Mangal, D.7
Yu, K.H.8
Yeo, C.J.9
Calhoun, E.S.10
-
127
-
-
0034635444
-
Activation of p70 ribosomal protein S6 kinase is an essential step in the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts
-
10660603,; PMID
-
Brenneisen P, Wenk J, Wlaschek M, Krieg T, Scharffetter-Kochanek K. Activation of p70 ribosomal protein S6 kinase is an essential step in the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. J Biol Chem 2000; 275:4336-44; PMID:10660603; http://dx.doi.org/10.1074/jbc.275.6.4336
-
(2000)
J Biol Chem
, vol.275
, pp. 4336-4344
-
-
Brenneisen, P.1
Wenk, J.2
Wlaschek, M.3
Krieg, T.4
Scharffetter-Kochanek, K.5
-
128
-
-
0033609834
-
Osmotic stress inhibits p70/85 S6 kinase through activation of a protein phosphatase
-
10455142,; PMID
-
Parrott LA, Templeton DJ. Osmotic stress inhibits p70/85 S6 kinase through activation of a protein phosphatase. J Biol Chem 1999; 274:24731-6; PMID:10455142; http://dx.doi.org/10.1074/jbc.274.35.24731
-
(1999)
J Biol Chem
, vol.274
, pp. 24731-24736
-
-
Parrott, L.A.1
Templeton, D.J.2
-
129
-
-
0037108711
-
Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C
-
12384526,; PMID
-
Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS, Costa M, Castranova V, Shi X. Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res 2002; 62:5689-97; PMID:12384526
-
(2002)
Cancer Res
, vol.62
, pp. 5689-5697
-
-
Huang, C.1
Li, J.2
Ke, Q.3
Leonard, S.S.4
Jiang, B.H.5
Zhong, X.S.6
Costa, M.7
Castranova, V.8
Shi, X.9
-
130
-
-
0031559848
-
p70 S6 kinase is activated by sodium arsenite in adult rat cardiomyocytes: roles for phosphatidylinositol 3-kinase and p38 MAP kinase
-
9299480,; PMID
-
Wang X, Proud CG. p70 S6 kinase is activated by sodium arsenite in adult rat cardiomyocytes: roles for phosphatidylinositol 3-kinase and p38 MAP kinase. Biochem Biophys Res Commun 1997; 238:207-12; PMID:9299480; http://dx.doi.org/10.1006/bbrc.1997.7273
-
(1997)
Biochem Biophys Res Commun
, vol.238
, pp. 207-212
-
-
Wang, X.1
Proud, C.G.2
-
131
-
-
84882800242
-
Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells
-
23953116,; PMID
-
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Klasener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 2013; 154:859-74; PMID:23953116; http://dx.doi.org/10.1016/j.cell.2013.07.031
-
(2013)
Cell
, vol.154
, pp. 859-874
-
-
Thedieck, K.1
Holzwarth, B.2
Prentzell, M.T.3
Boehlke, C.4
Klasener, K.5
Ruf, S.6
Sonntag, A.G.7
Maerz, L.8
Grellscheid, S.N.9
Kremmer, E.10
-
132
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
23955302,; PMID
-
Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature cell biology 2013; 15:1186-96; PMID:23955302; http://dx.doi.org/10.1038/ncb2822
-
(2013)
Nature cell biology
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
Cai, S.4
Tripathi, D.N.5
Dere, R.6
Tee, A.R.7
Tait-Mulder, J.8
Di Nardo, A.9
Han, J.M.10
-
133
-
-
0032731347
-
Hydrogen peroxide activates p70(S6k) signaling pathway
-
10551813,; PMID
-
Bae GU, Seo DW, Kwon HK, Lee HY, Hong S, Lee ZW, Ha KS, Lee HW, Han JW. Hydrogen peroxide activates p70(S6k) signaling pathway. J Biol Chem 1999; 274:32596-602; PMID:10551813; http://dx.doi.org/10.1074/jbc.274.46.32596
-
(1999)
J Biol Chem
, vol.274
, pp. 32596-32602
-
-
Bae, G.U.1
Seo, D.W.2
Kwon, H.K.3
Lee, H.Y.4
Hong, S.5
Lee, Z.W.6
Ha, K.S.7
Lee, H.W.8
Han, J.W.9
-
134
-
-
79952281400
-
Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1
-
21336308,; PMID
-
Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, Zhang H, Sun P, Lin SC, Guan KL, et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 2011; 13:263-72; PMID:21336308; http://dx.doi.org/10.1038/ncb2168
-
(2011)
Nat Cell Biol
, vol.13
, pp. 263-272
-
-
Zheng, M.1
Wang, Y.H.2
Wu, X.N.3
Wu, S.Q.4
Lu, B.J.5
Dong, M.Q.6
Zhang, H.7
Sun, P.8
Lin, S.C.9
Guan, K.L.10
-
135
-
-
0142137134
-
Redox regulation of PI 3-kinase signalling via inactivation of PTEN
-
14532122,; PMID
-
Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 2003; 22:5501-10; PMID:14532122; http://dx.doi.org/10.1093/emboj/cdg513
-
(2003)
EMBO J
, vol.22
, pp. 5501-5510
-
-
Leslie, N.R.1
Bennett, D.2
Lindsay, Y.E.3
Stewart, H.4
Gray, A.5
Downes, C.P.6
-
136
-
-
79959745176
-
ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells
-
21627959,; PMID
-
Chetram MA, Don-Salu-Hewage AS, Hinton CV. ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells. Biochem Biophys Res Commun 2011; 410:195-200; PMID:21627959; http://dx.doi.org/10.1016/j.bbrc.2011.05.074
-
(2011)
Biochem Biophys Res Commun
, vol.410
, pp. 195-200
-
-
Chetram, M.A.1
Don-Salu-Hewage, A.S.2
Hinton, C.V.3
-
137
-
-
0032554611
-
Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation
-
9548949,; PMID
-
Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998; 37:5633-42; PMID:9548949; http://dx.doi.org/10.1021/bi973035t
-
(1998)
Biochemistry
, vol.37
, pp. 5633-5642
-
-
Denu, J.M.1
Tanner, K.G.2
-
138
-
-
80052736325
-
Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway
-
21784859,; PMID
-
Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 2011; 286:32651-60; PMID:21784859; http://dx.doi.org/10.1074/jbc.M111.238014
-
(2011)
J Biol Chem
, vol.286
, pp. 32651-32660
-
-
Yoshida, S.1
Hong, S.2
Suzuki, T.3
Nada, S.4
Mannan, A.M.5
Wang, J.6
Okada, M.7
Guan, K.L.8
Inoki, K.9
-
139
-
-
77958191599
-
ATM activation by oxidative stress
-
20966255,; PMID
-
Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science 2010; 330:517-21; PMID:20966255; http://dx.doi.org/10.1126/science.1192912
-
(2010)
Science
, vol.330
, pp. 517-521
-
-
Guo, Z.1
Kozlov, S.2
Lavin, M.F.3
Person, M.D.4
Paull, T.T.5
-
140
-
-
77749233738
-
ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS
-
20160076,; PMID
-
Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 2010; 107:4153-8; PMID:20160076; http://dx.doi.org/10.1073/pnas.0913860107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 4153-4158
-
-
Alexander, A.1
Cai, S.L.2
Kim, J.3
Nanez, A.4
Sahin, M.5
MacLean, K.H.6
Inoki, K.7
Guan, K.L.8
Shen, J.9
Person, M.D.10
-
141
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
21965330,; PMID
-
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011; 121:4477-90; PMID:21965330; http://dx.doi.org/10.1172/JCI46243
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
142
-
-
68049131465
-
Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1
-
19638584,; PMID
-
Muders MH, Zhang H, Wang E, Tindall DJ, Datta K. Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res 2009; 69:6042-8; PMID:19638584; http://dx.doi.org/10.1158/0008-5472.CAN-09-0552
-
(2009)
Cancer Res
, vol.69
, pp. 6042-6048
-
-
Muders, M.H.1
Zhang, H.2
Wang, E.3
Tindall, D.J.4
Datta, K.5
-
143
-
-
33846080045
-
Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2
-
17110594,; PMID
-
Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circulation Res 2007; 100:79-87; PMID:17110594; http://dx.doi.org/10.1161/01.RES.0000253094.03023.3f
-
(2007)
Circulation Res
, vol.100
, pp. 79-87
-
-
Li, W.1
Petrimpol, M.2
Molle, K.D.3
Hall, M.N.4
Battegay, E.J.5
Humar, R.6
-
144
-
-
0036862532
-
The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum
-
12453408,; PMID
-
Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 2002; 10:983-94; PMID:12453408; http://dx.doi.org/10.1016/S1097-2765(02)00696-2
-
(2002)
Mol Cell
, vol.10
, pp. 983-994
-
-
Tu, B.P.1
Weissman, J.S.2
-
145
-
-
84890233980
-
Two phases of disulfide bond formation have differing requirements for oxygen
-
24247433,; PMID
-
Koritzinsky M, Levitin F, van den Beucken T, Rumantir RA, Harding NJ, Chu KC, Boutros PC, Braakman I, Wouters BG. Two phases of disulfide bond formation have differing requirements for oxygen. J Cell Biol 2013; 203:615-27; PMID:24247433; http://dx.doi.org/10.1083/jcb.201307185
-
(2013)
J Cell Biol
, vol.203
, pp. 615-627
-
-
Koritzinsky, M.1
Levitin, F.2
van den Beucken, T.3
Rumantir, R.A.4
Harding, N.J.5
Chu, K.C.6
Boutros, P.C.7
Braakman, I.8
Wouters, B.G.9
-
146
-
-
74949118681
-
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
-
20038797,; PMID
-
Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120:127-41; PMID:20038797; http://dx.doi.org/10.1172/JCI40027
-
(2010)
J Clin Invest
, vol.120
, pp. 127-141
-
-
Rouschop, K.M.1
van den Beucken, T.2
Dubois, L.3
Niessen, H.4
Bussink, J.5
Savelkouls, K.6
Keulers, T.7
Mujcic, H.8
Landuyt, W.9
Voncken, J.W.10
-
147
-
-
84875234688
-
PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS
-
23471998,; PMID
-
Rouschop KM, Dubois LJ, Keulers TG, van den Beucken T, Lambin P, Bussink J, van der Kogel AJ, Koritzinsky M, Wouters BG. PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci U S A 2013; 110:4622-7; PMID:23471998; http://dx.doi.org/10.1073/pnas.1210633110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 4622-4627
-
-
Rouschop, K.M.1
Dubois, L.J.2
Keulers, T.G.3
van den Beucken, T.4
Lambin, P.5
Bussink, J.6
van der Kogel, A.J.7
Koritzinsky, M.8
Wouters, B.G.9
-
148
-
-
10644233167
-
CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum
-
15601821,; PMID
-
Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004; 18:3066-77; PMID:15601821; http://dx.doi.org/10.1101/gad.1250704
-
(2004)
Genes Dev
, vol.18
, pp. 3066-3077
-
-
Marciniak, S.J.1
Yun, C.Y.2
Oyadomari, S.3
Novoa, I.4
Zhang, Y.5
Jungreis, R.6
Nagata, K.7
Harding, H.P.8
Ron, D.9
-
149
-
-
35848957485
-
Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
-
17979528,; PMID
-
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007; 9:2277-93; PMID:17979528; http://dx.doi.org/10.1089/ars.2007.1782
-
(2007)
Antioxid Redox Signal
, vol.9
, pp. 2277-2293
-
-
Malhotra, J.D.1
Kaufman, R.J.2
-
150
-
-
0032899935
-
Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells
-
9895234,; PMID
-
Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM, Lee YJ. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radical Biol Med 1999; 26:419-30; PMID:9895234; http://dx.doi.org/10.1016/S0891-5849(98)00217-2
-
(1999)
Free Radical Biol Med
, vol.26
, pp. 419-430
-
-
Blackburn, R.V.1
Spitz, D.R.2
Liu, X.3
Galoforo, S.S.4
Sim, J.E.5
Ridnour, L.A.6
Chen, J.C.7
Davis, B.H.8
Corry, P.M.9
Lee, Y.J.10
-
151
-
-
0034038708
-
Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism?
-
10863552,; PMID
-
Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann New York Acad Sci 2000; 899:349-62; PMID:10863552; http://dx.doi.org/10.1111/j.1749-6632.2000.tb06199.x
-
(2000)
Ann New York Acad Sci
, vol.899
, pp. 349-362
-
-
Spitz, D.R.1
Sim, J.E.2
Ridnour, L.A.3
Galoforo, S.S.4
Lee, Y.J.5
-
152
-
-
0034682786
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing
-
10833514,; PMID
-
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275:25130-8; PMID:10833514; http://dx.doi.org/10.1074/jbc.M001914200
-
(2000)
J Biol Chem
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
McClintock, D.S.2
Feliciano, C.E.3
Wood, T.M.4
Melendez, J.A.5
Rodriguez, A.M.6
Schumacker, P.T.7
-
153
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
9751731,; PMID
-
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 1998; 95:11715-20; PMID:9751731; http://dx.doi.org/10.1073/pnas.95.20.11715
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 11715-11720
-
-
Chandel, N.S.1
Maltepe, E.2
Goldwasser, E.3
Mathieu, C.E.4
Simon, M.C.5
Schumacker, P.T.6
-
154
-
-
84903749341
-
Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis
-
24994655,; PMID
-
Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, Paton AW, Paton JC, Walter P, Ashkenazi A. Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 2014; 345:98-101; PMID:24994655; http://dx.doi.org/10.1126/science.1254312
-
(2014)
Science
, vol.345
, pp. 98-101
-
-
Lu, M.1
Lawrence, D.A.2
Marsters, S.3
Acosta-Alvear, D.4
Kimmig, P.5
Mendez, A.S.6
Paton, A.W.7
Paton, J.C.8
Walter, P.9
Ashkenazi, A.10
-
155
-
-
84899672694
-
Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stress-induced cell death during the unfolded protein response
-
24623724,; PMID
-
Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH. Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell 2014; 25:1411-20; PMID:24623724; http://dx.doi.org/10.1091/mbc.E13-11-0664
-
(2014)
Mol Biol Cell
, vol.25
, pp. 1411-1420
-
-
Hiramatsu, N.1
Messah, C.2
Han, J.3
LaVail, M.M.4
Kaufman, R.J.5
Lin, J.H.6
-
156
-
-
84891794636
-
JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death
-
Win S, Than TA, Fernandez-Checa JC, Kaplowitz N. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis 2014; 5:e989
-
(2014)
Cell Death Dis
, vol.5
, pp. e989
-
-
Win, S.1
Than, T.A.2
Fernandez-Checa, J.C.3
Kaplowitz, N.4
-
157
-
-
0032581277
-
Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
-
9697772,; PMID
-
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394:485-90; PMID:9697772; http://dx.doi.org/10.1038/28867
-
(1998)
Nature
, vol.394
, pp. 485-490
-
-
Carmeliet, P.1
Dor, Y.2
Herbert, J.M.3
Fukumura, D.4
Brusselmans, K.5
Dewerchin, M.6
Neeman, M.7
Bono, F.8
Abramovitch, R.9
Maxwell, P.10
-
158
-
-
0346655211
-
BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha
-
14699081,; PMID
-
Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med 2004; 199:113-24; PMID:14699081; http://dx.doi.org/10.1084/jem.20030613
-
(2004)
J Exp Med
, vol.199
, pp. 113-124
-
-
Kim, J.Y.1
Ahn, H.J.2
Ryu, J.H.3
Suk, K.4
Park, J.H.5
-
159
-
-
78650105442
-
NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis
-
21135141,; PMID
-
Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 2010; 191:1113-25; PMID:21135141; http://dx.doi.org/10.1083/jcb.201006121
-
(2010)
J Cell Biol
, vol.191
, pp. 1113-1125
-
-
Li, G.1
Scull, C.2
Ozcan, L.3
Tabas, I.4
-
160
-
-
84872251777
-
Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis
-
Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PloS One 2013; 8:e52989
-
(2013)
PloS One
, vol.8
-
-
Singhapol, C.1
Pal, D.2
Czapiewski, R.3
Porika, M.4
Nelson, G.5
Saretzki, G.C.6
-
162
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
18775299,; PMID
-
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134:703-7; PMID:18775299; http://dx.doi.org/10.1016/j.cell.2008.08.021
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
163
-
-
43749083041
-
Brick by brick: metabolism and tumor cell growth
-
18387799,; PMID
-
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18:54-61; PMID:18387799; http://dx.doi.org/10.1016/j.gde.2008.02.003
-
(2008)
Curr Opin Genet Dev
, vol.18
, pp. 54-61
-
-
Deberardinis, R.J.1
Sayed, N.2
Ditsworth, D.3
Thompson, C.B.4
-
164
-
-
0029908016
-
Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
-
8940145,; PMID
-
Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271:31372-8; PMID:8940145; http://dx.doi.org/10.1074/jbc.271.49.31372
-
(1996)
J Biol Chem
, vol.271
, pp. 31372-31378
-
-
Kohn, A.D.1
Summers, S.A.2
Birnbaum, M.J.3
Roth, R.A.4
-
165
-
-
84878444751
-
17beta-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells
-
23546602,; PMID
-
Garrido P, Moran J, Alonso A, Gonzalez S, Gonzalez C. 17beta-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells. Endocrinology 2013; 154:1979-89; PMID:23546602; http://dx.doi.org/10.1210/en.2012-1558
-
(2013)
Endocrinology
, vol.154
, pp. 1979-1989
-
-
Garrido, P.1
Moran, J.2
Alonso, A.3
Gonzalez, S.4
Gonzalez, C.5
-
166
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
23274086,; PMID
-
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17:113-24; PMID:23274086; http://dx.doi.org/10.1016/j.cmet.2012.12.001
-
(2013)
Cell Metab
, vol.17
, pp. 113-124
-
-
Faubert, B.1
Boily, G.2
Izreig, S.3
Griss, T.4
Samborska, B.5
Dong, Z.6
Dupuy, F.7
Chambers, C.8
Fuerth, B.J.9
Viollet, B.10
-
167
-
-
76049100577
-
HIF-1: upstream and downstream of cancer metabolism
-
19942427,; PMID
-
Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010; 20:51-6; PMID:19942427; http://dx.doi.org/10.1016/j.gde.2009.10.009
-
(2010)
Curr Opin Genet Dev
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
168
-
-
80052697287
-
The role of autophagy in cancer: therapeutic implications
-
21878654,; PMID
-
Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10:1533-41; PMID:21878654; http://dx.doi.org/10.1158/1535-7163.MCT-11-0047
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 1533-1541
-
-
Yang, Z.J.1
Chee, C.E.2
Huang, S.3
Sinicrope, F.A.4
-
169
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
23817233,; PMID
-
Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15:713-20; PMID:23817233; http://dx.doi.org/10.1038/ncb2788
-
(2013)
Nat Cell Biol
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
170
-
-
84894565195
-
Self-consumption: the interplay of autophagy and apoptosis
-
24401948,; PMID
-
Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15:81-94; PMID:24401948; http://dx.doi.org/10.1038/nrm3735
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 81-94
-
-
Marino, G.1
Niso-Santano, M.2
Baehrecke, E.H.3
Kroemer, G.4
-
171
-
-
67549110195
-
A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
-
19287211,; PMID
-
Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009; 5:649-62; PMID:19287211; http://dx.doi.org/10.4161/auto.5.5.8249
-
(2009)
Autophagy
, vol.5
, pp. 649-662
-
-
Mercer, C.A.1
Kaliappan, A.2
Dennis, P.B.3
-
172
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
19258318,; PMID
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305; PMID:19258318
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
173
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
21258367,; PMID
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41; PMID:21258367; http://dx.doi.org/10.1038/ncb2152
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
174
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
19225151,; PMID
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003; PMID:19225151; http://dx.doi.org/10.1091/mbc.E08-12-1249
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
175
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
19211835,; PMID
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-91; PMID:19211835; http://dx.doi.org/10.1091/mbc.E08-12-1248
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
176
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
21072212,; PMID
-
Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PloS One 2010; 5:e15394; PMID:21072212; http://dx.doi.org/10.1371/journal.pone.0015394
-
(2010)
PloS One
, vol.5
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.G.4
-
177
-
-
25144457455
-
-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
16179260,; PMID
-
-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-39; PMID:16179260; http://dx.doi.org/10.1016/j.cell.2005.07.002
-
(2005)
Cell
, vol.122
, pp. 927-939
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
Garuti, R.4
Liang, X.H.5
Mizushima, N.6
Packer, M.7
Schneider, M.D.8
Levine, B.9
-
180
-
-
33846211417
-
ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
-
16794605,; PMID
-
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14:230-9; PMID:16794605; http://dx.doi.org/10.1038/sj.cdd.4401984
-
(2007)
Cell Death Differ
, vol.14
, pp. 230-239
-
-
Kouroku, Y.1
Fujita, E.2
Tanida, I.3
Ueno, T.4
Isoai, A.5
Kumagai, H.6
Ogawa, S.7
Kaufman, R.J.8
Kominami, E.9
Momoi, T.10
-
181
-
-
77953506788
-
ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy
-
20104019,; PMID
-
Qin L, Wang Z, Tao L, Wang Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010; 6:239-47; PMID:20104019; http://dx.doi.org/10.4161/auto.6.2.11062
-
(2010)
Autophagy
, vol.6
, pp. 239-247
-
-
Qin, L.1
Wang, Z.2
Tao, L.3
Wang, Y.4
-
182
-
-
77955467319
-
Regulation of autophagy by ATF4 in response to severe hypoxia
-
20514020,; PMID
-
Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 2010; 29:4424-35; PMID:20514020; http://dx.doi.org/10.1038/onc.2010.191
-
(2010)
Oncogene
, vol.29
, pp. 4424-4435
-
-
Rzymski, T.1
Milani, M.2
Pike, L.3
Buffa, F.4
Mellor, H.R.5
Winchester, L.6
Pires, I.7
Hammond, E.8
Ragoussis, I.9
Harris, A.L.10
-
183
-
-
84871429513
-
Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival
-
23078367,; PMID
-
Pike LR, Singleton DC, Buffa F, Abramczyk O, Phadwal K, Li JL, Simon AK, Murray JT, Harris AL. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem J 2013; 449:389-400; PMID:23078367; http://dx.doi.org/10.1042/BJ20120972
-
(2013)
Biochem J
, vol.449
, pp. 389-400
-
-
Pike, L.R.1
Singleton, D.C.2
Buffa, F.3
Abramczyk, O.4
Phadwal, K.5
Li, J.L.6
Simon, A.K.7
Murray, J.T.8
Harris, A.L.9
-
184
-
-
66449115318
-
Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells
-
19425170,; PMID
-
Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119:1359-72; PMID:19425170; http://dx.doi.org/10.1172/JCI37948
-
(2009)
J Clin Invest
, vol.119
, pp. 1359-1372
-
-
Salazar, M.1
Carracedo, A.2
Salanueva, I.J.3
Hernandez-Tiedra, S.4
Lorente, M.5
Egia, A.6
Vazquez, P.7
Blazquez, C.8
Torres, S.9
Garcia, S.10
-
185
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
18551130,; PMID
-
Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 2008; 15:1572-81; PMID:18551130; http://dx.doi.org/10.1038/cdd.2008.84
-
(2008)
Cell Death Differ
, vol.15
, pp. 1572-1581
-
-
Papandreou, I.1
Lim, A.L.2
Laderoute, K.3
Denko, N.C.4
-
186
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
17576813,; PMID
-
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27:6229-42; PMID:17576813; http://dx.doi.org/10.1128/MCB.02246-06
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
187
-
-
38949119423
-
Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
-
18059169,; PMID
-
Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008; 4:195-204; PMID:18059169; http://dx.doi.org/10.4161/auto.5278
-
(2008)
Autophagy
, vol.4
, pp. 195-204
-
-
Azad, M.B.1
Chen, Y.2
Henson, E.S.3
Cizeau, J.4
McMillan-Ward, E.5
Israels, S.J.6
Gibson, S.B.7
-
188
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
19273585,; PMID
-
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009; 29:2570-81; PMID:19273585; http://dx.doi.org/10.1128/MCB.00166-09
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouyssegur, J.6
Mazure, N.M.7
-
189
-
-
58249098507
-
A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress
-
18974775,; PMID
-
Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 2009; 16:264-77; PMID:18974775; http://dx.doi.org/10.1038/cdd.2008.151
-
(2009)
Cell Death Differ
, vol.16
, pp. 264-277
-
-
Huang, Q.1
Wu, Y.T.2
Tan, H.L.3
Ong, C.N.4
Shen, H.M.5
-
190
-
-
6344275803
-
Activation of chaperone-mediated autophagy during oxidative stress
-
15331765,; PMID
-
Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15:4829-40; PMID:15331765; http://dx.doi.org/10.1091/mbc.E04-06-0477
-
(2004)
Mol Biol Cell
, vol.15
, pp. 4829-4840
-
-
Kiffin, R.1
Christian, C.2
Knecht, E.3
Cuervo, A.M.4
-
191
-
-
84901305990
-
Folliculin regulates ampk-dependent autophagy and metabolic stress survival
-
24763318,; PMID
-
Possik E, Jalali Z, Nouet Y, Yan M, Gingras MC, Schmeisser K, Panaite L, Dupuy F, Kharitidi D, Chotard L, et al. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. PLoS Genet 2014; 10:e1004273; PMID:24763318; http://dx.doi.org/10.1371/journal.pgen.1004273
-
(2014)
PLoS Genet
, vol.10
, pp. e1004273
-
-
Possik, E.1
Jalali, Z.2
Nouet, Y.3
Yan, M.4
Gingras, M.C.5
Schmeisser, K.6
Panaite, L.7
Dupuy, F.8
Kharitidi, D.9
Chotard, L.10
-
192
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
16843265,; PMID
-
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10:51-64; PMID:16843265; http://dx.doi.org/10.1016/j.ccr.2006.06.001
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
Chen, G.6
Mukherjee, C.7
Shi, Y.8
Gelinas, C.9
Fan, Y.10
-
193
-
-
84856857494
-
Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells
-
22278287,; PMID
-
Ajabnoor GM, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 2012; 3:e260; PMID:22278287
-
(2012)
Cell Death Dis
, vol.3
, pp. e260
-
-
Ajabnoor, G.M.1
Crook, T.2
Coley, H.M.3
-
194
-
-
84865060393
-
Apoptosis and autophagy in breast cancer cells following exemestane treatment
-
22912703,; PMID
-
Amaral C, Borges M, Melo S, da Silva ET, Correia-da-Silva G, Teixeira N. Apoptosis and autophagy in breast cancer cells following exemestane treatment. PloS One 2012; 7:e42398; PMID:22912703; http://dx.doi.org/10.1371/journal.pone.0042398
-
(2012)
PloS One
, vol.7
-
-
Amaral, C.1
Borges, M.2
Melo, S.3
da Silva, E.T.4
Correia-da-Silva, G.5
Teixeira, N.6
-
195
-
-
84884332903
-
The variability of autophagy and cell death susceptibility: Unanswered questions
-
23846383,; PMID
-
Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy 2013; 9:1270-85; PMID:23846383; http://dx.doi.org/10.4161/auto.25560
-
(2013)
Autophagy
, vol.9
, pp. 1270-1285
-
-
Loos, B.1
Engelbrecht, A.M.2
Lockshin, R.A.3
Klionsky, D.J.4
Zakeri, Z.5
-
196
-
-
38449123517
-
Mammalian stress granules and processing bodies
-
17923231,; PMID
-
Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol 2007; 431:61-81; PMID:17923231; http://dx.doi.org/10.1016/S0076-6879(07)31005-7
-
(2007)
Methods Enzymol
, vol.431
, pp. 61-81
-
-
Kedersha, N.1
Anderson, P.2
-
197
-
-
84867186265
-
Translation suppression promotes stress granule formation and cell survival in response to cold shock
-
22875991,; PMID
-
Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 2012; 23:3786-800; PMID:22875991; http://dx.doi.org/10.1091/mbc.E12-04-0296
-
(2012)
Mol Biol Cell
, vol.23
, pp. 3786-3800
-
-
Hofmann, S.1
Cherkasova, V.2
Bankhead, P.3
Bukau, B.4
Stoecklin, G.5
-
198
-
-
36049032156
-
The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor
-
17967451,; PMID
-
De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp Cell Res 2007; 313:4130-44; PMID:17967451; http://dx.doi.org/10.1016/j.yexcr.2007.09.017
-
(2007)
Exp Cell Res
, vol.313
, pp. 4130-4144
-
-
De Leeuw, F.1
Zhang, T.2
Wauquier, C.3
Huez, G.4
Kruys, V.5
Gueydan, C.6
-
199
-
-
84884353774
-
The eIF2alpha kinases: their structures and functions
-
23354059,; PMID
-
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 2013; 70:3493-511; PMID:23354059; http://dx.doi.org/10.1007/s00018-012-1252-6
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 3493-3511
-
-
Donnelly, N.1
Gorman, A.M.2
Gupta, S.3
Samali, A.4
-
200
-
-
20144378698
-
Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
-
15684421,; PMID
-
McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005; 280:16925-33; PMID:15684421; http://dx.doi.org/10.1074/jbc.M412882200
-
(2005)
J Biol Chem
, vol.280
, pp. 16925-16933
-
-
McEwen, E.1
Kedersha, N.2
Song, B.3
Scheuner, D.4
Gilks, N.5
Han, A.6
Chen, J.J.7
Anderson, P.8
Kaufman, R.J.9
-
201
-
-
0033634641
-
Perk is essential for translational regulation and cell survival during the unfolded protein response
-
10882126,; PMID
-
Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5:897-904; PMID:10882126; http://dx.doi.org/10.1016/S1097-2765(00)80330-5
-
(2000)
Mol Cell
, vol.5
, pp. 897-904
-
-
Harding, H.P.1
Zhang, Y.2
Bertolotti, A.3
Zeng, H.4
Ron, D.5
-
202
-
-
0029006391
-
The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
-
7623840,; PMID
-
Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995; 15:4497-506; PMID:7623840
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4497-4506
-
-
Wek, S.A.1
Zhu, S.2
Wek, R.C.3
-
203
-
-
0037101945
-
Stressful initiations
-
12140254,; PMID
-
Anderson P, Kedersha N. Stressful initiations. J Cell Sci 2002; 115:3227-34; PMID:12140254
-
(2002)
J Cell Sci
, vol.115
, pp. 3227-3234
-
-
Anderson, P.1
Kedersha, N.2
-
204
-
-
55549130760
-
Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways
-
18836437,; PMID
-
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008; 10:1324-32; PMID:18836437; http://dx.doi.org/10.1038/ncb1791
-
(2008)
Nat Cell Biol
, vol.10
, pp. 1324-1332
-
-
Arimoto, K.1
Fukuda, H.2
Imajoh-Ohmi, S.3
Saito, H.4
Takekawa, M.5
-
205
-
-
2342611976
-
Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules
-
15144951,; PMID
-
Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5:429-41; PMID:15144951; http://dx.doi.org/10.1016/S1535-6108(04)00115-1
-
(2004)
Cancer Cell
, vol.5
, pp. 429-441
-
-
Moeller, B.J.1
Cao, Y.2
Li, C.Y.3
Dewhirst, M.W.4
-
206
-
-
84878994383
-
Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation
-
23547259,; PMID
-
Fournier MJ, Coudert L, Mellaoui S, Adjibade P, Gareau C, Cote MF, Sonenberg N, Gaudreault RC, Mazroui R. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013; 33:2285-301; PMID:23547259; http://dx.doi.org/10.1128/MCB.01517-12
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2285-2301
-
-
Fournier, M.J.1
Coudert, L.2
Mellaoui, S.3
Adjibade, P.4
Gareau, C.5
Cote, M.F.6
Sonenberg, N.7
Gaudreault, R.C.8
Mazroui, R.9
-
207
-
-
84873057917
-
Both G3BP1 and G3BP2 contribute to stress granule formation
-
Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes cell 2013; 18:135-46; http://dx.doi.org/10.1111/gtc.12023
-
(2013)
Genes cell
, vol.18
, pp. 135-146
-
-
Matsuki, H.1
Takahashi, M.2
Higuchi, M.3
Makokha, G.N.4
Oie, M.5
Fujii, M.6
-
208
-
-
84864308260
-
Transient sequestration of TORC1 into stress granules during heat stress
-
22727621,; PMID
-
Takahara T, Maeda T. Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 2012; 47:242-52; PMID:22727621; http://dx.doi.org/10.1016/j.molcel.2012.05.019
-
(2012)
Mol Cell
, vol.47
, pp. 242-252
-
-
Takahara, T.1
Maeda, T.2
-
209
-
-
0037451173
-
The RasGAP-associated endoribonuclease G3BP assembles stress granules
-
12642610,; PMID
-
Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003; 160:823-31; PMID:12642610; http://dx.doi.org/10.1083/jcb.200212128
-
(2003)
J Cell Biol
, vol.160
, pp. 823-831
-
-
Tourriere, H.1
Chebli, K.2
Zekri, L.3
Courselaud, B.4
Blanchard, J.M.5
Bertrand, E.6
Tazi, J.7
-
210
-
-
0033611157
-
RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules
-
10613902,; PMID
-
Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules. J Cell Biol 1999; 147:1431-42; PMID:10613902; http://dx.doi.org/10.1083/jcb.147.7.1431
-
(1999)
J Cell Biol
, vol.147
, pp. 1431-1442
-
-
Kedersha, N.L.1
Gupta, M.2
Li, W.3
Miller, I.4
Anderson, P.5
-
211
-
-
0034638837
-
Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules
-
11121440,; PMID
-
Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000; 151:1257-68; PMID:11121440; http://dx.doi.org/10.1083/jcb.151.6.1257
-
(2000)
J Cell Biol
, vol.151
, pp. 1257-1268
-
-
Kedersha, N.1
Cho, M.R.2
Li, W.3
Yacono, P.W.4
Chen, S.5
Gilks, N.6
Golan, D.E.7
Anderson, P.8
-
212
-
-
63049130206
-
Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly
-
19005212,; PMID
-
Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H. Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell 2009; 20:428-37; PMID:19005212; http://dx.doi.org/10.1091/mbc.E08-07-0737
-
(2009)
Mol Biol Cell
, vol.20
, pp. 428-437
-
-
Didiot, M.C.1
Subramanian, M.2
Flatter, E.3
Mandel, J.L.4
Moine, H.5
-
213
-
-
0036590753
-
The expression of Ras-GTPase activating protein SH3 domain-binding proteins, G3BPs, in human breast cancers
-
12587999,; PMID
-
French J, Stirling R, Walsh M, Kennedy HD. The expression of Ras-GTPase activating protein SH3 domain-binding proteins, G3BPs, in human breast cancers. Histochem J 2002; 34:223-31; PMID:12587999; http://dx.doi.org/10.1023/A:1021737413055
-
(2002)
Histochem J
, vol.34
, pp. 223-231
-
-
French, J.1
Stirling, R.2
Walsh, M.3
Kennedy, H.D.4
-
214
-
-
0035951694
-
G3BP is overexpressed in human tumors and promotes S phase entry
-
11146228,; PMID
-
Guitard E, Parker F, Millon R, Abecassis J, Tocque B. G3BP is overexpressed in human tumors and promotes S phase entry. Cancer Lett 2001; 162:213-21; PMID:11146228; http://dx.doi.org/10.1016/S0304-3835(00)00638-8
-
(2001)
Cancer Lett
, vol.162
, pp. 213-221
-
-
Guitard, E.1
Parker, F.2
Millon, R.3
Abecassis, J.4
Tocque, B.5
-
215
-
-
84884926024
-
The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation
-
24092663,; PMID
-
Luca R, Averna M, Zalfa F, Vecchi M, Bianchi F, La Fata G, Del Nonno F, Nardacci R, Bianchi M, Nuciforo P, et al. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation. EMBO Mol Med 2013; 5:1523-36; PMID:24092663; http://dx.doi.org/10.1002/emmm.201302847
-
(2013)
EMBO Mol Med
, vol.5
, pp. 1523-1536
-
-
Luca, R.1
Averna, M.2
Zalfa, F.3
Vecchi, M.4
Bianchi, F.5
La Fata, G.6
Del Nonno, F.7
Nardacci, R.8
Bianchi, M.9
Nuciforo, P.10
-
216
-
-
84884587610
-
Stress granules and cell signaling: more than just a passing phase?
-
24029419,; PMID
-
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506; PMID:24029419; http://dx.doi.org/10.1016/j.tibs.2013.07.004
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 494-506
-
-
Kedersha, N.1
Ivanov, P.2
Anderson, P.3
-
217
-
-
84874040052
-
Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
-
23415227,; PMID
-
Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013; 152:791-805; PMID:23415227; http://dx.doi.org/10.1016/j.cell.2013.01.033
-
(2013)
Cell
, vol.152
, pp. 791-805
-
-
Wippich, F.1
Bodenmiller, B.2
Trajkovska, M.G.3
Wanka, S.4
Aebersold, R.5
Pelkmans, L.6
-
218
-
-
78649857386
-
RNA granules: the good, the bad and the ugly
-
20813183,; PMID
-
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34; PMID:20813183; http://dx.doi.org/10.1016/j.cellsig.2010.08.011
-
(2011)
Cell Signal
, vol.23
, pp. 324-334
-
-
Thomas, M.G.1
Loschi, M.2
Desbats, M.A.3
Boccaccio, G.L.4
-
219
-
-
84873862712
-
Stress granules inhibit apoptosis by reducing reactive oxygen species production
-
23230274,; PMID
-
Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 2013; 33:815-29; PMID:23230274; http://dx.doi.org/10.1128/MCB.00763-12
-
(2013)
Mol Cell Biol
, vol.33
, pp. 815-829
-
-
Takahashi, M.1
Higuchi, M.2
Matsuki, H.3
Yoshita, M.4
Ohsawa, T.5
Oie, M.6
Fujii, M.7
-
220
-
-
14844360344
-
Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions
-
15743837,; PMID
-
Kim WJ, Back SH, Kim V, Ryu I, Jang SK. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005; 25:2450-62; PMID:15743837; http://dx.doi.org/10.1128/MCB.25.6.2450-2462.2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2450-2462
-
-
Kim, W.J.1
Back, S.H.2
Kim, V.3
Ryu, I.4
Jang, S.K.5
-
221
-
-
77949912176
-
Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1
-
20138985,; PMID
-
Nascimento EB, Snel M, Guigas B, van der Zon GC, Kriek J, Maassen JA, Jazet IM, Diamant M, Ouwens DM. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Cell Signal 2010; 22:961-7; PMID:20138985; http://dx.doi.org/10.1016/j.cellsig.2010.02.002
-
(2010)
Cell Signal
, vol.22
, pp. 961-967
-
-
Nascimento, E.B.1
Snel, M.2
Guigas, B.3
van der Zon, G.C.4
Kriek, J.5
Maassen, J.A.6
Jazet, I.M.7
Diamant, M.8
Ouwens, D.M.9
-
222
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
17604271,; PMID
-
Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 2007; 282:24514-24; PMID:17604271; http://dx.doi.org/10.1074/jbc.M704406200
-
(2007)
J Biol Chem
, vol.282
, pp. 24514-24524
-
-
Fonseca, B.D.1
Smith, E.M.2
Lee, V.H.3
MacKintosh, C.4
Proud, C.G.5
-
223
-
-
34547133519
-
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
-
17517883,; PMID
-
Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282:20329-39; PMID:17517883; http://dx.doi.org/10.1074/jbc.M702636200
-
(2007)
J Biol Chem
, vol.282
, pp. 20329-20339
-
-
Oshiro, N.1
Takahashi, R.2
Yoshino, K.3
Tanimura, K.4
Nakashima, A.5
Eguchi, S.6
Miyamoto, T.7
Hara, K.8
Takehana, K.9
Avruch, J.10
-
224
-
-
47049127002
-
Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
18372248,; PMID
-
Wang L, Harris TE, Lawrence JC, Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008; 283:15619-27; PMID:18372248; http://dx.doi.org/10.1074/jbc.M800723200
-
(2008)
J Biol Chem
, vol.283
, pp. 15619-15627
-
-
Wang, L.1
Harris, T.E.2
Lawrence, J.C.J.3
-
225
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, Arrieumerlou C, Hall MN. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PloS One 2007; 2:e1217; http://dx.doi.org/10.1371/journal.pone.0001217
-
(2007)
PloS One
, vol.2
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
Molle, K.D.4
Cohen, A.5
Jeno, P.6
Arrieumerlou, C.7
Hall, M.N.8
-
226
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. MolCell 2007; 25:903-15
-
(2007)
MolCell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
227
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander
-
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. NatCell Biol 2007; 9:316-23
-
(2007)
NatCell Biol
, vol.9
, pp. 316-323
-
-
Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
228
-
-
79952579536
-
Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers
-
21412013,; PMID
-
Valk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, Metspalu A. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 2010; 79:283-92; PMID:21412013; http://dx.doi.org/10.1159/000322116
-
(2010)
Oncology
, vol.79
, pp. 283-292
-
-
Valk, K.1
Vooder, T.2
Kolde, R.3
Reintam, M.A.4
Petzold, C.5
Vilo, J.6
Metspalu, A.7
-
229
-
-
68349152442
-
Low expression of a few genes indicates good prognosis in estrogen receptor positive breast cancer
-
19619298,; PMID
-
Buechler S. Low expression of a few genes indicates good prognosis in estrogen receptor positive breast cancer. BMC Cancer 2009; 9:243; PMID:19619298; http://dx.doi.org/10.1186/1471-2407-9-243
-
(2009)
BMC Cancer
, vol.9
, pp. 243
-
-
Buechler, S.1
-
230
-
-
0032849890
-
Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase
-
10471835,; PMID
-
Heesom KJ, Denton RM. Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett 1999; 457:489-93; PMID:10471835; http://dx.doi.org/10.1016/S0014-5793(99)01094-7
-
(1999)
FEBS Lett
, vol.457
, pp. 489-493
-
-
Heesom, K.J.1
Denton, R.M.2
-
231
-
-
80053625750
-
Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR
-
21979918,; PMID
-
Damgaard CK, Lykke-Andersen J. Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. Genes Dev 2011; 25:2057-68; PMID:21979918; http://dx.doi.org/10.1101/gad.17355911
-
(2011)
Genes Dev
, vol.25
, pp. 2057-2068
-
-
Damgaard, C.K.1
Lykke-Andersen, J.2
-
232
-
-
41749089797
-
Reprogramming mRNA translation during stress
-
18356035,; PMID
-
Yamasaki S, Anderson P. Reprogramming mRNA translation during stress. Curr Opin Cell Biol 2008; 20:222-6; PMID:18356035; http://dx.doi.org/10.1016/j.ceb.2008.01.013
-
(2008)
Curr Opin Cell Biol
, vol.20
, pp. 222-226
-
-
Yamasaki, S.1
Anderson, P.2
-
233
-
-
84871750894
-
mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis
-
22768106,; PMID
-
Chou SD, Prince T, Gong J, Calderwood SK. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PloS One 2012; 7:e39679; PMID:22768106; http://dx.doi.org/10.1371/journal.pone.0039679
-
(2012)
PloS One
, vol.7
-
-
Chou, S.D.1
Prince, T.2
Gong, J.3
Calderwood, S.K.4
-
234
-
-
84860805752
-
Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis
-
22428559,; PMID
-
Huo Y, Iadevaia V, Yao Z, Kelly I, Cosulich S, Guichard S, Foster LJ, Proud CG. Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 2012; 444:141-51; PMID:22428559; http://dx.doi.org/10.1042/BJ20112107
-
(2012)
Biochem J
, vol.444
, pp. 141-151
-
-
Huo, Y.1
Iadevaia, V.2
Yao, Z.3
Kelly, I.4
Cosulich, S.5
Guichard, S.6
Foster, L.J.7
Proud, C.G.8
-
235
-
-
84555178677
-
Evaluation of mTOR-regulated mRNA translation
-
22125065,; PMID
-
Iadevaia V, Wang X, Yao Z, Foster LJ, Proud CG. Evaluation of mTOR-regulated mRNA translation. Methods Mol Biol 2012; 821:171-85; PMID:22125065; http://dx.doi.org/10.1007/978-1-61779-430-8_10
-
(2012)
Methods Mol Biol
, vol.821
, pp. 171-185
-
-
Iadevaia, V.1
Wang, X.2
Yao, Z.3
Foster, L.J.4
Proud, C.G.5
-
236
-
-
72149095755
-
Eukaryotic stress granules: the ins and outs of translation
-
20064460,; PMID
-
Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell 2009; 36:932-41; PMID:20064460; http://dx.doi.org/10.1016/j.molcel.2009.11.020
-
(2009)
Mol Cell
, vol.36
, pp. 932-941
-
-
Buchan, J.R.1
Parker, R.2
-
237
-
-
17144424622
-
Translational control in stress and apoptosis
-
15803138,; PMID
-
Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005; 6:318-27; PMID:15803138; http://dx.doi.org/10.1038/nrm1618
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 318-327
-
-
Holcik, M.1
Sonenberg, N.2
-
238
-
-
0034307483
-
Internal ribosome initiation of translation and the control of cell death
-
11050335,; PMID
-
Holcik M, Sonenberg N, Korneluk RG. Internal ribosome initiation of translation and the control of cell death. Trends Genet 2000; 16:469-73; PMID:11050335; http://dx.doi.org/10.1016/S0168-9525(00)02106-5
-
(2000)
Trends Genet
, vol.16
, pp. 469-473
-
-
Holcik, M.1
Sonenberg, N.2
Korneluk, R.G.3
-
239
-
-
3843117589
-
Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
-
15277680,; PMID
-
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 2004; 101:11269-74; PMID:15277680; http://dx.doi.org/10.1073/pnas.0400541101
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 11269-11274
-
-
Vattem, K.M.1
Wek, R.C.2
-
240
-
-
79958064675
-
mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry
-
21576258,; PMID
-
Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 2011; 25:1159-72; PMID:21576258; http://dx.doi.org/10.1101/gad.2042311
-
(2011)
Genes Dev
, vol.25
, pp. 1159-1172
-
-
Dai, N.1
Rapley, J.2
Angel, M.3
Yanik, M.F.4
Blower, M.D.5
Avruch, J.6
-
241
-
-
84865116634
-
Translation regulation as a therapeutic target in cancer
-
22850420,; PMID
-
Grzmil M, Hemmings BA. Translation regulation as a therapeutic target in cancer. Cancer Res 2012; 72:3891-900; PMID:22850420; http://dx.doi.org/10.1158/0008-5472.CAN-12-0026
-
(2012)
Cancer Res
, vol.72
, pp. 3891-3900
-
-
Grzmil, M.1
Hemmings, B.A.2
-
242
-
-
42449138319
-
eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy
-
18426977,; PMID
-
Ramirez-Valle F, Braunstein S, Zavadil J, Formenti SC, Schneider RJ. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J Cell Biol 2008; 181:293-307; PMID:18426977; http://dx.doi.org/10.1083/jcb.200710215
-
(2008)
J Cell Biol
, vol.181
, pp. 293-307
-
-
Ramirez-Valle, F.1
Braunstein, S.2
Zavadil, J.3
Formenti, S.C.4
Schneider, R.J.5
-
243
-
-
84871426729
-
HnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress
-
Damiano F, Rochira A, Tocci R, Alemanno S, Gnoni A, Siculella L. HnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. Biochem J 2012; http://dx.doi.org/10.1042/BJ20120906
-
(2012)
Biochem J
-
-
Damiano, F.1
Rochira, A.2
Tocci, R.3
Alemanno, S.4
Gnoni, A.5
Siculella, L.6
-
244
-
-
84866629402
-
IRES-dependent translation of egr2 is induced under inflammatory conditions
-
22915601,; PMID
-
Rubsamen D, Blees JS, Schulz K, Doring C, Hansmann ML, Heide H, Weigert A, Schmid T, Brune B. IRES-dependent translation of egr2 is induced under inflammatory conditions. RNA 2012; 18:1910-20; PMID:22915601; http://dx.doi.org/10.1261/rna.033019.112
-
(2012)
RNA
, vol.18
, pp. 1910-1920
-
-
Rubsamen, D.1
Blees, J.S.2
Schulz, K.3
Doring, C.4
Hansmann, M.L.5
Heide, H.6
Weigert, A.7
Schmid, T.8
Brune, B.9
-
245
-
-
84879349589
-
Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
-
23791177,; PMID
-
Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013; 153:1461-74; PMID:23791177; http://dx.doi.org/10.1016/j.cell.2013.05.037
-
(2013)
Cell
, vol.153
, pp. 1461-1474
-
-
Buchan, J.R.1
Kolaitis, R.M.2
Taylor, J.P.3
Parker, R.4
-
246
-
-
84964313361
-
Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly
-
25034784,; PMID
-
Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, Rubinsztein DC, Carra S. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 2014; PMID:25034784; http://dx.doi.org/10.1038/cdd.2014.103
-
(2014)
Cell Death Differ
-
-
Seguin, S.J.1
Morelli, F.F.2
Vinet, J.3
Amore, D.4
De Biasi, S.5
Poletti, A.6
Rubinsztein, D.C.7
Carra, S.8
|