메뉴 건너뛰기




Volumn 33, Issue 11, 2013, Pages 2285-2301

Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation

Author keywords

[No Author keywords available]

Indexed keywords

2 (4 AMINO 1 ISOPROPYL 1H PYRAZOLO[3,4 D]PYRIMIDIN 3 YL) 1H INDOL 5 OL; INITIATION FACTOR 4E; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1;

EID: 84878994383     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01517-12     Document Type: Article
Times cited : (60)

References (86)
  • 1
    • 2342611976 scopus 로고    scopus 로고
    • Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules
    • Moeller BJ, Cao Y, Li CY, Dewhirst MW. 2004. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429-441.
    • (2004) Cancer Cell , vol.5 , pp. 429-441
    • Moeller, B.J.1    Cao, Y.2    Li, C.Y.3    Dewhirst, M.W.4
  • 2
    • 44349167189 scopus 로고    scopus 로고
    • Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response
    • Gardner LB. 2008. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol. Cell. Biol. 28:3729 -3741.
    • (2008) Mol. Cell. Biol. , vol.28
    • Gardner, L.B.1
  • 4
    • 23044475941 scopus 로고    scopus 로고
    • Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation
    • McInerney GM, Kedersha NL, Kaufman RJ, Anderson P, Liljestrom P. 2005. Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol. Biol. Cell 16:3753-3763.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 3753-3763
    • McInerney, G.M.1    Kedersha, N.L.2    Kaufman, R.J.3    Anderson, P.4    Liljestrom, P.5
  • 5
    • 77951598447 scopus 로고    scopus 로고
    • The chemotherapeutic agent bortezomib induces the formation of stress granules
    • doi:10.1186/1475-2867-10-12
    • Fournier MJ, Gareau C, Mazroui R. 2010. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. 10: 12. doi:10.1186/1475-2867-10-12.
    • (2010) Cancer Cell Int. , vol.10 , pp. 12
    • Fournier, M.J.1    Gareau, C.2    Mazroui, R.3
  • 6
    • 79957547144 scopus 로고    scopus 로고
    • p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomibmediated apoptosis
    • doi:10.1371/journal.pone .0020254
    • Gareau C, Fournier MJ, Filion C, Coudert L, Martel D, Labelle Y, Mazroui R. 2011. p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomibmediated apoptosis. PLoS One 6:e20254. doi:10.1371/journal.pone .0020254.
    • (2011) PLoS One , vol.6
    • Gareau, C.1    Fournier, M.J.2    Filion, C.3    Coudert, L.4    Martel, D.5    Labelle, Y.6    Mazroui, R.7
  • 7
    • 34347406608 scopus 로고    scopus 로고
    • Inhibition of the ubiquitin-proteasome system induces stress granule formation
    • Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE. 2007. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol. Biol. Cell 18:2603-2618.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2603-2618
    • Mazroui, R.1    Di Marco, S.2    Kaufman, R.J.3    Gallouzi, I.E.4
  • 9
    • 39949085583 scopus 로고    scopus 로고
    • Stress granules: the Tao of RNA triage
    • Anderson P, Kedersha N. 2008. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33:141-150.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 141-150
    • Anderson, P.1    Kedersha, N.2
  • 10
    • 55549130760 scopus 로고    scopus 로고
    • Formation of stress granules inhibits apoptosis by suppressing stressresponsive MAPK pathways
    • Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. 2008. Formation of stress granules inhibits apoptosis by suppressing stressresponsive MAPK pathways. Nat. Cell Biol. 10:1324 -1332.
    • (2008) Nat. Cell Biol. , vol.10
    • Arimoto, K.1    Fukuda, H.2    Imajoh-Ohmi, S.3    Saito, H.4    Takekawa, M.5
  • 11
    • 14844360344 scopus 로고    scopus 로고
    • Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions
    • Kim WJ, Back SH, Kim V, Ryu I, Jang SK. 2005. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell. Biol. 25:2450 -2462.
    • (2005) Mol. Cell. Biol. , vol.25
    • Kim, W.J.1    Back, S.H.2    Kim, V.3    Ryu, I.4    Jang, S.K.5
  • 12
    • 84855771581 scopus 로고    scopus 로고
    • The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe
    • Morita T, Satoh R, Umeda N, Kita A, Sugiura R. 2012. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 417:399-403.
    • (2012) Biochem. Biophys. Res. Commun. , vol.417 , pp. 399-403
    • Morita, T.1    Satoh, R.2    Umeda, N.3    Kita, A.4    Sugiura, R.5
  • 13
    • 53049083867 scopus 로고    scopus 로고
    • Mechanisms of proteasome inhibitor action and resistance in cancer
    • McConkey DJ, Zhu K. 2008. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 11:164 -179.
    • (2008) Drug Resist. Updat. , vol.11
    • McConkey, D.J.1    Zhu, K.2
  • 18
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • doi:10.1126/scisignal.267pe24
    • Guertin DA, Sabatini DM. 2009. The pharmacology of mTOR inhibition. Sci. Signal. 2:pe24. doi:10.1126/scisignal.267pe24.
    • (2009) Sci. Signal. , vol.2
    • Guertin, D.A.1    Sabatini, D.M.2
  • 19
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274 -293.
    • (2012) Cell , vol.149
    • Laplante, M.1    Sabatini, D.M.2
  • 22
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr. Biol. 14: 1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.H.3    Guertin, D.A.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 23
    • 33749406921 scopus 로고    scopus 로고
    • Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
    • Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. 2006. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J. Biol. Chem. 281: 28605-28614.
    • (2006) J. Biol. Chem. , vol.281 , pp. 28605-28614
    • Takahara, T.1    Hara, K.2    Yonezawa, K.3    Sorimachi, H.4    Maeda, T.5
  • 24
    • 33747690458 scopus 로고    scopus 로고
    • Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1
    • Wang L, Rhodes CJ, Lawrence JC, Jr. 2006. Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J. Biol. Chem. 281:24293-24303.
    • (2006) J. Biol. Chem. , vol.281 , pp. 24293-24303
    • Wang, L.1    Rhodes, C.J.2    Lawrence Jr., J.C.3
  • 25
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. 2010. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38:768 -774.
    • (2010) Mol. Cell , vol.38
    • Yip, C.K.1    Murata, K.2    Walz, T.3    Sabatini, D.M.4    Kang, S.A.5
  • 26
    • 33750040886 scopus 로고    scopus 로고
    • S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt
    • Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. 2006. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol. Cell 24:185-197.
    • (2006) Mol. Cell , vol.24 , pp. 185-197
    • Zhang, H.H.1    Lipovsky, A.I.2    Dibble, C.C.3    Sahin, M.4    Manning, B.D.5
  • 29
    • 78651284554 scopus 로고    scopus 로고
    • The complexes of mammalian target of rapamycin
    • Zhou H, Huang S. 2010. The complexes of mammalian target of rapamycin. Curr. Protein Pept. Sci. 11:409-424.
    • (2010) Curr. Protein Pept. Sci. , vol.11 , pp. 409-424
    • Zhou, H.1    Huang, S.2
  • 30
    • 13444259647 scopus 로고    scopus 로고
    • Regulation of cap-dependent translation by eIF4E inhibitory proteins
    • Richter JD, Sonenberg N. 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477-480.
    • (2005) Nature , vol.433 , pp. 477-480
    • Richter, J.D.1    Sonenberg, N.2
  • 31
    • 42149195978 scopus 로고    scopus 로고
    • eIF4E, the mRNA cap-binding protein: from basic discovery to translational research
    • Sonenberg N. 2008. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem. Cell Biol. 86:178 -183.
    • (2008) Biochem. Cell Biol. , vol.86
    • Sonenberg, N.1
  • 32
    • 0030832026 scopus 로고    scopus 로고
    • eIF4G dramatically enhances the binding of eIF4E to the mRNA 5=-cap structure
    • Haghighat A, Sonenberg N. 1997. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5=-cap structure. J. Biol. Chem. 272:21677-21680.
    • (1997) J. Biol. Chem. , vol.272 , pp. 21677-21680
    • Haghighat, A.1    Sonenberg, N.2
  • 33
    • 0029861190 scopus 로고    scopus 로고
    • The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase
    • Haghighat A, Svitkin Y, Novoa I, Kuechler E, Skern T, Sonenberg N. 1996. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70:8444-8450.
    • (1996) J. Virol. , vol.70 , pp. 8444-8450
    • Haghighat, A.1    Svitkin, Y.2    Novoa, I.3    Kuechler, E.4    Skern, T.5    Sonenberg, N.6
  • 34
    • 0028786952 scopus 로고
    • Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E
    • Haghighat A, Mader S, Pause A, Sonenberg N. 1995. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14:5701-5709.
    • (1995) EMBO J. , vol.14 , pp. 5701-5709
    • Haghighat, A.1    Mader, S.2    Pause, A.3    Sonenberg, N.4
  • 38
    • 0030443685 scopus 로고    scopus 로고
    • The eIF4Ebinding proteins 1 and 2 are negative regulators of cell growth
    • Rousseau D, Gingras AC, Pause A, Sonenberg N. 1996. The eIF4Ebinding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13:2415-2420.
    • (1996) Oncogene , vol.13 , pp. 2415-2420
    • Rousseau, D.1    Gingras, A.C.2    Pause, A.3    Sonenberg, N.4
  • 39
    • 33750044299 scopus 로고    scopus 로고
    • When translation meets transformation: the mTOR story
    • Averous J, Proud CG. 2006. When translation meets transformation: the mTOR story. Oncogene 25:6423-6435.
    • (2006) Oncogene , vol.25 , pp. 6423-6435
    • Averous, J.1    Proud, C.G.2
  • 40
    • 0041802820 scopus 로고    scopus 로고
    • Targeting mTOR signaling for cancer therapy
    • Huang S, Houghton PJ. 2003. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol. 3:371-377.
    • (2003) Curr. Opin. Pharmacol. , vol.3 , pp. 371-377
    • Huang, S.1    Houghton, P.J.2
  • 41
    • 27644447574 scopus 로고    scopus 로고
    • The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy
    • Janus A, Robak T, Smolewski P. 2005. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell. Mol. Biol. Lett. 10:479-498.
    • (2005) Cell. Mol. Biol. Lett. , vol.10 , pp. 479-498
    • Janus, A.1    Robak, T.2    Smolewski, P.3
  • 43
    • 38849180436 scopus 로고    scopus 로고
    • Targeting the eukaryotic translation initiation factor 4E for cancer therapy
    • Graff JR, Konicek BW, Carter JH, Marcusson EG. 2008. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res. 68:631-634.
    • (2008) Cancer Res. , vol.68 , pp. 631-634
    • Graff, J.R.1    Konicek, B.W.2    Carter, J.H.3    Marcusson, E.G.4
  • 45
    • 49749125291 scopus 로고    scopus 로고
    • Targeting the eIF4F translation initiation complex for cancer therapy
    • Konicek BW, Dumstorf CA, Graff JR. 2008. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle 7:2466 -2471.
    • (2008) Cell Cycle , vol.7
    • Konicek, B.W.1    Dumstorf, C.A.2    Graff, J.R.3
  • 47
    • 33947235680 scopus 로고    scopus 로고
    • Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer
    • Nathan CO, Amirghahari N, Rong X, Giordano T, Sibley D, Nordberg M, Glass J, Agarwal A, Caldito G. 2007. Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res. 67:2160 -2168.
    • (2007) Cancer Res. , vol.67
    • Nathan, C.O.1    Amirghahari, N.2    Rong, X.3    Giordano, T.4    Sibley, D.5    Nordberg, M.6    Glass, J.7    Agarwal, A.8    Caldito, G.9
  • 48
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycinresistant outputs of mTORC1 and mTORC2
    • doi:10 .1371/journal.pbio.1000038
    • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. 2009. Active-site inhibitors of mTOR target rapamycinresistant outputs of mTORC1 and mTORC2. PLoS Biol. 7:e38. doi:10 .1371/journal.pbio.1000038.
    • (2009) PLoS Biol. , vol.7
    • Feldman, M.E.1    Apsel, B.2    Uotila, A.3    Loewith, R.4    Knight, Z.A.5    Ruggero, D.6    Shokat, K.M.7
  • 50
    • 84055182534 scopus 로고    scopus 로고
    • Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1
    • doi: 10.1371/journal.pone.0029136
    • Grosso S, Pesce E, Brina D, Beugnet A, Loreni F, Biffo S. 2011. Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1. PLoS One 6:e29136. doi: 10.1371/journal.pone.0029136.
    • (2011) PLoS One , vol.6
    • Grosso, S.1    Pesce, E.2    Brina, D.3    Beugnet, A.4    Loreni, F.5    Biffo, S.6
  • 56
    • 0037112805 scopus 로고    scopus 로고
    • Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression
    • Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW. 2002. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 11:3007-3017.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 3007-3017
    • Mazroui, R.1    Huot, M.E.2    Tremblay, S.3    Filion, C.4    Labelle, Y.5    Khandjian, E.W.6
  • 58
    • 0036154218 scopus 로고    scopus 로고
    • Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules
    • Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, Anderson P. 2002. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13:195-210.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 195-210
    • Kedersha, N.1    Chen, S.2    Gilks, N.3    Li, W.4    Miller, I.J.5    Stahl, J.6    Anderson, P.7
  • 60
    • 0033611157 scopus 로고    scopus 로고
    • RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules
    • Kedersha NL, Gupta M, Li W, Miller I, Anderson P. 1999. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147:1431-1442.
    • (1999) J. Cell Biol. , vol.147 , pp. 1431-1442
    • Kedersha, N.L.1    Gupta, M.2    Li, W.3    Miller, I.4    Anderson, P.5
  • 61
    • 20144378698 scopus 로고    scopus 로고
    • Heme-regulated inhibitor kinasemediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
    • McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. 2005. Heme-regulated inhibitor kinasemediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. 280:16925-16933.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16925-16933
    • McEwen, E.1    Kedersha, N.2    Song, B.3    Scheuner, D.4    Gilks, N.5    Han, A.6    Chen, J.J.7    Anderson, P.8    Kaufman, R.J.9
  • 63
    • 84874040052 scopus 로고    scopus 로고
    • Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
    • Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. 2013. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152:791-805.
    • (2013) Cell , vol.152 , pp. 791-805
    • Wippich, F.1    Bodenmiller, B.2    Trajkovska, M.G.3    Wanka, S.4    Aebersold, R.5    Pelkmans, L.6
  • 65
    • 66149131406 scopus 로고    scopus 로고
    • The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response
    • Sukarieh R, Sonenberg N, Pelletier J. 2009. The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response. Am. J. Physiol. Cell Physiol. 296:C1207-C1217.
    • (2009) Am. J. Physiol. Cell Physiol. , vol.296
    • Sukarieh, R.1    Sonenberg, N.2    Pelletier, J.3
  • 67
    • 0036314780 scopus 로고    scopus 로고
    • Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors
    • Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG. 2002. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur. J. Biochem. 269:3076 -3085.
    • (2002) Eur. J. Biochem. , vol.269
    • Patel, J.1    McLeod, L.E.2    Vries, R.G.3    Flynn, A.4    Wang, X.5    Proud, C.G.6
  • 68
    • 80052403225 scopus 로고    scopus 로고
    • Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation
    • Wu XN, Wang XK, Wu SQ, Lu J, Zheng M, Wang YH, Zhou H, Zhang H, Han J. 2011. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286:31501-31511.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31501-31511
    • Wu, X.N.1    Wang, X.K.2    Wu, S.Q.3    Lu, J.4    Zheng, M.5    Wang, Y.H.6    Zhou, H.7    Zhang, H.8    Han, J.9
  • 71
    • 0028034233 scopus 로고
    • Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5=-cap function
    • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC, Jr, Sonenberg N. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5=-cap function. Nature 371:762-767.
    • (1994) Nature , vol.371 , pp. 762-767
    • Pause, A.1    Belsham, G.J.2    Gingras, A.C.3    Donze, O.4    Lin, T.A.5    Lawrence Jr., J.C.6    Sonenberg, N.7
  • 72
    • 0032577691 scopus 로고    scopus 로고
    • 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family
    • Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 1998. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273:14002-14007.
    • (1998) J. Biol. Chem. , vol.273 , pp. 14002-14007
    • Poulin, F.1    Gingras, A.C.2    Olsen, H.3    Chevalier, S.4    Sonenberg, N.5
  • 73
    • 72149095755 scopus 로고    scopus 로고
    • Eukaryotic stress granules: the ins and outs of translation
    • Buchan JR, Parker R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36:932-941.
    • (2009) Mol. Cell , vol.36 , pp. 932-941
    • Buchan, J.R.1    Parker, R.2
  • 75
    • 84857154356 scopus 로고    scopus 로고
    • AKT inhibition by triciribine alone or as combination therapy for growth control of gastroenteropancreatic neuroendocrine tumors
    • Gloesenkamp CR, Nitzsche B, Ocker M, Di Fazio P, Quint K, Hoffmann B, Scherubl H, Hopfner M. 2012. AKT inhibition by triciribine alone or as combination therapy for growth control of gastroenteropancreatic neuroendocrine tumors. Int. J. Oncol. 40:876-888.
    • (2012) Int. J. Oncol. , vol.40 , pp. 876-888
    • Gloesenkamp, C.R.1    Nitzsche, B.2    Ocker, M.3    Di Fazio, P.4    Quint, K.5    Hoffmann, B.6    Scherubl, H.7    Hopfner, M.8
  • 77
    • 84870806203 scopus 로고    scopus 로고
    • B16-F10 melanoma cells contribute to the new formation of blood vessels in the chick embryo chorioallantoic membrane through vasculogenic mimicry
    • 19 April, [Epub ahead of print.]
    • Ribatti D, Nico B, Cimpean AM, Raica M, Crivellato E, Ruggieri S, Vacca A. 19 April 2012. B16-F10 melanoma cells contribute to the new formation of blood vessels in the chick embryo chorioallantoic membrane through vasculogenic mimicry. Clin. Exp. Med. [Epub ahead of print.]
    • (2012) Clin. Exp. Med.
    • Ribatti, D.1    Nico, B.2    Cimpean, A.M.3    Raica, M.4    Crivellato, E.5    Ruggieri, S.6    Vacca, A.7
  • 78
    • 84870270861 scopus 로고    scopus 로고
    • Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of noncanonical stress granules
    • Fujimura K, Sasaki AT, Anderson P. 2012. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of noncanonical stress granules. Nucleic Acids Res. 40:8099-8110.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8099-8110
    • Fujimura, K.1    Sasaki, A.T.2    Anderson, P.3
  • 81
    • 80053022305 scopus 로고    scopus 로고
    • The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4FmRNA complex
    • Hilliker A, Gao Z, Jankowsky E, Parker R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4FmRNA complex. Mol. Cell 43:962-972.
    • (2011) Mol. Cell , vol.43 , pp. 962-972
    • Hilliker, A.1    Gao, Z.2    Jankowsky, E.3    Parker, R.4
  • 82
    • 84856270385 scopus 로고    scopus 로고
    • Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins
    • Rajyaguru P, She M, Parker R. 2012. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol. Cell 45:244 -254.
    • (2012) Mol. Cell , vol.45
    • Rajyaguru, P.1    She, M.2    Parker, R.3
  • 83
    • 84055178425 scopus 로고    scopus 로고
    • Critical roles of RNA helicase DDX3 and its interactions with eIF4E/ PABP1 in stress granule assembly and stress response
    • Shih JW, Wang WT, Tsai TY, Kuo CY, Li HK, Wu Lee YH. 2012. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/ PABP1 in stress granule assembly and stress response. Biochem. J. 441: 119-129.
    • (2012) Biochem. J. , vol.441 , pp. 119-129
    • Shih, J.W.1    Wang, W.T.2    Tsai, T.Y.3    Kuo, C.Y.4    Li, H.K.5    Wu Lee, Y.H.6
  • 84
    • 27944483724 scopus 로고    scopus 로고
    • Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry sitemediated translation
    • Svitkin YV, Herdy B, Costa-Mattioli M, Gingras AC, Raught B, Sonenberg N. 2005. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry sitemediated translation. Mol. Cell. Biol. 25:10556 -10565.
    • (2005) Mol. Cell. Biol. , vol.25
    • Svitkin, Y.V.1    Herdy, B.2    Costa-Mattioli, M.3    Gingras, A.C.4    Raught, B.5    Sonenberg, N.6
  • 86
    • 0035864364 scopus 로고    scopus 로고
    • Polymorphism in the 3=-untranslated region of TNFalpha mRNA impairs binding of the posttranscriptional regulatory protein HuR to TNFalpha mRNA
    • Di Marco S, Hel Z, Lachance C, Furneaux H, Radzioch D. 2001. Polymorphism in the 3=-untranslated region of TNFalpha mRNA impairs binding of the posttranscriptional regulatory protein HuR to TNFalpha mRNA. Nucleic Acids Res. 29:863-871.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 863-871
    • Di Marco, S.1    Hel, Z.2    Lachance, C.3    Furneaux, H.4    Radzioch, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.