메뉴 건너뛰기




Volumn 38, Issue 10, 2013, Pages 494-506

Stress granules and cell signaling: More than just a passing phase?

Author keywords

Cell signaling; Intrinsically disordered; Protein aggregation; Stress granules; Translation

Indexed keywords

ADENOSINE TRIPHOSPHATE PHOSPHORIBOSYLTRANSFERASE; ARGONAUTE 2 PROTEIN; MONOCYTE CHEMOTACTIC PROTEIN 1; PROTEIN DNMT2; PROTEIN ISR; PROTEIN KINASE C ALPHA; PROTEIN MK STYX; PROTEIN P54; PROTEIN PHOSPHO ELF2 ALPHA; PROTEIN PRMT3; PROTEIN RHAU; PROTEIN ROQUIN; PROTEIN RSK2; PROTEIN SMG 1; PROTEIN USP10; RECEPTOR FOR ACTIVATED C KINASE 1; REGULATOR PROTEIN; RHO GUANINE NUCLEOTIDE BINDING PROTEIN; STRESS ACTIVATED PROTEIN KINASE; SYNAPTOPHYSIN; TARGET OF RAPAMYCIN KINASE; UNCLASSIFIED DRUG;

EID: 84884587610     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.07.004     Document Type: Review
Times cited : (483)

References (112)
  • 1
    • 0033611157 scopus 로고    scopus 로고
    • RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules
    • Kedersha N.L., et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 1999, 147:1431-1441.
    • (1999) J. Cell Biol. , vol.147 , pp. 1431-1441
    • Kedersha, N.L.1
  • 2
    • 39949085583 scopus 로고    scopus 로고
    • Stress granules: the Tao of RNA triage
    • Anderson P., et al. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 2008, 33:141-150.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 141-150
    • Anderson, P.1
  • 3
    • 0033634654 scopus 로고    scopus 로고
    • Regulated translation initiation controls stress-induced gene expression in mammalian cells
    • Harding H., et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 2000, 6:1099-1108.
    • (2000) Mol. Cell , vol.6 , pp. 1099-1108
    • Harding, H.1
  • 4
    • 0033634641 scopus 로고    scopus 로고
    • Perk is essential for translational regulation and cell survival during the unfolded protein response
    • Harding H.P., et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 2000, 5:897-904.
    • (2000) Mol. Cell , vol.5 , pp. 897-904
    • Harding, H.P.1
  • 5
    • 0031891869 scopus 로고    scopus 로고
    • Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA- dependent protein kinase
    • Srivastava S.P., et al. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA- dependent protein kinase. J. Biol. Chem. 1998, 273:2416-2423.
    • (1998) J. Biol. Chem. , vol.273 , pp. 2416-2423
    • Srivastava, S.P.1
  • 6
    • 0029006391 scopus 로고
    • The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
    • Wek S.A., et al. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 1995, 15:4497-4506.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 4497-4506
    • Wek, S.A.1
  • 7
    • 0035166679 scopus 로고    scopus 로고
    • Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses
    • Lu L., et al. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol. Cell. Biol. 2001, 21:7971-7980.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 7971-7980
    • Lu, L.1
  • 8
    • 84859866797 scopus 로고    scopus 로고
    • Stress granules contribute to alpha-globin homeostasis in differentiating erythroid cells
    • Ghisolfi L., et al. Stress granules contribute to alpha-globin homeostasis in differentiating erythroid cells. Biochem. Biophys. Res. Commun. 2012, 420:768-774.
    • (2012) Biochem. Biophys. Res. Commun. , vol.420 , pp. 768-774
    • Ghisolfi, L.1
  • 9
    • 20144378698 scopus 로고    scopus 로고
    • Heme-regulated inhibitor (HRI) kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 (eIF2) inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
    • McEwen E., et al. Heme-regulated inhibitor (HRI) kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 (eIF2) inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. 2005, 280:16925-16933.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16925-16933
    • McEwen, E.1
  • 10
    • 0036154218 scopus 로고    scopus 로고
    • Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules
    • Kedersha N., et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 2002, 13:195-210.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 195-210
    • Kedersha, N.1
  • 11
    • 0037302958 scopus 로고    scopus 로고
    • Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes
    • Kimball S.R., et al. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 2003, 284:C273-C284.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.284
    • Kimball, S.R.1
  • 12
    • 0034638837 scopus 로고    scopus 로고
    • Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules
    • Kedersha N., et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 2000, 151:1257-1268.
    • (2000) J. Cell Biol. , vol.151 , pp. 1257-1268
    • Kedersha, N.1
  • 13
    • 23044457401 scopus 로고    scopus 로고
    • Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation
    • Bordeleau M.E., et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10460-10465.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 10460-10465
    • Bordeleau, M.E.1
  • 14
    • 33845950751 scopus 로고    scopus 로고
    • Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A
    • Dang Y., et al. Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J. Biol. Chem. 2006, 281:32870-32878.
    • (2006) J. Biol. Chem. , vol.281 , pp. 32870-32878
    • Dang, Y.1
  • 15
    • 53349165578 scopus 로고    scopus 로고
    • A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly
    • Ohn T., et al. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat. Cell Biol. 2008, 10:1224-1231.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1224-1231
    • Ohn, T.1
  • 16
    • 56149086182 scopus 로고    scopus 로고
    • P bodies promote stress granule assembly in Saccharomyces cerevisiae
    • Buchan J.R., et al. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 2008, 183:441-455.
    • (2008) J. Cell Biol. , vol.183 , pp. 441-455
    • Buchan, J.R.1
  • 17
    • 84867186265 scopus 로고    scopus 로고
    • Translation suppression promotes stress granule formation and cell survival in response to cold shock
    • Hofmann S., et al. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol. Biol. Cell 2012, 23:3786-3800.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 3786-3800
    • Hofmann, S.1
  • 18
    • 84876453384 scopus 로고    scopus 로고
    • Regulation of stress granules and P-bodies during RNA virus infection
    • Lloyd R.E. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip. Rev. RNA 2013, 4:317-331.
    • (2013) Wiley Interdiscip. Rev. RNA , vol.4 , pp. 317-331
    • Lloyd, R.E.1
  • 19
    • 84863407268 scopus 로고    scopus 로고
    • Regulation of stress granules in virus systems
    • White J.P., Lloyd R.E. Regulation of stress granules in virus systems. Trends Microbiol. 2012, 20:175-183.
    • (2012) Trends Microbiol. , vol.20 , pp. 175-183
    • White, J.P.1    Lloyd, R.E.2
  • 20
    • 9444279617 scopus 로고    scopus 로고
    • Stress granule assembly is mediated by prion-like aggregation of TIA-1
    • Gilks N., et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 2004, 15:5383-5398.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 5383-5398
    • Gilks, N.1
  • 21
    • 35948951960 scopus 로고    scopus 로고
    • Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
    • Decker C.J., et al. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol. 2007, 179:437-449.
    • (2007) J. Cell Biol. , vol.179 , pp. 437-449
    • Decker, C.J.1
  • 22
    • 50249131374 scopus 로고    scopus 로고
    • A role for Q/N-rich aggregation-prone regions in P-body localization
    • Reijns M.A., et al. A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell Sci. 2008, 121:2463-2472.
    • (2008) J. Cell Sci. , vol.121 , pp. 2463-2472
    • Reijns, M.A.1
  • 23
    • 84860863700 scopus 로고    scopus 로고
    • Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
    • Han T.W., et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012, 149:768-779.
    • (2012) Cell , vol.149 , pp. 768-779
    • Han, T.W.1
  • 24
    • 84860872161 scopus 로고    scopus 로고
    • Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
    • Kato M., et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012, 149:753-767.
    • (2012) Cell , vol.149 , pp. 753-767
    • Kato, M.1
  • 25
    • 84876288161 scopus 로고    scopus 로고
    • Protein disorder, prion propensities, and self-organizing macromolecular collectives
    • Malinovska L., et al. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 2013, 1834:918-931.
    • (2013) Biochim. Biophys. Acta , vol.1834 , pp. 918-931
    • Malinovska, L.1
  • 26
    • 84876281768 scopus 로고    scopus 로고
    • Unusual biophysics of intrinsically disordered proteins
    • Uversky V.N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 2013, 1834:932-951.
    • (2013) Biochim. Biophys. Acta , vol.1834 , pp. 932-951
    • Uversky, V.N.1
  • 27
    • 77950641716 scopus 로고    scopus 로고
    • Low-complexity regions within protein sequences have position-dependent roles
    • Coletta A., et al. Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 2010, 4:43.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 43
    • Coletta, A.1
  • 28
    • 0029901640 scopus 로고    scopus 로고
    • Analysis of compositionally biased regions in sequence databases
    • Wootton J.C., Federhen S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 1996, 266:554-571.
    • (1996) Methods Enzymol. , vol.266 , pp. 554-571
    • Wootton, J.C.1    Federhen, S.2
  • 29
    • 24044538903 scopus 로고    scopus 로고
    • IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
    • Dosztanyi Z., et al. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21:3433-3434.
    • (2005) Bioinformatics , vol.21 , pp. 3433-3434
    • Dosztanyi, Z.1
  • 30
    • 67649976463 scopus 로고    scopus 로고
    • Germline P granules are liquid droplets that localize by controlled dissolution/condensation
    • Brangwynne C.P., et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009, 324:1729-1732.
    • (2009) Science , vol.324 , pp. 1729-1732
    • Brangwynne, C.P.1
  • 31
    • 84861964894 scopus 로고    scopus 로고
    • Getting RNA and protein in phase
    • Weber S.C., Brangwynne C.P. Getting RNA and protein in phase. Cell 2012, 149:1188-1191.
    • (2012) Cell , vol.149 , pp. 1188-1191
    • Weber, S.C.1    Brangwynne, C.P.2
  • 32
    • 22344455246 scopus 로고    scopus 로고
    • Stress granules and processing bodies are dynamically liked sites of mRNP remodeling
    • Kedersha N., et al. Stress granules and processing bodies are dynamically liked sites of mRNP remodeling. J. Cell Biol. 2005, 169:871-884.
    • (2005) J. Cell Biol. , vol.169 , pp. 871-884
    • Kedersha, N.1
  • 33
    • 0037451173 scopus 로고    scopus 로고
    • The RasGAP-associated endoribonuclease G3BP assembles stress granules
    • Tourriere H., et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 2003, 160:823-831.
    • (2003) J. Cell Biol. , vol.160 , pp. 823-831
    • Tourriere, H.1
  • 34
    • 1942471656 scopus 로고    scopus 로고
    • MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay
    • Stoecklin G., et al. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 2004, 23:1313-1324.
    • (2004) EMBO J. , vol.23 , pp. 1313-1324
    • Stoecklin, G.1
  • 35
    • 33947301293 scopus 로고    scopus 로고
    • TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements
    • Franks T.M., Lykke-Andersen J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. 2007, 21:719-735.
    • (2007) Genes Dev. , vol.21 , pp. 719-735
    • Franks, T.M.1    Lykke-Andersen, J.2
  • 36
    • 57649131057 scopus 로고    scopus 로고
    • Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules
    • Courchet J., et al. Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J. Biol. Chem. 2008, 283:32131-32142.
    • (2008) J. Biol. Chem. , vol.283 , pp. 32131-32142
    • Courchet, J.1
  • 37
    • 84874312261 scopus 로고    scopus 로고
    • Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate
    • Huang K.L., et al. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA 2013, 19:295-305.
    • (2013) RNA , vol.19 , pp. 295-305
    • Huang, K.L.1
  • 38
    • 10744227206 scopus 로고    scopus 로고
    • Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase
    • Kozlov G., et al. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 2004, 23:272-281.
    • (2004) EMBO J. , vol.23 , pp. 272-281
    • Kozlov, G.1
  • 39
    • 84861969926 scopus 로고    scopus 로고
    • Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
    • Castello A., et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012, 149:1393-1406.
    • (2012) Cell , vol.149 , pp. 1393-1406
    • Castello, A.1
  • 40
    • 84862776582 scopus 로고    scopus 로고
    • Phase transitions in the assembly of multivalent signalling proteins
    • Li P., et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012, 483:336-340.
    • (2012) Nature , vol.483 , pp. 336-340
    • Li, P.1
  • 41
    • 0034710897 scopus 로고    scopus 로고
    • A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions
    • Michelitsch M.D., Weissman J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:11910-11915.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 11910-11915
    • Michelitsch, M.D.1    Weissman, J.S.2
  • 42
    • 1542358787 scopus 로고    scopus 로고
    • Prediction and functional analysis of native disorder in proteins from the three kingdoms of life
    • Ward J.J., et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 2004, 337:635-645.
    • (2004) J. Mol. Biol. , vol.337 , pp. 635-645
    • Ward, J.J.1
  • 43
    • 84864616734 scopus 로고    scopus 로고
    • Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks
    • Lewitzky M., et al. Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks. FEBS Lett. 2012, 586:2740-2750.
    • (2012) FEBS Lett. , vol.586 , pp. 2740-2750
    • Lewitzky, M.1
  • 44
    • 84861403073 scopus 로고    scopus 로고
    • Receptor signaling clusters in the immune synapse
    • Dustin M.L., Groves J.T. Receptor signaling clusters in the immune synapse. Annu. Rev. Biophys. 2012, 41:543-556.
    • (2012) Annu. Rev. Biophys. , vol.41 , pp. 543-556
    • Dustin, M.L.1    Groves, J.T.2
  • 45
    • 84872973963 scopus 로고    scopus 로고
    • Membrane domains and the "lipid raft" concept
    • Sonnino S., Prinetti A. Membrane domains and the "lipid raft" concept. Curr. Med. Chem. 2013, 20:4-21.
    • (2013) Curr. Med. Chem. , vol.20 , pp. 4-21
    • Sonnino, S.1    Prinetti, A.2
  • 46
    • 84856111924 scopus 로고    scopus 로고
    • The unfolded protein response: controlling cell fate decisions under ER stress and beyond
    • Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13:89-102.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 89-102
    • Hetz, C.1
  • 47
    • 34250899722 scopus 로고    scopus 로고
    • Signal integration in the endoplasmic reticulum unfolded protein response
    • Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8:519-529.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 519-529
    • Ron, D.1    Walter, P.2
  • 48
    • 77951645463 scopus 로고    scopus 로고
    • A crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cells
    • Qiu Y., et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cells. Sci. Signal. 2010, 3:ra7.
    • (2010) Sci. Signal. , vol.3
    • Qiu, Y.1
  • 49
    • 14844360344 scopus 로고    scopus 로고
    • Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions
    • Kim W.J., et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell. Biol. 2005, 25:2450-2462.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2450-2462
    • Kim, W.J.1
  • 50
    • 0034723235 scopus 로고    scopus 로고
    • Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
    • Urano F., et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000, 287:664-666.
    • (2000) Science , vol.287 , pp. 664-666
    • Urano, F.1
  • 51
    • 80053537984 scopus 로고    scopus 로고
    • RACK1, a multifaceted scaffolding protein: structure and function
    • Adams D.R., et al. RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun. Signal. 2011, 9:22.
    • (2011) Cell Commun. Signal. , vol.9 , pp. 22
    • Adams, D.R.1
  • 52
    • 55549130760 scopus 로고    scopus 로고
    • Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways
    • Arimoto K., et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 2008, 10:1324-1332.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1324-1332
    • Arimoto, K.1
  • 53
    • 77950686223 scopus 로고    scopus 로고
    • OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress
    • Wehner K.A., et al. OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol. Cell. Biol. 2010, 30:2006-2016.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2006-2016
    • Wehner, K.A.1
  • 54
    • 84865592978 scopus 로고    scopus 로고
    • Amino acids and mTORC1: from lysosomes to disease
    • Efeyan A., et al. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 2012, 18:524-533.
    • (2012) Trends Mol. Med. , vol.18 , pp. 524-533
    • Efeyan, A.1
  • 55
    • 84874040052 scopus 로고    scopus 로고
    • Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
    • Wippich F., et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013, 152:791-805.
    • (2013) Cell , vol.152 , pp. 791-805
    • Wippich, F.1
  • 56
    • 84864308260 scopus 로고    scopus 로고
    • Transient sequestration of TORC1 into stress granules during heat stress
    • Takahara T., Maeda T. Transient sequestration of TORC1 into stress granules during heat stress. Mol. Cell 2012, 47:242-252.
    • (2012) Mol. Cell , vol.47 , pp. 242-252
    • Takahara, T.1    Maeda, T.2
  • 57
    • 84862776556 scopus 로고    scopus 로고
    • The TOR complex 1 is a direct target of Rho1 GTPase
    • Yan G., et al. The TOR complex 1 is a direct target of Rho1 GTPase. Mol. Cell 2012, 45:743-753.
    • (2012) Mol. Cell , vol.45 , pp. 743-753
    • Yan, G.1
  • 58
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 59
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25:903-915.
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 60
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • Vander Haar E., et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9:316-323.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 316-323
    • Vander Haar, E.1
  • 61
    • 84876004101 scopus 로고    scopus 로고
    • Roles of rho GTPases in intracellular transport and cellular transformation
    • Chi X., et al. Roles of rho GTPases in intracellular transport and cellular transformation. Int. J. Mol. Sci. 2013, 14:7089-7108.
    • (2013) Int. J. Mol. Sci. , vol.14 , pp. 7089-7108
    • Chi, X.1
  • 62
    • 84880162772 scopus 로고    scopus 로고
    • Signaling networks of Rho GTPases in cell motility
    • Hanna S., El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell. Signal. 2013, 25:1955-1961.
    • (2013) Cell. Signal. , vol.25 , pp. 1955-1961
    • Hanna, S.1    El-Sibai, M.2
  • 63
    • 84873115873 scopus 로고    scopus 로고
    • Rho GTPases and their roles in cancer metabolism
    • Wilson K.F., et al. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med. 2013, 19:74-82.
    • (2013) Trends Mol. Med. , vol.19 , pp. 74-82
    • Wilson, K.F.1
  • 64
    • 58749101759 scopus 로고    scopus 로고
    • Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage
    • Ongusaha P.P., et al. Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage. Sci. Signal. 2008, 1:ra14.
    • (2008) Sci. Signal. , vol.1
    • Ongusaha, P.P.1
  • 65
    • 74449089659 scopus 로고    scopus 로고
    • RhoA/ROCK1 signaling regulates stress granule formation and apoptosis
    • Tsai N-P., Wei L.N. RhoA/ROCK1 signaling regulates stress granule formation and apoptosis. Cell. Signal. 2010, 22:668-675.
    • (2010) Cell. Signal. , vol.22 , pp. 668-675
    • Tsai, N.-P.1    Wei, L.N.2
  • 66
    • 77951888466 scopus 로고    scopus 로고
    • Dishevelled: the hub of Wnt signaling
    • Gao C., Chen Y.G. Dishevelled: the hub of Wnt signaling. Cell. Signal. 2010, 22:717-727.
    • (2010) Cell. Signal. , vol.22 , pp. 717-727
    • Gao, C.1    Chen, Y.G.2
  • 67
    • 84964621600 scopus 로고    scopus 로고
    • Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism
    • Sahoo P.K., et al. Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism. Biol. Open 2012, 1:109-119.
    • (2012) Biol. Open , vol.1 , pp. 109-119
    • Sahoo, P.K.1
  • 68
    • 84856073148 scopus 로고    scopus 로고
    • Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes
    • Bounedjah O., et al. Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. J. Biol. Chem. 2012, 287:2446-2458.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2446-2458
    • Bounedjah, O.1
  • 69
    • 72149095755 scopus 로고    scopus 로고
    • Eukaryotic stress granules: the ins and outs of translation
    • Buchan J.R., Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 2009, 36:932-941.
    • (2009) Mol. Cell , vol.36 , pp. 932-941
    • Buchan, J.R.1    Parker, R.2
  • 70
    • 37449030154 scopus 로고    scopus 로고
    • The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response
    • Kwon S., et al. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007, 21:3381-3394.
    • (2007) Genes Dev. , vol.21 , pp. 3381-3394
    • Kwon, S.1
  • 71
    • 52649130815 scopus 로고    scopus 로고
    • Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival
    • Eisinger-Mathason T.S., et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol. Cell 2008, 31:722-736.
    • (2008) Mol. Cell , vol.31 , pp. 722-736
    • Eisinger-Mathason, T.S.1
  • 72
    • 84855458211 scopus 로고    scopus 로고
    • DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress
    • Kim B., et al. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress. Development 2012, 139:568-578.
    • (2012) Development , vol.139 , pp. 568-578
    • Kim, B.1
  • 73
    • 84873862712 scopus 로고    scopus 로고
    • Stress granules inhibit apoptosis by reducing reactive oxygen species production
    • Takahashi M., et al. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol. Cell. Biol. 2013, 33:815-829.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 815-829
    • Takahashi, M.1
  • 74
    • 84859960930 scopus 로고    scopus 로고
    • PKCalpha binds G3BP2 and regulates stress granule formation following cellular stress
    • Kobayashi T., et al. PKCalpha binds G3BP2 and regulates stress granule formation following cellular stress. PLoS ONE 2012, 7:e35820.
    • (2012) PLoS ONE , vol.7
    • Kobayashi, T.1
  • 75
    • 84873057917 scopus 로고    scopus 로고
    • Both G3BP1 and G3BP2 contribute to stress granule formation
    • Matsuki H., et al. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 2013, 18:135-146.
    • (2013) Genes Cells , vol.18 , pp. 135-146
    • Matsuki, H.1
  • 76
    • 83255185785 scopus 로고    scopus 로고
    • A novel role for hSMG-1 in stress granule formation
    • Brown J.A., et al. A novel role for hSMG-1 in stress granule formation. Mol. Cell. Biol. 2011, 31:4417-4429.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 4417-4429
    • Brown, J.A.1
  • 77
    • 0028818834 scopus 로고
    • A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase
    • Wishart M.J., et al. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J. Biol. Chem. 1995, 270:26782-26785.
    • (1995) J. Biol. Chem. , vol.270 , pp. 26782-26785
    • Wishart, M.J.1
  • 78
    • 0031686611 scopus 로고    scopus 로고
    • Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains
    • Wishart M.J., Dixon J.E. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem. Sci. 1998, 23:301-306.
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 301-306
    • Wishart, M.J.1    Dixon, J.E.2
  • 79
    • 84872046866 scopus 로고    scopus 로고
    • The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1
    • Barr J.E., et al. The pseudophosphatase MK-STYX inhibits stress granule assembly independently of Ser149 phosphorylation of G3BP-1. FEBS J. 2013, 280:273-284.
    • (2013) FEBS J. , vol.280 , pp. 273-284
    • Barr, J.E.1
  • 80
    • 80053448765 scopus 로고    scopus 로고
    • Calcineurin colocalizes with P-bodies and stress granules during thermal stress in Cryptococcus neoformans
    • Kozubowski L., et al. Calcineurin colocalizes with P-bodies and stress granules during thermal stress in Cryptococcus neoformans. Eukaryot. Cell 2011, 10:1396-1402.
    • (2011) Eukaryot. Cell , vol.10 , pp. 1396-1402
    • Kozubowski, L.1
  • 81
    • 33845295461 scopus 로고    scopus 로고
    • Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules
    • Leung A.K., et al. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18125-18130.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18125-18130
    • Leung, A.K.1
  • 82
    • 84873560641 scopus 로고    scopus 로고
    • Quantifying Argonaute proteins in and out of GW/P-bodies: implications in microRNA activities
    • Leung A.K., Sharp P.A. Quantifying Argonaute proteins in and out of GW/P-bodies: implications in microRNA activities. Adv. Exp. Med. Biol. 2013, 768:165-182.
    • (2013) Adv. Exp. Med. Biol. , vol.768 , pp. 165-182
    • Leung, A.K.1    Sharp, P.A.2
  • 83
    • 79954580892 scopus 로고    scopus 로고
    • Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells
    • Detzer A., et al. Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res. 2011, 39:2727-2741.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2727-2741
    • Detzer, A.1
  • 84
    • 84865150057 scopus 로고    scopus 로고
    • Multiple binding of repressed mRNAs by the P-body protein Rck/p54
    • Ernoult-Lange M., et al. Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA 2012, 18:1702-1715.
    • (2012) RNA , vol.18 , pp. 1702-1715
    • Ernoult-Lange, M.1
  • 85
    • 84863116439 scopus 로고    scopus 로고
    • AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54
    • Qi M.Y., et al. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol. Cell. Biol. 2012, 32:913-928.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 913-928
    • Qi, M.Y.1
  • 86
    • 58049192398 scopus 로고    scopus 로고
    • Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain
    • Chalupnikova K., et al. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J. Biol. Chem. 2008, 283:35186-35198.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35186-35198
    • Chalupnikova, K.1
  • 87
    • 84055178425 scopus 로고    scopus 로고
    • Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response
    • Shih J.W., et al. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem. J. 2012, 441:119-129.
    • (2012) Biochem. J. , vol.441 , pp. 119-129
    • Shih, J.W.1
  • 88
    • 80053022305 scopus 로고    scopus 로고
    • The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex
    • Hilliker A., et al. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell 2011, 43:962-972.
    • (2011) Mol. Cell , vol.43 , pp. 962-972
    • Hilliker, A.1
  • 89
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung A.K., et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 2011, 42:489-499.
    • (2011) Mol. Cell , vol.42 , pp. 489-499
    • Leung, A.K.1
  • 90
    • 52949122554 scopus 로고    scopus 로고
    • TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules
    • Goulet I., et al. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum. Mol. Genet. 2008, 17:3055-3074.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 3055-3074
    • Goulet, I.1
  • 91
    • 77955884641 scopus 로고    scopus 로고
    • RNA methylation by Dnmt2 protects transfer RNAs agains stress-induced cleavage
    • Schaefer M., et al. RNA methylation by Dnmt2 protects transfer RNAs agains stress-induced cleavage. Genes Dev. 2010, 24:1590-1595.
    • (2010) Genes Dev. , vol.24 , pp. 1590-1595
    • Schaefer, M.1
  • 92
    • 77951213498 scopus 로고    scopus 로고
    • Angiogenin-induced tiRNAs promote stress-induced stress granule assembly
    • Emara M., et al. Angiogenin-induced tiRNAs promote stress-induced stress granule assembly. J. Biol. Chem. 2010, 285:10959-10968.
    • (2010) J. Biol. Chem. , vol.285 , pp. 10959-10968
    • Emara, M.1
  • 93
    • 80051713296 scopus 로고    scopus 로고
    • Angiogenin-induced tRNA fragments inhibit translation initiation
    • Ivanov P., et al. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 2011, 43:613-623.
    • (2011) Mol. Cell , vol.43 , pp. 613-623
    • Ivanov, P.1
  • 94
    • 65249129859 scopus 로고    scopus 로고
    • Angiogenin cleaves tRNA and promotes stress-induced translational repression
    • Yamasaki S., et al. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 2009, 185:35-42.
    • (2009) J. Cell Biol. , vol.185 , pp. 35-42
    • Yamasaki, S.1
  • 95
    • 84876781274 scopus 로고    scopus 로고
    • Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation
    • Vogel K.U., et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 2013, 38:655-668.
    • (2013) Immunity , vol.38 , pp. 655-668
    • Vogel, K.U.1
  • 96
    • 84876775237 scopus 로고    scopus 로고
    • Roquin-2 shares functions with its paralog roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation
    • Pratama A., et al. Roquin-2 shares functions with its paralog roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 2013, 38:669-680.
    • (2013) Immunity , vol.38 , pp. 669-680
    • Pratama, A.1
  • 97
    • 84877708543 scopus 로고    scopus 로고
    • Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs
    • Leppek K., et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 2013, 153:869-881.
    • (2013) Cell , vol.153 , pp. 869-881
    • Leppek, K.1
  • 98
    • 82355184529 scopus 로고    scopus 로고
    • Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress
    • Qi D., et al. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J. Biol. Chem. 2011, 286:41692-41700.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41692-41700
    • Qi, D.1
  • 99
    • 84884586695 scopus 로고    scopus 로고
    • Recruiting knotty partners: the roles of translation initiation factors in mRNA recruitment to the eukaryotic ribosome
    • Springer, Vienna, M.V. Rodnina, W. Wintermeyer, R. Green (Eds.)
    • Mitchell S., et al. Recruiting knotty partners: the roles of translation initiation factors in mRNA recruitment to the eukaryotic ribosome. Ribosomes, Structure, Function and Dynamics. 2011, 155-169. Springer, Vienna. M.V. Rodnina, W. Wintermeyer, R. Green (Eds.).
    • (2011) Ribosomes, Structure, Function and Dynamics. , pp. 155-169
    • Mitchell, S.1
  • 100
    • 57449083256 scopus 로고    scopus 로고
    • Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3
    • Zhou M., et al. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18139-18144.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 18139-18144
    • Zhou, M.1
  • 101
    • 77951237059 scopus 로고    scopus 로고
    • The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs
    • Athanasopoulos V., et al. The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J. 2010, 277:2109-2127.
    • (2010) FEBS J. , vol.277 , pp. 2109-2127
    • Athanasopoulos, V.1
  • 102
    • 84870276818 scopus 로고    scopus 로고
    • Ataxin-2-like is a regulator of stress granules and processing bodies
    • Kaehler C., et al. Ataxin-2-like is a regulator of stress granules and processing bodies. PloS one 2012, 7:e50134.
    • (2012) PloS one , vol.7
    • Kaehler, C.1
  • 103
    • 33947210861 scopus 로고    scopus 로고
    • Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs
    • Solomon S., et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol. Cell Biol. 2007, 27:2324-2342.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 2324-2342
    • Solomon, S.1
  • 104
    • 16844365216 scopus 로고    scopus 로고
    • The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules
    • Wilczynska A., et al. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. cell sci. 2005, 118:981-992.
    • (2005) J. cell sci. , vol.118 , pp. 981-992
    • Wilczynska, A.1
  • 105
    • 0037112805 scopus 로고    scopus 로고
    • Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression
    • Mazroui R., et al. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 2002, 11:3007-30017.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 3007-30017
    • Mazroui, R.1
  • 106
    • 81855172508 scopus 로고    scopus 로고
    • The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules
    • Kunde S.A., et al. The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules. Hum. Mol. Genet. 2011, 20:4916-4931.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 4916-4931
    • Kunde, S.A.1
  • 107
    • 37849016843 scopus 로고    scopus 로고
    • Proline-rich transcript in brain protein induces stress granule formation
    • Kim J.E., et al. Proline-rich transcript in brain protein induces stress granule formation. Mol. Cell Biol. 2008, 28:803-813.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 803-813
    • Kim, J.E.1
  • 108
    • 33745791191 scopus 로고    scopus 로고
    • Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules
    • Vessey J.P., et al. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J Neurosci. 2006, 26:6496-6508.
    • (2006) J Neurosci. , vol.26 , pp. 6496-6508
    • Vessey, J.P.1
  • 109
    • 30044448795 scopus 로고    scopus 로고
    • Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules
    • Baez M.V., Boccaccio G.L. Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J. Biol. Chem. 2005, 280:43131-43140.
    • (2005) J. Biol. Chem. , vol.280 , pp. 43131-43140
    • Baez, M.V.1    Boccaccio, G.L.2
  • 110
    • 4143097170 scopus 로고    scopus 로고
    • Survival motor neuron protein facilitates assembly of stress granules
    • Hua Y., Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS letters 2004, 572:69-74.
    • (2004) FEBS letters , vol.572 , pp. 69-74
    • Hua, Y.1    Zhou, J.2
  • 111
    • 40949135034 scopus 로고    scopus 로고
    • Regulation of stress granule dynamics by Grb7 and FAK signalling pathway
    • Tsai N.P., et al. Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. Embo J. 2008, 27:715-726.
    • (2008) Embo J. , vol.27 , pp. 715-726
    • Tsai, N.P.1
  • 112
    • 75649146292 scopus 로고    scopus 로고
    • A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation
    • Wasserman T., et al. A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation. Mol. Biol. Cell 2010, 21:117-130.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 117-130
    • Wasserman, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.