메뉴 건너뛰기




Volumn 23, Issue 2, 2012, Pages 65-72

SREBPs: Metabolic integrators in physiology and metabolism

Author keywords

[No Author keywords available]

Indexed keywords

LIVER X RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MICRORNA; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN KINASE B; RAPAMYCIN; STEROL REGULATORY ELEMENT BINDING PROTEIN; STEROL REGULATORY ELEMENT BINDING PROTEIN 1A; STEROL REGULATORY ELEMENT BINDING PROTEIN 1C; STEROL REGULATORY ELEMENT BINDING PROTEIN 2;

EID: 84856471735     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2011.10.004     Document Type: Review
Times cited : (425)

References (76)
  • 1
    • 72749086098 scopus 로고    scopus 로고
    • Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been
    • Osborne T.F., Espenshade P.J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 2009, 23:2578-2591.
    • (2009) Genes Dev. , vol.23 , pp. 2578-2591
    • Osborne, T.F.1    Espenshade, P.J.2
  • 2
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
    • (2002) J. Clin. Invest. , vol.109 , pp. 1125-1131
    • Horton, J.D.1
  • 3
    • 0034613175 scopus 로고    scopus 로고
    • Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
    • Amemiya-Kudo M., et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J. Biol. Chem. 2000, 275:31078-31085.
    • (2000) J. Biol. Chem. , vol.275 , pp. 31078-31085
    • Amemiya-Kudo, M.1
  • 4
    • 3843061127 scopus 로고    scopus 로고
    • Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver
    • Chen G., et al. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:11245-11250.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 11245-11250
    • Chen, G.1
  • 5
    • 0034669025 scopus 로고    scopus 로고
    • Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta
    • Repa J.J., et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000, 14:2819-2830.
    • (2000) Genes Dev. , vol.14 , pp. 2819-2830
    • Repa, J.J.1
  • 6
    • 33845587711 scopus 로고    scopus 로고
    • Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice
    • Chen W., et al. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 2007, 5:73-79.
    • (2007) Cell Metab. , vol.5 , pp. 73-79
    • Chen, W.1
  • 7
    • 79955632319 scopus 로고    scopus 로고
    • Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a
    • Im S.S., et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011, 13:540-549.
    • (2011) Cell Metab. , vol.13 , pp. 540-549
    • Im, S.S.1
  • 8
    • 0029958652 scopus 로고    scopus 로고
    • Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
    • Sato R., et al. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J. Biol. Chem. 1996, 26461-26464.
    • (1996) J. Biol. Chem. , pp. 26461-26464
    • Sato, R.1
  • 9
    • 0141706620 scopus 로고    scopus 로고
    • Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2)
    • Shin D.J., Osborne T.F. Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J. Biol. Chem. 2003, 278:34114-34118.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34114-34118
    • Shin, D.J.1    Osborne, T.F.2
  • 10
    • 78649513976 scopus 로고    scopus 로고
    • Diabetes and insulin in regulation of brain cholesterol metabolism
    • Suzuki R., et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab. 2010, 12:567-579.
    • (2010) Cell Metab. , vol.12 , pp. 567-579
    • Suzuki, R.1
  • 11
    • 77955456415 scopus 로고    scopus 로고
    • MiR-33 links SREBP-2 induction to repression of sterol transporters
    • Marquart T.J., et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12228-12232.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12228-12232
    • Marquart, T.J.1
  • 12
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner K.J., et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570-1573.
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1
  • 13
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari S.H., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1
  • 14
    • 78049295975 scopus 로고    scopus 로고
    • MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
    • Horie T., et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17321-17326.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17321-17326
    • Horie, T.1
  • 15
    • 77958553499 scopus 로고    scopus 로고
    • Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
    • Gerin I., et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem. 2010, 285:33652-33661.
    • (2010) J. Biol. Chem. , vol.285 , pp. 33652-33661
    • Gerin, I.1
  • 16
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Davalos A., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9232-9237.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9232-9237
    • Davalos, A.1
  • 17
    • 0029878960 scopus 로고    scopus 로고
    • Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane
    • Hua X., et al. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J. Biol. Chem. 1996, 271:10379-10384.
    • (1996) J. Biol. Chem. , vol.271 , pp. 10379-10384
    • Hua, X.1
  • 18
    • 0035830840 scopus 로고    scopus 로고
    • Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells
    • Hannah V.C., et al. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 2001, 276:4365-4372.
    • (2001) J. Biol. Chem. , vol.276 , pp. 4365-4372
    • Hannah, V.C.1
  • 19
    • 2142751644 scopus 로고    scopus 로고
    • Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis
    • Engelking L.J., et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J. Clin. Invest. 2004, 113:1168-1175.
    • (2004) J. Clin. Invest. , vol.113 , pp. 1168-1175
    • Engelking, L.J.1
  • 20
    • 24644463295 scopus 로고    scopus 로고
    • Schoenheimer effect explained - feedback regulation of cholesterol synthesis in mice mediated by Insig proteins
    • Engelking L.J., et al. Schoenheimer effect explained - feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Invest. 2005, 115:2489-2498.
    • (2005) J. Clin. Invest. , vol.115 , pp. 2489-2498
    • Engelking, L.J.1
  • 21
    • 0032104180 scopus 로고    scopus 로고
    • Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
    • Horton J.D., et al. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Invest. 1998, 101:2331-2339.
    • (1998) J. Clin. Invest. , vol.101 , pp. 2331-2339
    • Horton, J.D.1
  • 22
    • 0141704191 scopus 로고    scopus 로고
    • Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver
    • Horton J.D., et al. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J. Biol. Chem. 2003, 278:36652-36660.
    • (2003) J. Biol. Chem. , vol.278 , pp. 36652-36660
    • Horton, J.D.1
  • 23
    • 0032535089 scopus 로고    scopus 로고
    • Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N)
    • Korn B.S., et al. Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N). J. Clin. Invest. 1998, 102:2050-2060.
    • (1998) J. Clin. Invest. , vol.102 , pp. 2050-2060
    • Korn, B.S.1
  • 24
    • 0029797604 scopus 로고    scopus 로고
    • Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a
    • Shimano H., et al. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J. Clin. Invest. 1996, 98:1575-1584.
    • (1996) J. Clin. Invest. , vol.98 , pp. 1575-1584
    • Shimano, H.1
  • 25
    • 0033544940 scopus 로고    scopus 로고
    • Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes
    • Shimano H., et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 1999, 274:35832-35839.
    • (1999) J. Biol. Chem. , vol.274 , pp. 35832-35839
    • Shimano, H.1
  • 26
    • 47049092561 scopus 로고    scopus 로고
    • Selective binding of srebp isoforms and co-regulatory proteins to promoters for lipid metabolic genes in liver
    • Bennett M.K., et al. Selective binding of srebp isoforms and co-regulatory proteins to promoters for lipid metabolic genes in liver. J. Biol. Chem. 2008, 283:15628-15637.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15628-15637
    • Bennett, M.K.1
  • 27
    • 0028839010 scopus 로고
    • Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver
    • Sheng Z., et al. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:935-938.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 935-938
    • Sheng, Z.1
  • 28
    • 0032568557 scopus 로고    scopus 로고
    • Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
    • Horton J.D., et al. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:5987-5992.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5987-5992
    • Horton, J.D.1
  • 29
    • 79953756678 scopus 로고    scopus 로고
    • Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy
    • Seo Y.K., et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab. 2011, 13:367-375.
    • (2011) Cell Metab. , vol.13 , pp. 367-375
    • Seo, Y.K.1
  • 30
    • 33748598700 scopus 로고    scopus 로고
    • Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival
    • Gurcel L., et al. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006, 126:1135-1145.
    • (2006) Cell , vol.126 , pp. 1135-1145
    • Gurcel, L.1
  • 31
    • 14144251157 scopus 로고    scopus 로고
    • Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c
    • Hegarty B.D., et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:791-796.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 791-796
    • Hegarty, B.D.1
  • 32
    • 7244221504 scopus 로고    scopus 로고
    • Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1
    • Lee J.N., Ye J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J. Biol. Chem. 2004, 279:45257-45265.
    • (2004) J. Biol. Chem. , vol.279 , pp. 45257-45265
    • Lee, J.N.1    Ye, J.2
  • 33
    • 33744732467 scopus 로고    scopus 로고
    • Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis
    • Du X., et al. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol. Biol. Cell 2006, 17:2735-2745.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2735-2745
    • Du, X.1
  • 34
    • 0033607176 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glukokinase and lipogenesis-related genes
    • Foretz M., et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glukokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:12737-12742.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 12737-12742
    • Foretz, M.1
  • 35
    • 65549171104 scopus 로고    scopus 로고
    • Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles
    • Yellaturu C.R., et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 2009, 284:7518-7532.
    • (2009) J. Biol. Chem. , vol.284 , pp. 7518-7532
    • Yellaturu, C.R.1
  • 36
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • Li S., et al. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3441-3446.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3441-3446
    • Li, S.1
  • 37
    • 77952552642 scopus 로고    scopus 로고
    • The Akt-SREBP nexus: cell signaling meets lipid metabolism
    • Krycer J.R., et al. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol. Metab. 2010, 21:268-276.
    • (2010) Trends Endocrinol. Metab. , vol.21 , pp. 268-276
    • Krycer, J.R.1
  • 38
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
    • (2008) Cell Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 39
    • 0033817428 scopus 로고    scopus 로고
    • Molecular genetic advances in tuberous sclerosis
    • Cheadle J.P., et al. Molecular genetic advances in tuberous sclerosis. Hum. Genet. 2000, 107:97-114.
    • (2000) Hum. Genet. , vol.107 , pp. 97-114
    • Cheadle, J.P.1
  • 40
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 41
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson T.R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 42
    • 33747853190 scopus 로고    scopus 로고
    • Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
    • Finck B.N., et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4:199-210.
    • (2006) Cell Metab. , vol.4 , pp. 199-210
    • Finck, B.N.1
  • 43
    • 0037154264 scopus 로고    scopus 로고
    • Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin
    • Huffman T.A., et al. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:1047-1052.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 1047-1052
    • Huffman, T.A.1
  • 44
    • 69249084006 scopus 로고    scopus 로고
    • Sterol-mediated regulation of human lipin 1 gene expression in hepatoblastoma cells
    • Ishimoto K., et al. Sterol-mediated regulation of human lipin 1 gene expression in hepatoblastoma cells. J. Biol. Chem. 2009, 284:22195-22205.
    • (2009) J. Biol. Chem. , vol.284 , pp. 22195-22205
    • Ishimoto, K.1
  • 45
    • 69549138559 scopus 로고    scopus 로고
    • Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif
    • Seo Y.K., et al. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13765-13769.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13765-13769
    • Seo, Y.K.1
  • 46
    • 4043077961 scopus 로고    scopus 로고
    • Molecular mediators of hepatic steatosis and liver injury
    • Browning J.D., Horton J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004, 114:147-152.
    • (2004) J. Clin. Invest. , vol.114 , pp. 147-152
    • Browning, J.D.1    Horton, J.D.2
  • 47
    • 0030907175 scopus 로고    scopus 로고
    • Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
    • Shimano H., et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 1997, 99:846-854.
    • (1997) J. Clin. Invest. , vol.99 , pp. 846-854
    • Shimano, H.1
  • 48
    • 0033570119 scopus 로고    scopus 로고
    • Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus
    • Shimomura I.Y.B., Horton J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 1999, 274:30028-30032.
    • (1999) J. Biol. Chem. , vol.274 , pp. 30028-30032
    • Shimomura, I.Y.B.1    Horton, J.D.2
  • 49
    • 70350417158 scopus 로고    scopus 로고
    • Akt2 is required for hepatic lipid accumulation in models of insulin resistance
    • Leavens K.F., et al. Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab. 2009, 10:405-418.
    • (2009) Cell Metab. , vol.10 , pp. 405-418
    • Leavens, K.F.1
  • 50
    • 38649116056 scopus 로고    scopus 로고
    • Selective versus total insulin resistance: a pathogenic paradox
    • Brown M.S., Goldstein J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008, 7:95-96.
    • (2008) Cell Metab. , vol.7 , pp. 95-96
    • Brown, M.S.1    Goldstein, J.L.2
  • 51
    • 38649110496 scopus 로고    scopus 로고
    • Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
    • Biddinger S.B., et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008, 7:125-134.
    • (2008) Cell Metab. , vol.7 , pp. 125-134
    • Biddinger, S.B.1
  • 52
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies J.L., et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011, 14:21-32.
    • (2011) Cell Metab. , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 53
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu P.P., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1
  • 54
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity
    • Um S.H., et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431:200-205.
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1
  • 55
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011, 332:1322-1326.
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1
  • 56
    • 0037453007 scopus 로고    scopus 로고
    • Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis
    • Yabe D., et al. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:3155-3160.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 3155-3160
    • Yabe, D.1
  • 57
    • 79953298958 scopus 로고    scopus 로고
    • Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy
    • Wander S.A., et al. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest. 2011, 121:1231-1241.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1231-1241
    • Wander, S.A.1
  • 58
    • 0030829812 scopus 로고    scopus 로고
    • Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene
    • Shimano H., et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 1997, 100:2115-2124.
    • (1997) J. Clin. Invest. , vol.100 , pp. 2115-2124
    • Shimano, H.1
  • 59
    • 0034002793 scopus 로고    scopus 로고
    • Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology
    • Kuhajda F.P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000, 16:202-208.
    • (2000) Nutrition , vol.16 , pp. 202-208
    • Kuhajda, F.P.1
  • 60
    • 0028301959 scopus 로고
    • Fatty acid synthesis: a potential selective target for antineoplastic therapy
    • Kuhajda F.P., et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:6379-6383.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 6379-6383
    • Kuhajda, F.P.1
  • 61
    • 0028875426 scopus 로고
    • Sterol regulation of fatty acid synthase promoter: coordinate feedback regulation of two major lipid pathways
    • Bennett M.K., et al. Sterol regulation of fatty acid synthase promoter: coordinate feedback regulation of two major lipid pathways. J. Biol. Chem. 1995, 270:25578-25583.
    • (1995) J. Biol. Chem. , vol.270 , pp. 25578-25583
    • Bennett, M.K.1
  • 62
    • 77649216053 scopus 로고    scopus 로고
    • EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
    • Guo D., et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2009, 2:ra82.
    • (2009) Sci. Signal. , vol.2
    • Guo, D.1
  • 63
    • 38849208347 scopus 로고    scopus 로고
    • Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma
    • Cloughesy T.F., et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008, 5:e8.
    • (2008) PLoS Med. , vol.5
    • Cloughesy, T.F.1
  • 64
    • 57049111040 scopus 로고    scopus 로고
    • UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators
    • Rutkowski D.T., et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell 2008, 15:829-840.
    • (2008) Dev. Cell , vol.15 , pp. 829-840
    • Rutkowski, D.T.1
  • 65
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 66
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 67
    • 24944522320 scopus 로고    scopus 로고
    • Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins
    • Castoreno A.B., et al. Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13129-13134.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13129-13134
    • Castoreno, A.B.1
  • 68
    • 60749104683 scopus 로고    scopus 로고
    • The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
    • Franchi L., et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009, 10:241-247.
    • (2009) Nat. Immunol. , vol.10 , pp. 241-247
    • Franchi, L.1
  • 69
    • 54949109311 scopus 로고    scopus 로고
    • The TSC-mTOR signaling pathway regulates the innate inflammatory response
    • Weichhart T., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 2008, 29:565-577.
    • (2008) Immunity , vol.29 , pp. 565-577
    • Weichhart, T.1
  • 71
    • 79953699055 scopus 로고    scopus 로고
    • Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis
    • Blanc M., et al. host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 2011, 9:e1000598.
    • (2011) PLoS Biol. , vol.9
    • Blanc, M.1
  • 72
    • 77952413531 scopus 로고    scopus 로고
    • Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes
    • Ecker J., et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7817-7822.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7817-7822
    • Ecker, J.1
  • 73
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li Y., et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13:376-388.
    • (2011) Cell Metab. , vol.13 , pp. 376-388
    • Li, Y.1
  • 74
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 75
    • 17644401005 scopus 로고    scopus 로고
    • SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast
    • Hughes A.L., et al. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 2005, 120:831-842.
    • (2005) Cell , vol.120 , pp. 831-842
    • Hughes, A.L.1
  • 76
    • 55849136194 scopus 로고    scopus 로고
    • SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice
    • Jeon T.I., et al. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J. Clin. Invest. 2008, 118:3693-3700.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3693-3700
    • Jeon, T.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.