메뉴 건너뛰기




Volumn 10, Issue 14, 2011, Pages 2305-2316

mTOR complex 2 signaling and functions

Author keywords

AGC kinases; Cancer; Growth factor signaling; Metabolism; mTOR; mTORC2; Protein maturation; Protein synthesis; Ribosomes; Rictor

Indexed keywords

ACTIN; MAMMALIAN TARGET OF RAPAMYCIN; RAPAMYCIN; RESVERATROL;

EID: 79960470913     PISSN: 15384101     EISSN: 15514005     Source Type: Journal    
DOI: 10.4161/cc.10.14.16586     Document Type: Review
Times cited : (458)

References (136)
  • 1
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905-9. (Pubitemid 21917235)
    • (1991) Science , vol.253 , Issue.5022 , pp. 905-909
    • Hietman, J.1    Movva, N.R.2    Hall, M.N.3
  • 2
    • 0028239893 scopus 로고
    • RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
    • DOI 10.1016/0092-8674(94)90570-3
    • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78:35-43. (Pubitemid 24228298)
    • (1994) Cell , vol.78 , Issue.1 , pp. 35-43
    • Sabatini, D.M.1    Erdjument-Bromage, H.2    Lui, M.3    Tempst, P.4    Snyder, S.H.5
  • 5
    • 0029071264 scopus 로고
    • TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin
    • Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 1995; 82:121-30.
    • (1995) Cell , vol.82 , pp. 121-130
    • Zheng, X.F.1    Florentino, D.2    Chen, J.3    Crabtree, G.R.4    Schreiber, S.L.5
  • 6
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-89.
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1    Maruki, Y.2    Long, X.3    Yoshino, K.4    Oshiro, N.5    Hidayat, S.6
  • 8
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov dos D, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-75.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Dos Sarbassov, D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6
  • 9
    • 78650510609 scopus 로고    scopus 로고
    • mTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 10
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors and stress
    • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors and stress. Mol Cell 2010; 40:310-22.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 11
    • 62749096589 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1: Signaling inputs, substrates and feedback mechanisms
    • Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: Signaling inputs, substrates and feedback mechanisms. Cell Signal 2009; 21:827-35.
    • (2009) Cell Signal , vol.21 , pp. 827-835
    • Dunlop, E.A.1    Tee, A.R.2
  • 12
    • 2342545519 scopus 로고    scopus 로고
    • Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
    • DOI 10.1038/sj.onc.1207542
    • Fingar DC, Blenis J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23:3151-71. (Pubitemid 38638827)
    • (2004) Oncogene , vol.23 , Issue.18 , pp. 3151-3171
    • Fingar, D.C.1    Blenis, J.2
  • 13
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks CA, Guertin DA. Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010; 29:3733-44.
    • (2010) Oncogene , vol.29 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 14
    • 74849131091 scopus 로고    scopus 로고
    • Targeting mTOR globally in cancer: Thinking beyond rapamycin
    • Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: Thinking beyond rapamycin. Cell Cycle 2009; 8:3831-7.
    • (2009) Cell Cycle , vol.8 , pp. 3831-3837
    • Shor, B.1    Gibbons, J.J.2    Abraham, R.T.3    Yu, K.4
  • 15
  • 17
    • 43249124698 scopus 로고    scopus 로고
    • PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
    • Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007; 2:1217.
    • (2007) PLoS ONE , vol.2 , pp. 1217
    • Thedieck, K.1    Polak, P.2    Kim, M.L.3    Molle, K.D.4    Cohen, A.5    Jeno, P.6
  • 18
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873-86.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1    Laplante, M.2    Thoreen, C.C.3    Sancak, Y.4    Kang, S.A.5    Kuehl, W.M.6
  • 19
    • 21744434031 scopus 로고    scopus 로고
    • Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation
    • DOI 10.1128/MCB.25.14.5955-5964.2005
    • Cheng J, Zhang D, Kim K, Zhao Y, Su B. Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation. Mol Cell Biol 2005; 25:5955-64. (Pubitemid 40946550)
    • (2005) Molecular and Cellular Biology , vol.25 , Issue.14 , pp. 5955-5964
    • Cheng, J.1    Zhang, D.2    Kim, K.3    Zhao, Y.4    Zhao, Y.5    Su, B.6
  • 20
    • 33748471980 scopus 로고    scopus 로고
    • MSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s
    • DOI 10.1016/j.cub.2006.08.001, PII S0960982206019749
    • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16:1865-70. (Pubitemid 44354144)
    • (2006) Current Biology , vol.16 , Issue.18 , pp. 1865-1870
    • Frias, M.A.1    Thoreen, C.C.2    Jaffe, J.D.3    Schroder, W.4    Sculley, T.5    Carr, S.A.6    Sabatini, D.M.7
  • 21
    • 34147097962 scopus 로고    scopus 로고
    • Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling
    • DOI 10.1016/j.cellsig.2007.01.013, PII S0898656807000241
    • Schroder WA, Buck M, Cloonan N, Hancock JF, Suhrbier A, Sculley T, et al. Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signaling. Cell Signal 2007; 19:1279-89. (Pubitemid 46561564)
    • (2007) Cellular Signalling , vol.19 , Issue.6 , pp. 1279-1289
    • Schroder, W.A.1    Buck, M.2    Cloonan, N.3    Hancock, J.F.4    Suhrbier, A.5    Sculley, T.6    Bushell, G.7
  • 22
    • 13844254274 scopus 로고    scopus 로고
    • PRR5 encodes a conserved proline-rich protein predominant in kidney: Analysis of genomic organization, expression, and mutation status in breast and colorectal carcinomas
    • DOI 10.1016/j.ygeno.2004.11.002
    • Johnstone CN, Castellvi-Bel S, Chang LM, Sung RK, Bowser MJ, Pique JM, et al. PRR5 encodes a conserved proline-rich protein predominant in kidney: analysis of genomic organization, expression and mutation status in breast and colorectal carcinomas. Genomics 2005; 85:338-51. (Pubitemid 40249426)
    • (2005) Genomics , vol.85 , Issue.3 , pp. 338-351
    • Johnstone, C.N.1    Castellvi-Bel, S.2    Chang, L.M.3    Sung, R.K.4    Bowser, M.J.5    Pique, J.M.6    Castells, A.7    Rustgi, A.K.8
  • 23
    • 33749076673 scopus 로고    scopus 로고
    • SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity
    • DOI 10.1016/j.cell.2006.08.033, PII S0092867406011470
    • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127:125-37. (Pubitemid 44466632)
    • (2006) Cell , vol.127 , Issue.1 , pp. 125-137
    • Jacinto, E.1    Facchinetti, V.2    Liu, D.3    Soto, N.4    Wei, S.5    Jung, S.Y.6    Huang, Q.7    Qin, J.8    Su, B.9
  • 24
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCalpha, but Not S6K1
    • DOI 10.1016/j.devcel.2006.10.007, PII S153458070600459X
    • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11:859-71. (Pubitemid 44804279)
    • (2006) Developmental Cell , vol.11 , Issue.6 , pp. 859-871
    • Guertin, D.A.1    Stevens, D.M.2    Thoreen, C.C.3    Burds, A.A.4    Kalaany, N.Y.5    Moffat, J.6    Brown, M.7    Fitzgerald, K.J.8    Sabatini, D.M.9
  • 25
    • 33751079895 scopus 로고    scopus 로고
    • Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
    • DOI 10.1101/gad.1461206
    • Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 2006; 20:2820-32. (Pubitemid 44771744)
    • (2006) Genes and Development , vol.20 , Issue.20 , pp. 2820-2832
    • Yang, Q.1    Inoki, K.2    Ikenoue, T.3    Guan, K.-L.4
  • 26
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • DOI 10.1016/j.cub.2004.06.054, PII S0960982204004713
    • Sarbassov D, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296-302. (Pubitemid 38991819)
    • (2004) Current Biology , vol.14 , Issue.14 , pp. 1296-1302
    • Dos, D.S.1    Ali, S.M.2    Kim, D.-H.3    Guertin, D.A.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 27
    • 58649092475 scopus 로고    scopus 로고
    • mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1)
    • Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1). Biochem J 2008; 416:375-85.
    • (2008) Biochem J , vol.416 , pp. 375-385
    • Garcia-Martinez, J.M.1    Alessi, D.R.2
  • 29
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010; 38:768-74.
    • (2010) Mol Cell , vol.38 , pp. 768-774
    • Yip, C.K.1    Murata, K.2    Walz, T.3    Sabatini, D.M.4    Kang, S.A.5
  • 30
    • 33644781670 scopus 로고    scopus 로고
    • Drosophila target of rapamycin kinase functions as a multimer
    • DOI 10.1534/genetics.105.051979
    • Zhang Y, Billington CJ Jr, Pan D, Neufeld TP. Drosophila target of rapamycin kinase functions as a multimer. Genetics 2006; 172:355-62. (Pubitemid 43345497)
    • (2006) Genetics , vol.172 , Issue.1 , pp. 355-362
    • Zhang, Y.1    Billington Jr., C.J.2    Pan, D.3    Neufeld, T.P.4
  • 31
    • 33749406921 scopus 로고    scopus 로고
    • Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
    • DOI 10.1074/jbc.M606087200
    • Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 2006; 281:28605-14. (Pubitemid 44507003)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.39 , pp. 28605-28614
    • Takahara, T.1    Hara, K.2    Yonezawa, K.3    Sorimachi, H.4    Maeda, T.5
  • 34
    • 37349014081 scopus 로고    scopus 로고
    • Tel2 Regulates the Stability of PI3K-Related Protein Kinases
    • DOI 10.1016/j.cell.2007.10.052, PII S0092867407014158
    • Takai H, Wang RC, Takai KK, Yang H, de Lange T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 2007; 131:1248-59. (Pubitemid 350297416)
    • (2007) Cell , vol.131 , Issue.7 , pp. 1248-1259
    • Takai, H.1    Wang, R.C.2    Takai, K.K.3    Yang, H.4    De Lange, T.5
  • 35
    • 77953800576 scopus 로고    scopus 로고
    • Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
    • Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 2010; 285:20109-16.
    • (2010) J Biol Chem , vol.285 , pp. 20109-20116
    • Kaizuka, T.1    Hara, T.2    Oshiro, N.3    Kikkawa, U.4    Yonezawa, K.5    Takehana, K.6
  • 36
    • 77956935673 scopus 로고    scopus 로고
    • CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability
    • Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, et al. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 2010; 39:839-50.
    • (2010) Mol Cell , vol.39 , pp. 839-850
    • Horejsi, Z.1    Takai, H.2    Adelman, C.A.3    Collis, S.J.4    Flynn, H.5    Maslen, S.6
  • 37
    • 77956856907 scopus 로고    scopus 로고
    • Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes
    • Takai H, Xie Y, de Lange T, Pavletich NP. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 2010; 24:2019-30.
    • (2010) Genes Dev , vol.24 , pp. 2019-2030
    • Takai, H.1    Xie, Y.2    De Lange, T.3    Pavletich, N.P.4
  • 39
    • 62849111751 scopus 로고    scopus 로고
    • Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin
    • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009; 29:1411-20.
    • (2009) Mol Cell Biol , vol.29 , pp. 1411-1420
    • Toschi, A.1    Lee, E.2    Xu, L.3    Garcia, A.4    Gadir, N.5    Foster, D.A.6
  • 40
    • 0035976615 scopus 로고    scopus 로고
    • Phosphatidic acid-mediated mitogenic activation of mTOR signaling
    • DOI 10.1126/science.1066015
    • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001; 294:1942-5. (Pubitemid 33101594)
    • (2001) Science , vol.294 , Issue.5548 , pp. 1942-1945
    • Fang, Y.1    Vilella-Bach, M.2    Bachmann, R.3    Flanigan, A.4    Chen, J.5
  • 41
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32.
    • (2009) J Biol Chem , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3    Liu, Q.4    Zhang, J.5    Gao, Y.6
  • 42
    • 0034629365 scopus 로고    scopus 로고
    • FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
    • DOI 10.1074/jbc.275.10.7416
    • Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000; 275:7416-23. (Pubitemid 30146297)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.10 , pp. 7416-7423
    • Peterson, R.T.1    Beal, P.A.2    Comb, M.J.3    Schreiber, S.L.4
  • 43
    • 62449266454 scopus 로고    scopus 로고
    • TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): Phospho-Ser2481 is a marker for intact mTOR signaling complex 2
    • Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 2009; 69:1821-7.
    • (2009) Cancer Res , vol.69 , pp. 1821-1827
    • Copp, J.1    Manning, G.2    Hunter, T.3
  • 44
    • 77950900079 scopus 로고    scopus 로고
    • mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
    • Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 2010; 285:7866-79.
    • (2010) J Biol Chem , vol.285 , pp. 7866-7879
    • Soliman, G.A.1    Acosta-Jaquez, H.A.2    Dunlop, E.A.3    Ekim, B.4    Maj, N.E.5    Tee, A.R.6
  • 45
    • 44949215822 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
    • DOI 10.1128/MCB.00289-08
    • Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008; 28:4104-15. (Pubitemid 351812994)
    • (2008) Molecular and Cellular Biology , vol.28 , Issue.12 , pp. 4104-4115
    • Huang, J.1    Dibble, C.C.2    Matsuzaki, M.3    Manning, B.D.4
  • 47
    • 77957278976 scopus 로고    scopus 로고
    • Steadystate kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes
    • Tao Z, Barker J, Shi SD, Gehring M, Sun S. Steadystate kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes. Biochemistry 2010; 49:8488-98.
    • (2010) Biochemistry , vol.49 , pp. 8488-8498
    • Tao, Z.1    Barker, J.2    Shi, S.D.3    Gehring, M.4    Sun, S.5
  • 48
    • 70350545722 scopus 로고    scopus 로고
    • Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
    • Dibble CC, Asara JM, Manning BD. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 2009; 29:5657-70.
    • (2009) Mol Cell Biol , vol.29 , pp. 5657-5670
    • Dibble, C.C.1    Asara, J.M.2    Manning, B.D.3
  • 49
    • 75749105049 scopus 로고    scopus 로고
    • mTORC1- Activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien LA, Carriere A, Moreau J, Roux PP. mTORC1- activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 2010; 30:908-21.
    • (2010) Mol Cell Biol , vol.30 , pp. 908-921
    • Julien, L.A.1    Carriere, A.2    Moreau, J.3    Roux, P.P.4
  • 51
    • 77953763269 scopus 로고    scopus 로고
    • Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2
    • Boulbes D, Chen CH, Shaikenov T, Agarwal NK, Peterson TR, Addona TA, et al. Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2. Mol Cancer Res 2010; 8:896-906.
    • (2010) Mol Cancer Res , vol.8 , pp. 896-906
    • Boulbes, D.1    Chen, Ch.2    Shaikenov, T.3    Agarwal, N.K.4    Peterson, T.R.5    Addona, T.A.6
  • 52
    • 77956548321 scopus 로고    scopus 로고
    • Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction
    • Gao D, Wan L, Inuzuka H, Berg AH, Tseng A, Zhai B, et al. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell 2010; 39:797-808.
    • (2010) Mol Cell , vol.39 , pp. 797-808
    • Gao, D.1    Wan, L.2    Inuzuka, H.3    Berg, A.H.4    Tseng, A.5    Zhai, B.6
  • 54
    • 46149083971 scopus 로고    scopus 로고
    • A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-L1 adipocytes
    • DOI 10.1128/MCB.00867-07
    • Hagan GN, Lin Y, Magnuson MA, Avruch J, Czech MP. A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-L1 adipocytes. Mol Cell Biol 2008; 28:4215-26. (Pubitemid 351904945)
    • (2008) Molecular and Cellular Biology , vol.28 , Issue.13 , pp. 4215-4226
    • Hagan, G.N.1    Lin, Y.2    Magnuson, M.A.3    Avruch, J.4    Czech, M.P.5
  • 55
    • 79952119614 scopus 로고    scopus 로고
    • ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor
    • Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011; 4:10.
    • (2011) Sci Signal , vol.4 , pp. 10
    • Chen, Ch.1    Shaikenov, T.2    Peterson, T.R.3    Aimbetov, R.4    Bissenbaev, A.K.5    Lee, S.W.6
  • 56
    • 52949137425 scopus 로고    scopus 로고
    • Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: Rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1
    • Rosner M, Hengstschlager M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008; 17:2934-48.
    • (2008) Hum Mol Genet , vol.17 , pp. 2934-2948
    • Rosner, M.1    Hengstschlager, M.2
  • 57
    • 33750142818 scopus 로고    scopus 로고
    • Sin1 binds to both ATF-2 and p38 and enhances ATF-2-dependent transcription in an SAPK signaling pathway
    • DOI 10.1111/j.1365-2443.2006.01016.x
    • Makino C, Sano Y, Shinagawa T, Millar JB, Ishii S. Sin1 binds to both ATF-2 and p38 and enhances ATF-2-dependent transcription in an SAPK signaling pathway. Genes Cells 2006; 11:1239-51. (Pubitemid 44594296)
    • (2006) Genes to Cells , vol.11 , Issue.11 , pp. 1239-1251
    • Makino, C.1    Sano, Y.2    Shinagawa, T.3    Millar, J.B.A.4    Ishii, S.5
  • 58
    • 13844294205 scopus 로고    scopus 로고
    • The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins
    • DOI 10.1016/j.cellsig.2004.10.015
    • Schroder W, Bushell G, Sculley T. The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins. Cell Signal 2005; 17:761-7. (Pubitemid 40250176)
    • (2005) Cellular Signalling , vol.17 , Issue.6 , pp. 761-767
    • Schroder, W.1    Bushell, G.2    Sculley, T.3
  • 59
    • 50149094239 scopus 로고    scopus 로고
    • A link between SIN1 (MAPKAP1) and poly(rC) binding protein 2 (PCBP2) in counteracting environmental stress
    • Ghosh D, Srivastava GP, Xu D, Schulz LC, Roberts RM. A link between SIN1 (MAPKAP1) and poly(rC) binding protein 2 (PCBP2) in counteracting environmental stress. Proc Natl Acad Sci USA 2008; 105:11673-8.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 11673-11678
    • Ghosh, D.1    Srivastava, G.P.2    Xu, D.3    Schulz, L.C.4    Roberts, R.M.5
  • 60
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • DOI 10.1126/science.1106148
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098-101. (Pubitemid 40262113)
    • (2005) Science , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 61
    • 79953216041 scopus 로고    scopus 로고
    • Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol-3,4,5-trisphosphate
    • Gan X, Wang J, Su B, Wu D. Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol-3,4,5-trisphosphate. J Biol Chem 2011; 286:10998-1002.
    • (2011) J Biol Chem , vol.286 , pp. 10998-11002
    • Gan, X.1    Wang, J.2    Su, B.3    Wu, D.4
  • 62
    • 47949125486 scopus 로고    scopus 로고
    • The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
    • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27:1932-43.
    • (2008) EMBO J , vol.27 , pp. 1932-1943
    • Facchinetti, V.1    Ouyang, W.2    Wei, H.3    Soto, N.4    Lazorchak, A.5    Gould, C.6
  • 63
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling
    • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling. EMBO J 2008; 27:1919-31.
    • (2008) EMBO J , vol.27 , pp. 1919-1931
    • Ikenoue, T.1    Inoki, K.2    Yang, Q.3    Zhou, X.4    Guan, K.L.5
  • 64
    • 78649712949 scopus 로고    scopus 로고
    • mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29:3939-51.
    • (2010) EMBO J , vol.29 , pp. 3939-3951
    • Oh, W.J.1    Wu, C.C.2    Kim, S.J.3    Facchinetti, V.4    Julien, L.A.5    Finlan, M.6
  • 65
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by Association with the Ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by Association with the Ribosome. Cell 2011; 144:757-68.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 66
    • 79953211540 scopus 로고    scopus 로고
    • Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
    • Tato I, Bartrons R, Ventura F, Rosa JL. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 2011; 286:6128-42.
    • (2011) J Biol Chem , vol.286 , pp. 6128-6142
    • Tato, I.1    Bartrons, R.2    Ventura, F.3    Rosa, J.L.4
  • 69
    • 68049126433 scopus 로고    scopus 로고
    • Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors
    • Huang J, Wu S, Wu CL, Manning BD. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 2009; 69:6107-14.
    • (2009) Cancer Res , vol.69 , pp. 6107-6114
    • Huang, J.1    Wu, S.2    Wu, C.L.3    Manning, B.D.4
  • 70
    • 79953307234 scopus 로고    scopus 로고
    • Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size
    • Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011; 42:50-61.
    • (2011) Mol Cell , vol.42 , pp. 50-61
    • Saci, A.1    Cantley, L.C.2    Carpenter, C.L.3
  • 71
    • 28844434558 scopus 로고    scopus 로고
    • 473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
    • DOI 10.1074/jbc.M508361200
    • Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005; 280:40406-16. (Pubitemid 41780527)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.49 , pp. 40406-40416
    • Hresko, R.C.1    Mueckler, M.2
  • 72
    • 33947145667 scopus 로고    scopus 로고
    • Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin
    • DOI 10.1091/mbc.E06-05-0406
    • Liu X, Zheng XF. Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin. Mol Biol Cell 2007; 18:1073-82. (Pubitemid 46399510)
    • (2007) Molecular Biology of the Cell , vol.18 , Issue.3 , pp. 1073-1082
    • Liu, X.1    Zheng, X.F.S.2
  • 73
    • 53149083731 scopus 로고    scopus 로고
    • Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells
    • Partovian C, Ju R, Zhuang ZW, Martin KA, Simons M. Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell 2008; 32:140-9.
    • (2008) Mol Cell , vol.32 , pp. 140-149
    • Partovian, C.1    Ju, R.2    Zhuang, Z.W.3    Martin, K.A.4    Simons, M.5
  • 74
    • 58649114084 scopus 로고    scopus 로고
    • mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
    • Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15:148-59.
    • (2009) Cancer Cell , vol.15 , pp. 148-159
    • Guertin, D.A.1    Stevens, D.M.2    Saitoh, M.3    Kinkel, S.4    Crosby, K.5    Sheen, J.H.6
  • 75
    • 57649219414 scopus 로고    scopus 로고
    • In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis
    • Surucu B, Bozulic L, Hynx D, Parcellier A, Hemmings BA. In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis. J Biol Chem 2008; 283:30025-33.
    • (2008) J Biol Chem , vol.283 , pp. 30025-30033
    • Surucu, B.1    Bozulic, L.2    Hynx, D.3    Parcellier, A.4    Hemmings, B.A.5
  • 76
    • 79951494608 scopus 로고    scopus 로고
    • TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation
    • Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, et al. TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 2011; 41:458-70.
    • (2011) Mol Cell , vol.41 , pp. 458-470
    • Ou, Y.H.1    Torres, M.2    Ram, R.3    Formstecher, E.4    Roland, C.5    Cheng, T.6
  • 77
    • 79955615939 scopus 로고    scopus 로고
    • I{kappa}B kinase {varepsilon} and TANK-binding kinase 1 activate AKT by direct phosphorylation
    • Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, et al. I{kappa}B kinase {varepsilon} and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA 2011; 108:6474-9.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 6474-6479
    • Xie, X.1    Zhang, D.2    Zhao, B.3    Lu, M.K.4    You, M.5    Condorelli, G.6
  • 80
    • 77349122303 scopus 로고    scopus 로고
    • Protein kinase C: Poised to signal
    • Newton AC. Protein kinase C: Poised to signal. Am J Physiol Endocrinol Metab 2010; 298:395-402.
    • (2010) Am J Physiol Endocrinol Metab , vol.298 , pp. 395-402
    • Newton, A.C.1
  • 82
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010; 32:743-53.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1    Gudapati, P.2    Dragovic, S.3    Spencer, C.4    Joyce, S.5    Killeen, N.6
  • 83
    • 0033565608 scopus 로고    scopus 로고
    • The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation
    • DOI 10.1016/S0960-9822(99)80332-7
    • Behn-Krappa A, Newton AC. The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 1999; 9:728-37. (Pubitemid 29350851)
    • (1999) Current Biology , vol.9 , Issue.14 , pp. 728-737
    • Behn-Krappa, A.1    Newton, A.C.2
  • 84
    • 64149128633 scopus 로고    scopus 로고
    • The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail
    • Gould CM, Kannan N, Taylor SS, Newton AC. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 2009; 284:4921-35.
    • (2009) J Biol Chem , vol.284 , pp. 4921-4935
    • Gould, C.M.1    Kannan, N.2    Taylor, S.S.3    Newton, A.C.4
  • 85
    • 33749500123 scopus 로고    scopus 로고
    • (Patho)physiological significance of the serum- and glucocorticoid- inducible kinase isoforms
    • DOI 10.1152/physrev.00050.2005
    • Lang F, Bohmer C, Palmada M, Seebohm G, Strutz- Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78. (Pubitemid 44521650)
    • (2006) Physiological Reviews , vol.86 , Issue.4 , pp. 1151-1178
    • Lang, F.1    Bohmer, C.2    Palmada, M.3    Seebohm, G.4    Strutz-Seebohm, N.5    Vallon, V.6
  • 87
    • 63649122347 scopus 로고    scopus 로고
    • Regulation of a third conserved phosphorylation site in SGK1
    • Chen W, Chen Y, Xu BE, Juang YC, Stippec S, Zhao Y, et al. Regulation of a third conserved phosphorylation site in SGK1. J Biol Chem 2009; 284:3453-60.
    • (2009) J Biol Chem , vol.284 , pp. 3453-3460
    • Chen, W.1    Chen, Y.2    Xu, B.E.3    Juang, Y.C.4    Stippec, S.5    Zhao, Y.6
  • 88
    • 33745188921 scopus 로고    scopus 로고
    • A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin-proteasome pathway
    • Bogusz AM, Brickley DR, Pew T, Conzen SD. A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin-proteasome pathway. Febs J 2006; 273:2913-28.
    • (2006) Febs J , vol.273 , pp. 2913-2928
    • Bogusz, A.M.1    Brickley, D.R.2    Pew, T.3    Conzen, S.D.4
  • 90
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • DOI 10.1038/ncb1183
    • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122-8. (Pubitemid 39468014)
    • (2004) Nature Cell Biology , vol.6 , Issue.11 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4    Ruegg, M.A.5    Hall, A.6    Hall, M.N.7
  • 91
    • 79955486858 scopus 로고    scopus 로고
    • mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
    • Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011.
    • (2011) Cancer Res
    • Gulhati, P.1    Bowen, K.A.2    Liu, J.3    Stevens, P.D.4    Rychahou, P.G.5    Chen, M.6
  • 92
    • 37549048521 scopus 로고    scopus 로고
    • mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor
    • Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007; 67:11712-20.
    • (2007) Cancer Res , vol.67 , pp. 11712-11720
    • Masri, J.1    Bernath, A.2    Martin, J.3    Jo, O.D.4    Vartanian, R.5    Funk, A.6
  • 93
    • 78649956469 scopus 로고    scopus 로고
    • mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion
    • Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19:845-57.
    • (2010) Dev Cell , vol.19 , pp. 845-857
    • Liu, L.1    Das, S.2    Losert, W.3    Parent, C.A.4
  • 94
    • 78549271170 scopus 로고    scopus 로고
    • mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis
    • Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, et al. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res 2010; 70:9360-70.
    • (2010) Cancer Res , vol.70 , pp. 9360-9370
    • Zhang, F.1    Zhang, X.2    Li, M.3    Chen, P.4    Zhang, B.5    Guo, H.6
  • 95
    • 78650941515 scopus 로고    scopus 로고
    • Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release
    • Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM. Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 2011; 286:391-402.
    • (2011) J Biol Chem , vol.286 , pp. 391-402
    • Kuehn, H.S.1    Jung, M.Y.2    Beaven, Ma.3    Metcalfe, D.D.4    Gilfillan, A.M.5
  • 96
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307-18.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 97
    • 60149091189 scopus 로고    scopus 로고
    • Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
    • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136:731-45.
    • (2009) Cell , vol.136 , pp. 731-745
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 98
    • 0346422440 scopus 로고    scopus 로고
    • FKBP12-Rapamycin-associated Protein or Mammalian Target of Rapamycin (FRAP/mTOR) Localization in the Endoplasmic Reticulum and the Golgi Apparatus
    • DOI 10.1074/jbc.M305912200
    • Drenan RM, Liu X, Bertram PG, Zheng XF. FKBP12- rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 2004; 279:772-8. (Pubitemid 38044883)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.1 , pp. 772-778
    • Drenan, R.M.1    Liu, X.2    Bertram, P.G.3    Zheng, X.F.S.4
  • 99
  • 100
    • 62849087835 scopus 로고    scopus 로고
    • The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner
    • Patursky-Polischuk I, Stolovich-Rain M, Hausner- Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009; 29:640-9.
    • (2009) Mol Cell Biol , vol.29 , pp. 640-649
    • Patursky-Polischuk, I.1    Stolovich-Rain, M.2    Hausner- Hanochi, M.3    Kasir, J.4    Cybulski, N.5    Avruch, J.6
  • 101
    • 68049137608 scopus 로고    scopus 로고
    • Biochemical, cellular and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
    • Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, et al. Biochemical, cellular and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-40.
    • (2009) Cancer Res , vol.69 , pp. 6232-6240
    • Yu, K.1    Toral-Barza, L.2    Shi, C.3    Zhang, W.G.4    Lucas, J.5    Shor, B.6
  • 102
    • 77955443001 scopus 로고    scopus 로고
    • Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
    • Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107:12469-74.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12469-12474
    • Carayol, N.1    Vakana, E.2    Sassano, A.3    Kaur, S.4    Goussetis, D.J.5    Glaser, H.6
  • 103
    • 77958196417 scopus 로고    scopus 로고
    • Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition
    • Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010; 116:3013-22.
    • (2010) Blood , vol.116 , pp. 3013-3022
    • Bachmann, P.S.1    Piazza, R.G.2    Janes, M.E.3    Wong, N.C.4    Davies, C.5    Mogavero, A.6
  • 104
    • 79955818156 scopus 로고    scopus 로고
    • Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia
    • Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 2011.
    • (2011) Leukemia
    • Evangelisti, C.1    Ricci, F.2    Tazzari, P.3    Tabellini, G.4    Battistelli, M.5    Falcieri, E.6
  • 105
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70:288-98.
    • (2010) Cancer Res , vol.70 , pp. 288-298
    • Chresta, C.M.1    Davies, B.R.2    Hickson, I.3    Harding, T.4    Cosulich, S.5    Critchlow, S.E.6
  • 106
    • 76349104427 scopus 로고    scopus 로고
    • Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
    • Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16:205-13.
    • (2010) Nat Med , vol.16 , pp. 205-213
    • Janes, M.R.1    Limon, J.J.2    So, L.3    Chen, J.4    Lim, R.J.5    Chavez, M.A.6
  • 108
    • 63749105226 scopus 로고    scopus 로고
    • mTOR and the control of whole body metabolism
    • Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol 2009; 21:209-18.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 209-218
    • Polak, P.1    Hall, M.N.2
  • 109
    • 61449244533 scopus 로고    scopus 로고
    • Rictor/TORC2 regulates fat metabolism, feeding, growth and life span in Caenorhabditis elegans
    • Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth and life span in Caenorhabditis elegans. Genes Dev 2009; 23:496-511.
    • (2009) Genes Dev , vol.23 , pp. 496-511
    • Soukas, A.A.1    Kane, E.A.2    Carr, C.E.3    Melo, J.A.4    Ruvkun, G.5
  • 110
    • 33748950810 scopus 로고    scopus 로고
    • Multiallelic Disruption of the rictor Gene in Mice Reveals that mTOR Complex 2 Is Essential for Fetal Growth and Viability
    • DOI 10.1016/j.devcel.2006.08.013, PII S1534580706003935
    • Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 2006; 11:583-9. (Pubitemid 44430900)
    • (2006) Developmental Cell , vol.11 , Issue.4 , pp. 583-589
    • Shiota, C.1    Woo, J.-T.2    Lindner, J.3    Shelton, K.D.4    Magnuson, M.A.5
  • 112
    • 79953206927 scopus 로고    scopus 로고
    • Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction
    • Colombi M, Molle KD, Benjamin D, Rattenbacher- Kiser K, Schaefer C, Betz C, et al. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 2011; 30:1551-65.
    • (2011) Oncogene , vol.30 , pp. 1551-1565
    • Colombi, M.1    Molle, K.D.2    Benjamin, D.3    Rattenbacher- Kiser, K.4    Schaefer, C.5    Betz, C.6
  • 113
    • 67649347537 scopus 로고    scopus 로고
    • Growth and aging: A common molecular mechanism
    • Albany NY
    • Blagosklonny MV, Hall MN. Growth and aging: a common molecular mechanism. Aging (Albany NY) 2009; 1:357-62.
    • (2009) Aging , vol.1 , pp. 357-362
    • Blagosklonny, M.V.1    Hall, M.N.2
  • 114
    • 77951020823 scopus 로고    scopus 로고
    • The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1
    • Albany NY
    • Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, et al. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 2009; 1:622-36.
    • (2009) Aging , vol.1 , pp. 622-636
    • Heeren, G.1    Rinnerthaler, M.2    Laun, P.3    Von Seyerl, P.4    Kossler, S.5    Klinger, H.6
  • 117
    • 79960460137 scopus 로고    scopus 로고
    • Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity
    • Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol Cell Biol 2007.
    • (2007) Mol Cell Biol
    • Kumar, A.1    Harris, T.E.2    Keller, S.R.3    Choi, K.M.4    Magnuson, M.A.5    Lawrence, J.C.6
  • 118
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008; 8:411-24.
    • (2008) Cell Metab , vol.8 , pp. 411-424
    • Bentzinger, C.F.1    Romanino, K.2    Cloetta, D.3    Lin, S.4    Mascarenhas, J.B.5    Oliveri, F.6
  • 119
    • 68849100742 scopus 로고    scopus 로고
    • The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts
    • Shu L, Houghton PJ. The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol Cell Biol 2009; 29:4691-700.
    • (2009) Mol Cell Biol , vol.29 , pp. 4691-4700
    • Shu, L.1    Houghton, P.J.2
  • 120
    • 74049088121 scopus 로고    scopus 로고
    • Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
    • Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009; 187:859-74.
    • (2009) J Cell Biol , vol.187 , pp. 859-874
    • Risson, V.1    Mazelin, L.2    Roceri, M.3    Sanchez, H.4    Moncollin, V.5    Corneloup, C.6
  • 121
    • 77949357437 scopus 로고    scopus 로고
    • Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway
    • Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, et al. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2010; 86:103-12.
    • (2010) Cardiovasc Res , vol.86 , pp. 103-112
    • Gurusamy, N.1    Lekli, I.2    Mukherjee, S.3    Ray, D.4    Ahsan, M.K.5    Gherghiceanu, M.6
  • 122
    • 66749130276 scopus 로고    scopus 로고
    • Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling
    • Glazer HP, Osipov RM, Clements RT, Sellke FW, Bianchi C. Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. Cell Cycle 2009; 8:1738-46.
    • (2009) Cell Cycle , vol.8 , pp. 1738-1746
    • Glazer, H.P.1    Osipov, R.M.2    Clements, R.T.3    Sellke, F.W.4    Bianchi, C.5
  • 124
    • 77953200528 scopus 로고    scopus 로고
    • Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
    • Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010; 59:1397-406.
    • (2010) Diabetes , vol.59 , pp. 1397-1406
    • Kumar, A.1    Lawrence Jr., J.C.2    Jung, D.Y.3    Ko, H.J.4    Keller, S.R.5    Kim, J.K.6
  • 125
    • 77953218866 scopus 로고    scopus 로고
    • Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
    • Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59:1338-48.
    • (2010) Diabetes , vol.59 , pp. 1338-1348
    • Houde, V.P.1    Brule, S.2    Festuccia, W.T.3    Blanchard, P.G.4    Bellmann, K.5    Deshaies, Y.6
  • 126
    • 79952374430 scopus 로고    scopus 로고
    • Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size
    • Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 2011; 60:827-37.
    • (2011) Diabetes , vol.60 , pp. 827-837
    • Gu, Y.1    Lindner, J.2    Kumar, A.3    Yuan, W.4    Magnuson, M.A.5
  • 128
    • 0037080158 scopus 로고    scopus 로고
    • Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines
    • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines. J Neurosci 2002; 22:389-95. (Pubitemid 34049076)
    • (2002) Journal of Neuroscience , vol.22 , Issue.2 , pp. 389-395
    • Moron, J.A.1    Brockington, A.2    Wise, R.A.3    Rocha, B.A.4    Hope, B.T.5
  • 129
    • 77954755270 scopus 로고    scopus 로고
    • Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice
    • Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol 2010; 8:1000393.
    • (2010) PLoS Biol , vol.8 , pp. 1000393
    • Siuta, M.A.1    Robertson, S.D.2    Kocalis, H.3    Saunders, C.4    Gresch, P.J.5    Khatri, V.6
  • 130
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30:832-44.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3    Zarek, P.E.4    Matthews, K.L.5    Xiao, B.6
  • 131
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1    Pollizzi, K.N.2    Waickman, A.T.3    Heikamp, E.4    Meyers, D.J.5    Horton, M.R.6
  • 135
    • 48449101433 scopus 로고    scopus 로고
    • p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60.
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 136
    • 79958026380 scopus 로고    scopus 로고
    • The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation
    • Epub Ahead of Print
    • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci 2011; Epub Ahead of Print.
    • (2011) Trends Biochem Sci
    • Mendoza, M.C.1    Er, E.E.2    Blenis, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.