-
1
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905-9. (Pubitemid 21917235)
-
(1991)
Science
, vol.253
, Issue.5022
, pp. 905-909
-
-
Hietman, J.1
Movva, N.R.2
Hall, M.N.3
-
2
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
-
DOI 10.1016/0092-8674(94)90570-3
-
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78:35-43. (Pubitemid 24228298)
-
(1994)
Cell
, vol.78
, Issue.1
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
3
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756-8.
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
Albers, M.W.2
Shin, T.B.3
Ichikawa, K.4
Keith, C.T.5
Lane, W.S.6
-
5
-
-
0029071264
-
TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin
-
Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 1995; 82:121-30.
-
(1995)
Cell
, vol.82
, pp. 121-130
-
-
Zheng, X.F.1
Florentino, D.2
Chen, J.3
Crabtree, G.R.4
Schreiber, S.L.5
-
6
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-89.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
-
7
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
DOI 10.1016/S1097-2765(02)00636-6
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10:457-68. (Pubitemid 35284167)
-
(2002)
Molecular Cell
, vol.10
, Issue.3
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
8
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov dos D, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-75.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Dos Sarbassov, D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
9
-
-
78650510609
-
mTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21-35.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
10
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors and stress
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors and stress. Mol Cell 2010; 40:310-22.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
11
-
-
62749096589
-
Mammalian target of rapamycin complex 1: Signaling inputs, substrates and feedback mechanisms
-
Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: Signaling inputs, substrates and feedback mechanisms. Cell Signal 2009; 21:827-35.
-
(2009)
Cell Signal
, vol.21
, pp. 827-835
-
-
Dunlop, E.A.1
Tee, A.R.2
-
12
-
-
2342545519
-
Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
-
DOI 10.1038/sj.onc.1207542
-
Fingar DC, Blenis J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23:3151-71. (Pubitemid 38638827)
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3151-3171
-
-
Fingar, D.C.1
Blenis, J.2
-
13
-
-
77954235821
-
Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks CA, Guertin DA. Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010; 29:3733-44.
-
(2010)
Oncogene
, vol.29
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
14
-
-
74849131091
-
Targeting mTOR globally in cancer: Thinking beyond rapamycin
-
Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: Thinking beyond rapamycin. Cell Cycle 2009; 8:3831-7.
-
(2009)
Cell Cycle
, vol.8
, pp. 3831-3837
-
-
Shor, B.1
Gibbons, J.J.2
Abraham, R.T.3
Yu, K.4
-
15
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR complex-2
-
Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007; 405:513-22.
-
(2007)
Biochem J
, vol.405
, pp. 513-522
-
-
Pearce, L.R.1
Huang, X.2
Boudeau, J.3
Pawlowski, R.4
Wullschleger, S.5
Deak, M.6
-
16
-
-
34548509880
-
PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
-
DOI 10.1074/jbc.M704343200
-
Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptorbeta expression and signaling. J Biol Chem 2007; 282:25604-12. (Pubitemid 47372842)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.35
, pp. 25604-25612
-
-
Woo, S.-Y.1
Kim, D.-H.2
Jun, C.-B.3
Kim, Y.-M.4
Haar, E.V.5
Lee, S.-I.6
Hegg, J.W.7
Bandhakavi, S.8
Griffin, T.J.9
Kim, D.-H.10
-
17
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007; 2:1217.
-
(2007)
PLoS ONE
, vol.2
, pp. 1217
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
Molle, K.D.4
Cohen, A.5
Jeno, P.6
-
18
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873-86.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
-
19
-
-
21744434031
-
Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation
-
DOI 10.1128/MCB.25.14.5955-5964.2005
-
Cheng J, Zhang D, Kim K, Zhao Y, Su B. Mip1, an MEKK2-interacting protein, controls MEKK2 dimerization and activation. Mol Cell Biol 2005; 25:5955-64. (Pubitemid 40946550)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.14
, pp. 5955-5964
-
-
Cheng, J.1
Zhang, D.2
Kim, K.3
Zhao, Y.4
Zhao, Y.5
Su, B.6
-
20
-
-
33748471980
-
MSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s
-
DOI 10.1016/j.cub.2006.08.001, PII S0960982206019749
-
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16:1865-70. (Pubitemid 44354144)
-
(2006)
Current Biology
, vol.16
, Issue.18
, pp. 1865-1870
-
-
Frias, M.A.1
Thoreen, C.C.2
Jaffe, J.D.3
Schroder, W.4
Sculley, T.5
Carr, S.A.6
Sabatini, D.M.7
-
21
-
-
34147097962
-
Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling
-
DOI 10.1016/j.cellsig.2007.01.013, PII S0898656807000241
-
Schroder WA, Buck M, Cloonan N, Hancock JF, Suhrbier A, Sculley T, et al. Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signaling. Cell Signal 2007; 19:1279-89. (Pubitemid 46561564)
-
(2007)
Cellular Signalling
, vol.19
, Issue.6
, pp. 1279-1289
-
-
Schroder, W.A.1
Buck, M.2
Cloonan, N.3
Hancock, J.F.4
Suhrbier, A.5
Sculley, T.6
Bushell, G.7
-
22
-
-
13844254274
-
PRR5 encodes a conserved proline-rich protein predominant in kidney: Analysis of genomic organization, expression, and mutation status in breast and colorectal carcinomas
-
DOI 10.1016/j.ygeno.2004.11.002
-
Johnstone CN, Castellvi-Bel S, Chang LM, Sung RK, Bowser MJ, Pique JM, et al. PRR5 encodes a conserved proline-rich protein predominant in kidney: analysis of genomic organization, expression and mutation status in breast and colorectal carcinomas. Genomics 2005; 85:338-51. (Pubitemid 40249426)
-
(2005)
Genomics
, vol.85
, Issue.3
, pp. 338-351
-
-
Johnstone, C.N.1
Castellvi-Bel, S.2
Chang, L.M.3
Sung, R.K.4
Bowser, M.J.5
Pique, J.M.6
Castells, A.7
Rustgi, A.K.8
-
23
-
-
33749076673
-
SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity
-
DOI 10.1016/j.cell.2006.08.033, PII S0092867406011470
-
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127:125-37. (Pubitemid 44466632)
-
(2006)
Cell
, vol.127
, Issue.1
, pp. 125-137
-
-
Jacinto, E.1
Facchinetti, V.2
Liu, D.3
Soto, N.4
Wei, S.5
Jung, S.Y.6
Huang, Q.7
Qin, J.8
Su, B.9
-
24
-
-
33751348056
-
Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCalpha, but Not S6K1
-
DOI 10.1016/j.devcel.2006.10.007, PII S153458070600459X
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11:859-71. (Pubitemid 44804279)
-
(2006)
Developmental Cell
, vol.11
, Issue.6
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
Brown, M.7
Fitzgerald, K.J.8
Sabatini, D.M.9
-
25
-
-
33751079895
-
Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
-
DOI 10.1101/gad.1461206
-
Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 2006; 20:2820-32. (Pubitemid 44771744)
-
(2006)
Genes and Development
, vol.20
, Issue.20
, pp. 2820-2832
-
-
Yang, Q.1
Inoki, K.2
Ikenoue, T.3
Guan, K.-L.4
-
26
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
DOI 10.1016/j.cub.2004.06.054, PII S0960982204004713
-
Sarbassov D, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296-302. (Pubitemid 38991819)
-
(2004)
Current Biology
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Dos, D.S.1
Ali, S.M.2
Kim, D.-H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
27
-
-
58649092475
-
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1)
-
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1). Biochem J 2008; 416:375-85.
-
(2008)
Biochem J
, vol.416
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
28
-
-
34548205803
-
Rapamycin regulates the phosphorylation of rictor
-
DOI 10.1016/j.bbrc.2007.07.151, PII S0006291X07016464
-
Akcakanat A, Singh G, Hung MC, Meric-Bernstam F. Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun 2007; 362:330-3. (Pubitemid 47332412)
-
(2007)
Biochemical and Biophysical Research Communications
, vol.362
, Issue.2
, pp. 330-333
-
-
Akcakanat, A.1
Singh, G.2
Hung, M.-C.3
Meric-Bernstam, F.4
-
29
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010; 38:768-74.
-
(2010)
Mol Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
30
-
-
33644781670
-
Drosophila target of rapamycin kinase functions as a multimer
-
DOI 10.1534/genetics.105.051979
-
Zhang Y, Billington CJ Jr, Pan D, Neufeld TP. Drosophila target of rapamycin kinase functions as a multimer. Genetics 2006; 172:355-62. (Pubitemid 43345497)
-
(2006)
Genetics
, vol.172
, Issue.1
, pp. 355-362
-
-
Zhang, Y.1
Billington Jr., C.J.2
Pan, D.3
Neufeld, T.P.4
-
31
-
-
33749406921
-
Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
-
DOI 10.1074/jbc.M606087200
-
Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 2006; 281:28605-14. (Pubitemid 44507003)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.39
, pp. 28605-28614
-
-
Takahara, T.1
Hara, K.2
Yonezawa, K.3
Sorimachi, H.4
Maeda, T.5
-
32
-
-
24744439255
-
Molecular organization of target of rapamycin complex 2
-
DOI 10.1074/jbc.M505553200
-
Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem 2005; 280:30697-704. (Pubitemid 41291798)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.35
, pp. 30697-30704
-
-
Wullschleger, S.1
Loewith, R.2
Oppliger, W.3
Hall, M.N.4
-
33
-
-
45449114764
-
Hsp70 associates with Rictor and is required for mTORC2 formation and activity
-
Martin J, Masri J, Bernath A, Nishimura RN, Gera J. Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun 2008; 372:578-83.
-
(2008)
Biochem Biophys Res Commun
, vol.372
, pp. 578-583
-
-
Martin, J.1
Masri, J.2
Bernath, A.3
Nishimura, R.N.4
Gera, J.5
-
34
-
-
37349014081
-
Tel2 Regulates the Stability of PI3K-Related Protein Kinases
-
DOI 10.1016/j.cell.2007.10.052, PII S0092867407014158
-
Takai H, Wang RC, Takai KK, Yang H, de Lange T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 2007; 131:1248-59. (Pubitemid 350297416)
-
(2007)
Cell
, vol.131
, Issue.7
, pp. 1248-1259
-
-
Takai, H.1
Wang, R.C.2
Takai, K.K.3
Yang, H.4
De Lange, T.5
-
35
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 2010; 285:20109-16.
-
(2010)
J Biol Chem
, vol.285
, pp. 20109-20116
-
-
Kaizuka, T.1
Hara, T.2
Oshiro, N.3
Kikkawa, U.4
Yonezawa, K.5
Takehana, K.6
-
36
-
-
77956935673
-
CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability
-
Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, et al. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 2010; 39:839-50.
-
(2010)
Mol Cell
, vol.39
, pp. 839-850
-
-
Horejsi, Z.1
Takai, H.2
Adelman, C.A.3
Collis, S.J.4
Flynn, H.5
Maslen, S.6
-
37
-
-
77956856907
-
Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes
-
Takai H, Xie Y, de Lange T, Pavletich NP. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 2010; 24:2019-30.
-
(2010)
Genes Dev
, vol.24
, pp. 2019-2030
-
-
Takai, H.1
Xie, Y.2
De Lange, T.3
Pavletich, N.P.4
-
38
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22:159-68.
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
-
39
-
-
62849111751
-
Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin
-
Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009; 29:1411-20.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1411-1420
-
-
Toschi, A.1
Lee, E.2
Xu, L.3
Garcia, A.4
Gadir, N.5
Foster, D.A.6
-
40
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
DOI 10.1126/science.1066015
-
Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001; 294:1942-5. (Pubitemid 33101594)
-
(2001)
Science
, vol.294
, Issue.5548
, pp. 1942-1945
-
-
Fang, Y.1
Vilella-Bach, M.2
Bachmann, R.3
Flanigan, A.4
Chen, J.5
-
41
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
-
42
-
-
0034629365
-
FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
-
DOI 10.1074/jbc.275.10.7416
-
Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000; 275:7416-23. (Pubitemid 30146297)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.10
, pp. 7416-7423
-
-
Peterson, R.T.1
Beal, P.A.2
Comb, M.J.3
Schreiber, S.L.4
-
43
-
-
62449266454
-
TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): Phospho-Ser2481 is a marker for intact mTOR signaling complex 2
-
Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 2009; 69:1821-7.
-
(2009)
Cancer Res
, vol.69
, pp. 1821-1827
-
-
Copp, J.1
Manning, G.2
Hunter, T.3
-
44
-
-
77950900079
-
mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
-
Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 2010; 285:7866-79.
-
(2010)
J Biol Chem
, vol.285
, pp. 7866-7879
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Dunlop, E.A.3
Ekim, B.4
Maj, N.E.5
Tee, A.R.6
-
45
-
-
44949215822
-
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
-
DOI 10.1128/MCB.00289-08
-
Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008; 28:4104-15. (Pubitemid 351812994)
-
(2008)
Molecular and Cellular Biology
, vol.28
, Issue.12
, pp. 4104-4115
-
-
Huang, J.1
Dibble, C.C.2
Matsuzaki, M.3
Manning, B.D.4
-
46
-
-
67651210833
-
Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
-
Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, et al. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol 2009; 29:4308-24.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 4308-4324
-
-
Acosta-Jaquez, H.A.1
Keller, J.A.2
Foster, K.G.3
Ekim, B.4
Soliman, G.A.5
Feener, E.P.6
-
47
-
-
77957278976
-
Steadystate kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes
-
Tao Z, Barker J, Shi SD, Gehring M, Sun S. Steadystate kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes. Biochemistry 2010; 49:8488-98.
-
(2010)
Biochemistry
, vol.49
, pp. 8488-8498
-
-
Tao, Z.1
Barker, J.2
Shi, S.D.3
Gehring, M.4
Sun, S.5
-
48
-
-
70350545722
-
Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
-
Dibble CC, Asara JM, Manning BD. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 2009; 29:5657-70.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5657-5670
-
-
Dibble, C.C.1
Asara, J.M.2
Manning, B.D.3
-
49
-
-
75749105049
-
mTORC1- Activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
-
Julien LA, Carriere A, Moreau J, Roux PP. mTORC1- activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 2010; 30:908-21.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 908-921
-
-
Julien, L.A.1
Carriere, A.2
Moreau, J.3
Roux, P.P.4
-
51
-
-
77953763269
-
Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2
-
Boulbes D, Chen CH, Shaikenov T, Agarwal NK, Peterson TR, Addona TA, et al. Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2. Mol Cancer Res 2010; 8:896-906.
-
(2010)
Mol Cancer Res
, vol.8
, pp. 896-906
-
-
Boulbes, D.1
Chen, Ch.2
Shaikenov, T.3
Agarwal, N.K.4
Peterson, T.R.5
Addona, T.A.6
-
52
-
-
77956548321
-
Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction
-
Gao D, Wan L, Inuzuka H, Berg AH, Tseng A, Zhai B, et al. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell 2010; 39:797-808.
-
(2010)
Mol Cell
, vol.39
, pp. 797-808
-
-
Gao, D.1
Wan, L.2
Inuzuka, H.3
Berg, A.H.4
Tseng, A.5
Zhai, B.6
-
53
-
-
40949083412
-
Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival
-
DOI 10.1158/0008-5472.CAN-07-5869
-
McDonald PC, Oloumi A, Mills J, Dobreva I, Maidan M, Gray V, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res 2008; 68:1618-24. (Pubitemid 351416544)
-
(2008)
Cancer Research
, vol.68
, Issue.6
, pp. 1618-1624
-
-
McDonald, P.C.1
Oloumi, A.2
Mills, J.3
Dobreva, I.4
Maidan, M.5
Gray, V.6
Wederell, E.D.7
Bally, M.B.8
Foster, L.J.9
Dedhar, S.10
-
54
-
-
46149083971
-
A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-L1 adipocytes
-
DOI 10.1128/MCB.00867-07
-
Hagan GN, Lin Y, Magnuson MA, Avruch J, Czech MP. A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-L1 adipocytes. Mol Cell Biol 2008; 28:4215-26. (Pubitemid 351904945)
-
(2008)
Molecular and Cellular Biology
, vol.28
, Issue.13
, pp. 4215-4226
-
-
Hagan, G.N.1
Lin, Y.2
Magnuson, M.A.3
Avruch, J.4
Czech, M.P.5
-
55
-
-
79952119614
-
ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor
-
Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011; 4:10.
-
(2011)
Sci Signal
, vol.4
, pp. 10
-
-
Chen, Ch.1
Shaikenov, T.2
Peterson, T.R.3
Aimbetov, R.4
Bissenbaev, A.K.5
Lee, S.W.6
-
56
-
-
52949137425
-
Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: Rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1
-
Rosner M, Hengstschlager M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008; 17:2934-48.
-
(2008)
Hum Mol Genet
, vol.17
, pp. 2934-2948
-
-
Rosner, M.1
Hengstschlager, M.2
-
57
-
-
33750142818
-
Sin1 binds to both ATF-2 and p38 and enhances ATF-2-dependent transcription in an SAPK signaling pathway
-
DOI 10.1111/j.1365-2443.2006.01016.x
-
Makino C, Sano Y, Shinagawa T, Millar JB, Ishii S. Sin1 binds to both ATF-2 and p38 and enhances ATF-2-dependent transcription in an SAPK signaling pathway. Genes Cells 2006; 11:1239-51. (Pubitemid 44594296)
-
(2006)
Genes to Cells
, vol.11
, Issue.11
, pp. 1239-1251
-
-
Makino, C.1
Sano, Y.2
Shinagawa, T.3
Millar, J.B.A.4
Ishii, S.5
-
58
-
-
13844294205
-
The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins
-
DOI 10.1016/j.cellsig.2004.10.015
-
Schroder W, Bushell G, Sculley T. The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins. Cell Signal 2005; 17:761-7. (Pubitemid 40250176)
-
(2005)
Cellular Signalling
, vol.17
, Issue.6
, pp. 761-767
-
-
Schroder, W.1
Bushell, G.2
Sculley, T.3
-
59
-
-
50149094239
-
A link between SIN1 (MAPKAP1) and poly(rC) binding protein 2 (PCBP2) in counteracting environmental stress
-
Ghosh D, Srivastava GP, Xu D, Schulz LC, Roberts RM. A link between SIN1 (MAPKAP1) and poly(rC) binding protein 2 (PCBP2) in counteracting environmental stress. Proc Natl Acad Sci USA 2008; 105:11673-8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 11673-11678
-
-
Ghosh, D.1
Srivastava, G.P.2
Xu, D.3
Schulz, L.C.4
Roberts, R.M.5
-
60
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
DOI 10.1126/science.1106148
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098-101. (Pubitemid 40262113)
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
61
-
-
79953216041
-
Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol-3,4,5-trisphosphate
-
Gan X, Wang J, Su B, Wu D. Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol-3,4,5-trisphosphate. J Biol Chem 2011; 286:10998-1002.
-
(2011)
J Biol Chem
, vol.286
, pp. 10998-11002
-
-
Gan, X.1
Wang, J.2
Su, B.3
Wu, D.4
-
62
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27:1932-43.
-
(2008)
EMBO J
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
Ouyang, W.2
Wei, H.3
Soto, N.4
Lazorchak, A.5
Gould, C.6
-
63
-
-
47949104258
-
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling
-
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling. EMBO J 2008; 27:1919-31.
-
(2008)
EMBO J
, vol.27
, pp. 1919-1931
-
-
Ikenoue, T.1
Inoki, K.2
Yang, Q.3
Zhou, X.4
Guan, K.L.5
-
64
-
-
78649712949
-
mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29:3939-51.
-
(2010)
EMBO J
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
Wu, C.C.2
Kim, S.J.3
Facchinetti, V.4
Julien, L.A.5
Finlan, M.6
-
65
-
-
79952293503
-
Activation of mTORC2 by Association with the Ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by Association with the Ribosome. Cell 2011; 144:757-68.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
66
-
-
79953211540
-
Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
-
Tato I, Bartrons R, Ventura F, Rosa JL. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 2011; 286:6128-42.
-
(2011)
J Biol Chem
, vol.286
, pp. 6128-6142
-
-
Tato, I.1
Bartrons, R.2
Ventura, F.3
Rosa, J.L.4
-
67
-
-
26444575415
-
Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
DOI 10.1073/pnas.0506925102
-
Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3-phosphatidylinositol- 3-OH-kinase. Proc Natl Acad Sci USA 2005; 102:14238-43. (Pubitemid 41429682)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.40
, pp. 14238-14243
-
-
Nobukuni, T.1
Joaquin, M.2
Roccio, M.3
Dann, S.G.4
Kim, S.Y.5
Gulati, P.6
Byfield, M.P.7
Backer, J.M.8
Natt, F.9
Bos, J.L.10
Zwartkruis, F.J.T.11
Thomas, G.12
-
68
-
-
34548151890
-
P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration
-
DOI 10.1074/jbc.M703771200
-
Hernandez-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernandez-Garcia R, Calderon-Salinas JV, Reyes- Cruz G, et al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem 2007; 282:23708-15. (Pubitemid 47311970)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.32
, pp. 23708-23715
-
-
Hernandez-Negrete, I.1
Carretero-Ortega, J.2
Rosenfeldt, H.3
Hernandez-Garcia, R.4
Calderon-Salinas, J.V.5
Reyes-Cruz, G.6
Gutkind, J.S.7
Vazquez-Prado, J.8
-
69
-
-
68049126433
-
Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors
-
Huang J, Wu S, Wu CL, Manning BD. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 2009; 69:6107-14.
-
(2009)
Cancer Res
, vol.69
, pp. 6107-6114
-
-
Huang, J.1
Wu, S.2
Wu, C.L.3
Manning, B.D.4
-
70
-
-
79953307234
-
Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size
-
Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011; 42:50-61.
-
(2011)
Mol Cell
, vol.42
, pp. 50-61
-
-
Saci, A.1
Cantley, L.C.2
Carpenter, C.L.3
-
71
-
-
28844434558
-
473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
-
DOI 10.1074/jbc.M508361200
-
Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005; 280:40406-16. (Pubitemid 41780527)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.49
, pp. 40406-40416
-
-
Hresko, R.C.1
Mueckler, M.2
-
72
-
-
33947145667
-
Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin
-
DOI 10.1091/mbc.E06-05-0406
-
Liu X, Zheng XF. Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin. Mol Biol Cell 2007; 18:1073-82. (Pubitemid 46399510)
-
(2007)
Molecular Biology of the Cell
, vol.18
, Issue.3
, pp. 1073-1082
-
-
Liu, X.1
Zheng, X.F.S.2
-
73
-
-
53149083731
-
Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells
-
Partovian C, Ju R, Zhuang ZW, Martin KA, Simons M. Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell 2008; 32:140-9.
-
(2008)
Mol Cell
, vol.32
, pp. 140-149
-
-
Partovian, C.1
Ju, R.2
Zhuang, Z.W.3
Martin, K.A.4
Simons, M.5
-
74
-
-
58649114084
-
mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15:148-59.
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
Stevens, D.M.2
Saitoh, M.3
Kinkel, S.4
Crosby, K.5
Sheen, J.H.6
-
75
-
-
57649219414
-
In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis
-
Surucu B, Bozulic L, Hynx D, Parcellier A, Hemmings BA. In vivo analysis of protein kinase B (PKB)/Akt regulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response and tumorigenesis. J Biol Chem 2008; 283:30025-33.
-
(2008)
J Biol Chem
, vol.283
, pp. 30025-30033
-
-
Surucu, B.1
Bozulic, L.2
Hynx, D.3
Parcellier, A.4
Hemmings, B.A.5
-
76
-
-
79951494608
-
TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation
-
Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, et al. TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 2011; 41:458-70.
-
(2011)
Mol Cell
, vol.41
, pp. 458-470
-
-
Ou, Y.H.1
Torres, M.2
Ram, R.3
Formstecher, E.4
Roland, C.5
Cheng, T.6
-
77
-
-
79955615939
-
I{kappa}B kinase {varepsilon} and TANK-binding kinase 1 activate AKT by direct phosphorylation
-
Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, et al. I{kappa}B kinase {varepsilon} and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA 2011; 108:6474-9.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 6474-6479
-
-
Xie, X.1
Zhang, D.2
Zhao, B.3
Lu, M.K.4
You, M.5
Condorelli, G.6
-
78
-
-
34247572532
-
Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation
-
DOI 10.1038/sj.emboj.7601682, PII 7601682
-
Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, et al. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 2007; 26:2251-61. (Pubitemid 46685864)
-
(2007)
EMBO Journal
, vol.26
, Issue.9
, pp. 2251-2261
-
-
Hauge, C.1
Antal, T.L.2
Hirschberg, D.3
Doehn, U.4
Thorup, K.5
Idrissova, L.6
Hansen, K.7
Jensen, O.N.8
Jorgensen, T.J.9
Biondi, R.M.10
Frodin, M.11
-
79
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
DOI 10.1128/MCB.25.16.7239-7248.2005
-
Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 2005; 25:7239-48. (Pubitemid 41105919)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.16
, pp. 7239-7248
-
-
Kamada, Y.1
Fujioka, Y.2
Suzuki, N.N.3
Inagaki, F.4
Wullschleger, S.5
Loewith, R.6
Hall, M.N.7
Ohsumi, Y.8
-
80
-
-
77349122303
-
Protein kinase C: Poised to signal
-
Newton AC. Protein kinase C: Poised to signal. Am J Physiol Endocrinol Metab 2010; 298:395-402.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. 395-402
-
-
Newton, A.C.1
-
81
-
-
75149161903
-
PKC and the control of localized signal dynamics
-
Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 2010; 11:103-12.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 103-112
-
-
Rosse, C.1
Linch, M.2
Kermorgant, S.3
Cameron, A.J.4
Boeckeler, K.5
Parker, P.J.6
-
82
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010; 32:743-53.
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
Gudapati, P.2
Dragovic, S.3
Spencer, C.4
Joyce, S.5
Killeen, N.6
-
83
-
-
0033565608
-
The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation
-
DOI 10.1016/S0960-9822(99)80332-7
-
Behn-Krappa A, Newton AC. The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 1999; 9:728-37. (Pubitemid 29350851)
-
(1999)
Current Biology
, vol.9
, Issue.14
, pp. 728-737
-
-
Behn-Krappa, A.1
Newton, A.C.2
-
84
-
-
64149128633
-
The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail
-
Gould CM, Kannan N, Taylor SS, Newton AC. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 2009; 284:4921-35.
-
(2009)
J Biol Chem
, vol.284
, pp. 4921-4935
-
-
Gould, C.M.1
Kannan, N.2
Taylor, S.S.3
Newton, A.C.4
-
85
-
-
33749500123
-
(Patho)physiological significance of the serum- and glucocorticoid- inducible kinase isoforms
-
DOI 10.1152/physrev.00050.2005
-
Lang F, Bohmer C, Palmada M, Seebohm G, Strutz- Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78. (Pubitemid 44521650)
-
(2006)
Physiological Reviews
, vol.86
, Issue.4
, pp. 1151-1178
-
-
Lang, F.1
Bohmer, C.2
Palmada, M.3
Seebohm, G.4
Strutz-Seebohm, N.5
Vallon, V.6
-
87
-
-
63649122347
-
Regulation of a third conserved phosphorylation site in SGK1
-
Chen W, Chen Y, Xu BE, Juang YC, Stippec S, Zhao Y, et al. Regulation of a third conserved phosphorylation site in SGK1. J Biol Chem 2009; 284:3453-60.
-
(2009)
J Biol Chem
, vol.284
, pp. 3453-3460
-
-
Chen, W.1
Chen, Y.2
Xu, B.E.3
Juang, Y.C.4
Stippec, S.5
Zhao, Y.6
-
88
-
-
33745188921
-
A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin-proteasome pathway
-
Bogusz AM, Brickley DR, Pew T, Conzen SD. A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin-proteasome pathway. Febs J 2006; 273:2913-28.
-
(2006)
Febs J
, vol.273
, pp. 2913-2928
-
-
Bogusz, A.M.1
Brickley, D.R.2
Pew, T.3
Conzen, S.D.4
-
89
-
-
77952565472
-
mTOR complex-2 activates ENaC by phosphorylating SGK1
-
Lu M, Wang J, Jones KT, Ives HE, Feldman ME, Yao LJ, et al. mTOR complex-2 activates ENaC by phosphorylating SGK1. J Am Soc Nephrol 2010; 21:811-8.
-
(2010)
J Am Soc Nephrol
, vol.21
, pp. 811-818
-
-
Lu, M.1
Wang, J.2
Jones, K.T.3
Ives, H.E.4
Feldman, M.E.5
Yao, L.J.6
-
90
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
DOI 10.1038/ncb1183
-
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122-8. (Pubitemid 39468014)
-
(2004)
Nature Cell Biology
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
Hall, M.N.7
-
91
-
-
79955486858
-
mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
-
Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011.
-
(2011)
Cancer Res
-
-
Gulhati, P.1
Bowen, K.A.2
Liu, J.3
Stevens, P.D.4
Rychahou, P.G.5
Chen, M.6
-
92
-
-
37549048521
-
mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor
-
Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007; 67:11712-20.
-
(2007)
Cancer Res
, vol.67
, pp. 11712-11720
-
-
Masri, J.1
Bernath, A.2
Martin, J.3
Jo, O.D.4
Vartanian, R.5
Funk, A.6
-
93
-
-
78649956469
-
mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion
-
Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19:845-57.
-
(2010)
Dev Cell
, vol.19
, pp. 845-857
-
-
Liu, L.1
Das, S.2
Losert, W.3
Parent, C.A.4
-
94
-
-
78549271170
-
mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis
-
Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, et al. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res 2010; 70:9360-70.
-
(2010)
Cancer Res
, vol.70
, pp. 9360-9370
-
-
Zhang, F.1
Zhang, X.2
Li, M.3
Chen, P.4
Zhang, B.5
Guo, H.6
-
95
-
-
78650941515
-
Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release
-
Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM. Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 2011; 286:391-402.
-
(2011)
J Biol Chem
, vol.286
, pp. 391-402
-
-
Kuehn, H.S.1
Jung, M.Y.2
Beaven, Ma.3
Metcalfe, D.D.4
Gilfillan, A.M.5
-
96
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307-18.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
97
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
-
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136:731-45.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
98
-
-
0346422440
-
FKBP12-Rapamycin-associated Protein or Mammalian Target of Rapamycin (FRAP/mTOR) Localization in the Endoplasmic Reticulum and the Golgi Apparatus
-
DOI 10.1074/jbc.M305912200
-
Drenan RM, Liu X, Bertram PG, Zheng XF. FKBP12- rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 2004; 279:772-8. (Pubitemid 38044883)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.1
, pp. 772-778
-
-
Drenan, R.M.1
Liu, X.2
Bertram, P.G.3
Zheng, X.F.S.4
-
99
-
-
34547935219
-
Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway
-
DOI 10.1038/sj.onc.1210346, PII 1210346
-
Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN, et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 2007; 26:5606-14. (Pubitemid 47267838)
-
(2007)
Oncogene
, vol.26
, Issue.38
, pp. 5606-5614
-
-
Marzec, M.1
Kasprzycka, M.2
Liu, X.3
El-Salem, M.4
Halasa, K.5
Raghunath, P.N.6
Bucki, R.7
Wlodarski, P.8
Wasik, M.A.9
-
100
-
-
62849087835
-
The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner
-
Patursky-Polischuk I, Stolovich-Rain M, Hausner- Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009; 29:640-9.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 640-649
-
-
Patursky-Polischuk, I.1
Stolovich-Rain, M.2
Hausner- Hanochi, M.3
Kasir, J.4
Cybulski, N.5
Avruch, J.6
-
101
-
-
68049137608
-
Biochemical, cellular and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, et al. Biochemical, cellular and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-40.
-
(2009)
Cancer Res
, vol.69
, pp. 6232-6240
-
-
Yu, K.1
Toral-Barza, L.2
Shi, C.3
Zhang, W.G.4
Lucas, J.5
Shor, B.6
-
102
-
-
77955443001
-
Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
-
Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107:12469-74.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12469-12474
-
-
Carayol, N.1
Vakana, E.2
Sassano, A.3
Kaur, S.4
Goussetis, D.J.5
Glaser, H.6
-
103
-
-
77958196417
-
Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition
-
Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010; 116:3013-22.
-
(2010)
Blood
, vol.116
, pp. 3013-3022
-
-
Bachmann, P.S.1
Piazza, R.G.2
Janes, M.E.3
Wong, N.C.4
Davies, C.5
Mogavero, A.6
-
104
-
-
79955818156
-
Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia
-
Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 2011.
-
(2011)
Leukemia
-
-
Evangelisti, C.1
Ricci, F.2
Tazzari, P.3
Tabellini, G.4
Battistelli, M.5
Falcieri, E.6
-
105
-
-
75149112670
-
AZD8055 is a potent, selective and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70:288-98.
-
(2010)
Cancer Res
, vol.70
, pp. 288-298
-
-
Chresta, C.M.1
Davies, B.R.2
Hickson, I.3
Harding, T.4
Cosulich, S.5
Critchlow, S.E.6
-
106
-
-
76349104427
-
Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
-
Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16:205-13.
-
(2010)
Nat Med
, vol.16
, pp. 205-213
-
-
Janes, M.R.1
Limon, J.J.2
So, L.3
Chen, J.4
Lim, R.J.5
Chavez, M.A.6
-
107
-
-
78149475478
-
Akt and autophagy cooperate to promote survival of drug-resistant glioma
-
Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 2010; 3:81.
-
(2010)
Sci Signal
, vol.3
, pp. 81
-
-
Fan, Q.W.1
Cheng, C.2
Hackett, C.3
Feldman, M.4
Houseman, B.T.5
Nicolaides, T.6
-
108
-
-
63749105226
-
mTOR and the control of whole body metabolism
-
Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol 2009; 21:209-18.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 209-218
-
-
Polak, P.1
Hall, M.N.2
-
109
-
-
61449244533
-
Rictor/TORC2 regulates fat metabolism, feeding, growth and life span in Caenorhabditis elegans
-
Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth and life span in Caenorhabditis elegans. Genes Dev 2009; 23:496-511.
-
(2009)
Genes Dev
, vol.23
, pp. 496-511
-
-
Soukas, A.A.1
Kane, E.A.2
Carr, C.E.3
Melo, J.A.4
Ruvkun, G.5
-
110
-
-
33748950810
-
Multiallelic Disruption of the rictor Gene in Mice Reveals that mTOR Complex 2 Is Essential for Fetal Growth and Viability
-
DOI 10.1016/j.devcel.2006.08.013, PII S1534580706003935
-
Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 2006; 11:583-9. (Pubitemid 44430900)
-
(2006)
Developmental Cell
, vol.11
, Issue.4
, pp. 583-589
-
-
Shiota, C.1
Woo, J.-T.2
Lindner, J.3
Shelton, K.D.4
Magnuson, M.A.5
-
111
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
DOI 10.1074/jbc.M603536200
-
Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281:27643-52. (Pubitemid 44401789)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.37
, pp. 27643-27652
-
-
Schieke, S.M.1
Phillips, D.2
McCoy Jr., J.P.3
Aponte, A.M.4
Shen, R.-F.5
Balaban, R.S.6
Finkel, T.7
-
112
-
-
79953206927
-
Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction
-
Colombi M, Molle KD, Benjamin D, Rattenbacher- Kiser K, Schaefer C, Betz C, et al. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 2011; 30:1551-65.
-
(2011)
Oncogene
, vol.30
, pp. 1551-1565
-
-
Colombi, M.1
Molle, K.D.2
Benjamin, D.3
Rattenbacher- Kiser, K.4
Schaefer, C.5
Betz, C.6
-
113
-
-
67649347537
-
Growth and aging: A common molecular mechanism
-
Albany NY
-
Blagosklonny MV, Hall MN. Growth and aging: a common molecular mechanism. Aging (Albany NY) 2009; 1:357-62.
-
(2009)
Aging
, vol.1
, pp. 357-362
-
-
Blagosklonny, M.V.1
Hall, M.N.2
-
114
-
-
77951020823
-
The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1
-
Albany NY
-
Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, et al. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 2009; 1:622-36.
-
(2009)
Aging
, vol.1
, pp. 622-636
-
-
Heeren, G.1
Rinnerthaler, M.2
Laun, P.3
Von Seyerl, P.4
Kossler, S.5
Klinger, H.6
-
115
-
-
3242721268
-
MTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells
-
DOI 10.1128/MCB.24.15.6710-6718.2004
-
Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004; 24:6710-8. (Pubitemid 38944350)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.15
, pp. 6710-6718
-
-
Murakami, M.1
Ichisaka, T.2
Maeda, M.3
Oshiro, N.4
Hara, K.5
Edenhofer, F.6
Kiyama, H.7
Yonezawa, K.8
Yamanaka, S.9
-
116
-
-
6344245674
-
Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development
-
DOI 10.1128/MCB.24.21.9508-9516.2004
-
Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24:9508-16. (Pubitemid 39391687)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.21
, pp. 9508-9516
-
-
Gangloff, Y.-G.1
Mueller, M.2
Dann, S.G.3
Svoboda, P.4
Sticker, M.5
Spetz, J.-F.6
Sung, H.U.7
Brown, E.J.8
Cereghini, S.9
Thomas, G.10
Kozma, S.C.11
-
117
-
-
79960460137
-
Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity
-
Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol Cell Biol 2007.
-
(2007)
Mol Cell Biol
-
-
Kumar, A.1
Harris, T.E.2
Keller, S.R.3
Choi, K.M.4
Magnuson, M.A.5
Lawrence, J.C.6
-
118
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008; 8:411-24.
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
Lin, S.4
Mascarenhas, J.B.5
Oliveri, F.6
-
119
-
-
68849100742
-
The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts
-
Shu L, Houghton PJ. The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol Cell Biol 2009; 29:4691-700.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 4691-4700
-
-
Shu, L.1
Houghton, P.J.2
-
120
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009; 187:859-74.
-
(2009)
J Cell Biol
, vol.187
, pp. 859-874
-
-
Risson, V.1
Mazelin, L.2
Roceri, M.3
Sanchez, H.4
Moncollin, V.5
Corneloup, C.6
-
121
-
-
77949357437
-
Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway
-
Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, et al. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2010; 86:103-12.
-
(2010)
Cardiovasc Res
, vol.86
, pp. 103-112
-
-
Gurusamy, N.1
Lekli, I.2
Mukherjee, S.3
Ray, D.4
Ahsan, M.K.5
Gherghiceanu, M.6
-
122
-
-
66749130276
-
Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling
-
Glazer HP, Osipov RM, Clements RT, Sellke FW, Bianchi C. Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. Cell Cycle 2009; 8:1738-46.
-
(2009)
Cell Cycle
, vol.8
, pp. 1738-1746
-
-
Glazer, H.P.1
Osipov, R.M.2
Clements, R.T.3
Sellke, F.W.4
Bianchi, C.5
-
123
-
-
67649867447
-
mTOR complex 2 in adipose tissue negatively controls whole-body growth
-
Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci USA 2009; 106:9902-7.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 9902-9907
-
-
Cybulski, N.1
Polak, P.2
Auwerx, J.3
Ruegg, M.A.4
Hall, M.N.5
-
124
-
-
77953200528
-
Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
-
Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010; 59:1397-406.
-
(2010)
Diabetes
, vol.59
, pp. 1397-1406
-
-
Kumar, A.1
Lawrence Jr., J.C.2
Jung, D.Y.3
Ko, H.J.4
Keller, S.R.5
Kim, J.K.6
-
125
-
-
77953218866
-
Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
-
Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59:1338-48.
-
(2010)
Diabetes
, vol.59
, pp. 1338-1348
-
-
Houde, V.P.1
Brule, S.2
Festuccia, W.T.3
Blanchard, P.G.4
Bellmann, K.5
Deshaies, Y.6
-
126
-
-
79952374430
-
Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size
-
Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 2011; 60:827-37.
-
(2011)
Diabetes
, vol.60
, pp. 827-837
-
-
Gu, Y.1
Lindner, J.2
Kumar, A.3
Yuan, W.4
Magnuson, M.A.5
-
128
-
-
0037080158
-
Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines
-
Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines. J Neurosci 2002; 22:389-95. (Pubitemid 34049076)
-
(2002)
Journal of Neuroscience
, vol.22
, Issue.2
, pp. 389-395
-
-
Moron, J.A.1
Brockington, A.2
Wise, R.A.3
Rocha, B.A.4
Hope, B.T.5
-
129
-
-
77954755270
-
Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice
-
Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol 2010; 8:1000393.
-
(2010)
PLoS Biol
, vol.8
, pp. 1000393
-
-
Siuta, M.A.1
Robertson, S.D.2
Kocalis, H.3
Saunders, C.4
Gresch, P.J.5
Khatri, V.6
-
130
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30:832-44.
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
131
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12:295-303.
-
(2011)
Nat Immunol
, vol.12
, pp. 295-303
-
-
Delgoffe, G.M.1
Pollizzi, K.N.2
Waickman, A.T.3
Heikamp, E.4
Meyers, D.J.5
Horton, M.R.6
-
132
-
-
77955488179
-
Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells
-
Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 2010; 39:433-43.
-
(2010)
Mol Cell
, vol.39
, pp. 433-443
-
-
Lazorchak, A.S.1
Liu, D.2
Facchinetti, V.3
Di Lorenzo, A.4
Sessa, W.C.5
Schatz, D.G.6
-
133
-
-
79953229628
-
Regulation of plant growth and metabolism by the TOR kinase
-
Dobrenel T, Marchive C, Sormani R, Moreau M, Mozzo M, Montane MH, et al. Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc Trans 2011; 39:477-81.
-
(2011)
Biochem Soc Trans
, vol.39
, pp. 477-481
-
-
Dobrenel, T.1
Marchive, C.2
Sormani, R.3
Moreau, M.4
Mozzo, M.5
Montane, M.H.6
-
134
-
-
77955747085
-
The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway
-
Albany NY
-
Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2010; 2:344-52.
-
(2010)
Aging
, vol.2
, pp. 344-352
-
-
Korotchkina, L.G.1
Leontieva, O.V.2
Bukreeva, E.I.3
Demidenko, Z.N.4
Gudkov, A.V.5
Blagosklonny, M.V.6
-
135
-
-
48449101433
-
p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60.
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
136
-
-
79958026380
-
The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation
-
Epub Ahead of Print
-
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci 2011; Epub Ahead of Print.
-
(2011)
Trends Biochem Sci
-
-
Mendoza, M.C.1
Er, E.E.2
Blenis, J.3
|