-
1
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
2
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
3
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biol. 15, 555-564 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
4
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648-657 (2002).
-
(2002)
Nature Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
5
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702-713 (2005).
-
(2005)
Curr. Biol.
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
6
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell Biol. 10, 307-318 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
7
-
-
33750068623
-
MTOR, translation initiation and cancer
-
Mamane, Y. Petroulakis, E., LeBacquer, O. & Sonenberg, N. mTOR, translation initiation and cancer. Oncogene 25, 6416-6422 (2006).
-
(2006)
Oncogene
, vol.25
, pp. 6416-6422
-
-
Mamane, Y.1
Petroulakis, E.2
Lebacquer, O.3
Sonenberg, N.4
-
8
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell, J. L., Russell, R. C. & Guan, K. L. Amino acid signalling upstream of mTOR. Nature Rev. Mol. Cell Biol. 14, 133-139 (2013).
-
(2013)
Nature Rev. Mol. Cell Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
Russell, R.C.2
Guan, K.L.3
-
9
-
-
77954383345
-
Tuberous sclerosis complex: Linking cancer to metabolism
-
Mieulet, V. & Lamb, R. F. Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol. Med. 16, 329-335 (2010).
-
(2010)
Trends Mol. Med.
, vol.16
, pp. 329-335
-
-
Mieulet, V.1
Lamb, R.F.2
-
10
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757-768 (2011).
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
11
-
-
70449900928
-
TOR complex 2: A signaling pathway of its own
-
Cybulski, N. & Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620-627 (2009).
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 620-627
-
-
Cybulski, N.1
Hall, M.N.2
-
12
-
-
77954235821
-
Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks, C. A. & Guertin, D. A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29, 3733-3744 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
13
-
-
84862777192
-
The translational landscape of mTOR signalling steers cancer initiation and metastasis
-
Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55-61 (2012).
-
(2012)
Nature
, vol.485
, pp. 55-61
-
-
Hsieh, A.C.1
-
14
-
-
84861872213
-
Distinct perturbation of the translatome by the antidiabetic drug metformin
-
Larsson, O. et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl Acad. Sci. USA 109, 8977-8982 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 8977-8982
-
-
Larsson, O.1
-
15
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109-113 (2012).
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
-
16
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322 (2011).
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
-
17
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-1326 (2011).
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
-
18
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-1323 (2013).
-
(2013)
Science
, vol.339
, pp. 1320-1323
-
-
Robitaille, A.M.1
-
19
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183 (2010).
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
20
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-1328 (2013).
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
21
-
-
84896629473
-
Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
-
Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474-483 (2013).
-
(2013)
Oncogene
, vol.33
, pp. 474-483
-
-
Chauvin, C.1
-
22
-
-
2442574729
-
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
-
Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23, 1761-1769 (2004).
-
(2004)
EMBO J.
, vol.23
, pp. 1761-1769
-
-
Raught, B.1
-
23
-
-
0035881470
-
Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase
-
Wang, X. et al. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 20, 4370-4379 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 4370-4379
-
-
Wang, X.1
-
24
-
-
27744569843
-
MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz, M. K., Ballif, B. A. & Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580 (2005).
-
(2005)
Cell
, vol.123
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
25
-
-
34547801661
-
S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover
-
Mieulet, V. et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Cell Physiol. 293, C712-722 (2007).
-
(2007)
Am. J. Physiol. Cell Physiol.
, vol.293
-
-
Mieulet, V.1
-
26
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023-8032 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
-
27
-
-
77952967459
-
MTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172-1176 (2010).
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Dowling, R.J.1
-
28
-
-
78649712949
-
MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh, W. J. et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29, 3939-3951 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
-
29
-
-
84873488006
-
MTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts
-
Dai, N., Christiansen, J. & Nielsen, F. C. & Avruch, J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 27, 301-312 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 301-312
-
-
Dai, N.1
Christiansen, J.2
Nielsen, F.C.3
Avruchi, J.4
-
30
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854 (2013).
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
-
31
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell. Metab. 15, 725-738 (2012).
-
(2012)
Cell. Metab.
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
-
32
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell. Metab. 8, 224-236 (2008).
-
(2008)
Cell. Metab.
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
-
33
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
34
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100-1104 (2010).
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
35
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
-
Kenerson, H. L., Yeh, M. M. & Yeung, R. S. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6, e18075 (2011).
-
(2011)
PLoS ONE
, vol.6
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
36
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell. Metab. 14, 21-32 (2011).
-
(2011)
Cell. Metab.
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
-
37
-
-
84865503043
-
Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
-
Yuan, M., Pino, E., Wu, L., Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579-29588 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 29579-29588
-
-
Yuan, M.1
Pino, E.2
Wu, L.3
Kacergis, M.4
Soukas, A.A.5
-
38
-
-
84877927481
-
MTOR in aging, metabolism, and cancer
-
Cornu, M., Albert, V. & Hall, M. N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53-62 (2013).
-
(2013)
Curr. Opin. Genet. Dev.
, vol.23
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
39
-
-
84885187437
-
A central role for mTOR in lipid homeostasis
-
Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell. Metab. 18, 465-469 (2013).
-
(2013)
Cell. Metab.
, vol.18
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
40
-
-
84874655800
-
The multifaceted role of mTORC1 in the control of lipid metabolism
-
Ricoult, S. J. & Manning, B. D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 14, 242-251 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 242-251
-
-
Ricoult, S.J.1
Manning, B.D.2
-
41
-
-
0032512636
-
Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
-
Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963-3966 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3963-3966
-
-
Noda, T.1
Ohsumi, Y.2
-
42
-
-
0028899789
-
Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
-
Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320-2326 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 2320-2326
-
-
Blommaart, E.F.1
Luiken, J.J.2
Blommaart, P.J.3
Van Woerkom, G.M.4
Meijer, A.J.5
-
43
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
44
-
-
66449083078
-
ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley, I. G. et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
-
45
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
46
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132-141 (2011).
-
(2011)
Nature Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
47
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biol. 15, 741-750 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
-
48
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
-
Yuan, H. X., Russell, R. C. & Guan, K. L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9, 1983-1995 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
49
-
-
77955716131
-
DAP1 a novel substrate of mTOR, negatively regulates autophagy
-
Koren, I., Reem, E. & Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 20, 1093-1098 (2010).
-
(2010)
Curr. Biol.
, vol.20
, pp. 1093-1098
-
-
Koren, I.1
Reem, E.2
Kimchi, A.3
-
50
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 (2010).
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
51
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
52
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 5, ra42 (2012).
-
(2012)
Sci Signal.
, vol.5
-
-
Roczniak-Ferguson, A.1
-
53
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
54
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475-491 (2013).
-
(2013)
J. Cell Biol.
, vol.200
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
55
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
Pena-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242-3258 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 3242-3258
-
-
Pena-Llopis, S.1
-
56
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 172-185
-
-
Kim, S.G.1
-
57
-
-
79960997489
-
The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal
-
Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biol. 13, 877-883 (2011).
-
(2011)
Nature Cell Biol.
, vol.13
, pp. 877-883
-
-
Zhao, B.1
Tumaneng, K.2
Guan, K.L.3
-
58
-
-
84870610975
-
YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29
-
Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nature Cell Biol. 14, 1322-1329 (2012).
-
(2012)
Nature Cell Biol.
, vol.14
, pp. 1322-1329
-
-
Tumaneng, K.1
-
59
-
-
34548636132
-
Elucidation of a universal size-control mechanism in Drosophila and mammals
-
Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133 (2007).
-
(2007)
Cell
, vol.130
, pp. 1120-1133
-
-
Dong, J.1
-
60
-
-
84865455267
-
Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP
-
Miller, E. et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol. 19, 955-962 (2012).
-
(2012)
Chem. Biol.
, vol.19
, pp. 955-962
-
-
Miller, E.1
-
61
-
-
84865260845
-
Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling
-
Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791 (2012).
-
(2012)
Cell
, vol.150
, pp. 780-791
-
-
Yu, F.X.1
-
63
-
-
84870252814
-
The complex world of WNT receptor signalling
-
Niehrs, C. The complex world of WNT receptor signalling. Nature Rev. Mol. Cell Biol. 13, 767-779 (2012).
-
(2012)
Nature Rev. Mol. Cell Biol.
, vol.13
, pp. 767-779
-
-
Niehrs, C.1
-
64
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968 (2006).
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
-
65
-
-
84892429398
-
Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish
-
Valvezan, A. J., Huang, J., Lengner, C. J., Pack, M. & Klein, P. S. Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish. Dis. Model. Mech. 7, 63-71 (2014).
-
(2014)
Dis. Model. Mech.
, vol.7
, pp. 63-71
-
-
Valvezan, A.J.1
Huang, J.2
Lengner, C.J.3
Pack, M.4
Klein, P.S.5
-
66
-
-
84877579844
-
WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation
-
Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell. Metab. 17, 745-755 (2013).
-
(2013)
Cell. Metab.
, vol.17
, pp. 745-755
-
-
Esen, E.1
-
67
-
-
33747623018
-
Notch signalling: A simple pathway becomes complex
-
Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678-689 (2006).
-
(2006)
Nature Rev. Mol. Cell Biol.
, vol.7
, pp. 678-689
-
-
Bray, S.J.1
-
68
-
-
84882245596
-
Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability
-
Pajvani, U. B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Med. 19, 1054-1060 (2013).
-
(2013)
Nature Med.
, vol.19
, pp. 1054-1060
-
-
Pajvani, U.B.1
-
69
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita, M. et al. mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell. Metab. 18, 698-711 (2013).
-
(2013)
Cell. Metab.
, vol.18
, pp. 698-711
-
-
Morita, M.1
-
70
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz, C. & Hall, M. N. Where is mTOR and what is it doing there? J. Cell Biol. 203, 563-574 (2013).
-
(2013)
J. Cell Biol.
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
71
-
-
84875909085
-
Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver
-
Chaveroux, C. et al. Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell. Metab. 17, 586-598 (2013).
-
(2013)
Cell. Metab.
, vol.17
, pp. 586-598
-
-
Chaveroux, C.1
-
72
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
73
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biol. 10, 935-945 (2008).
-
(2008)
Nature Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
74
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase
-
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678-683 (2011).
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
75
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
76
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
77
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
-
78
-
-
84884597394
-
HIF-independent role of prolyl hydroxylases in the cellular response to amino acids
-
Duran, R. V. et al. HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene 32, 4549-4556 (2013).
-
(2013)
Oncogene
, vol.32
, pp. 4549-4556
-
-
Duran, R.V.1
-
79
-
-
84878357685
-
A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106 (2013).
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
-
80
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
Panchaud, N., Peli-Gulli, M. P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6, ra42 (2013).
-
(2013)
Sci Signal
, vol.6
-
-
Panchaud, N.1
Peli-Gulli, M.P.2
De Virgilio, C.3
-
81
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
-
Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107-1122 (2013).
-
(2013)
J. Cell Biol.
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
Roczniak-Ferguson, A.2
Ferguson, S.M.3
-
82
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495-505 (2013).
-
(2013)
Mol. Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
-
83
-
-
80155142474
-
Rapamycin passes the torch: A new generation of mTOR inhibitors
-
Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov. 10, 868-880 (2011).
-
(2011)
Nature Rev. Drug Discov.
, vol.10
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
Hall, M.N.4
-
84
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223 (2013).
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
-
85
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013).
-
(2013)
Science
, vol.341
, pp. 1236566
-
-
Kang, S.A.1
|