메뉴 건너뛰기




Volumn 15, Issue 3, 2014, Pages 155-162

Making new contacts: The mTOR network in metabolism and signalling crosstalk

Author keywords

[No Author keywords available]

Indexed keywords

ANIMALS; ANTIBIOTICS, ANTINEOPLASTIC; HUMANS; MODELS, BIOLOGICAL; SIGNAL TRANSDUCTION; SIROLIMUS; TOR SERINE-THREONINE KINASES;

EID: 84894523716     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3757     Document Type: Article
Times cited : (892)

References (85)
  • 1
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 2
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 3
    • 84878532557 scopus 로고    scopus 로고
    • Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
    • Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biol. 15, 555-564 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 555-564
    • Dibble, C.C.1    Manning, B.D.2
  • 4
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648-657 (2002).
    • (2002) Nature Cell Biol. , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 6
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell Biol. 10, 307-318 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 9
    • 77954383345 scopus 로고    scopus 로고
    • Tuberous sclerosis complex: Linking cancer to metabolism
    • Mieulet, V. & Lamb, R. F. Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol. Med. 16, 329-335 (2010).
    • (2010) Trends Mol. Med. , vol.16 , pp. 329-335
    • Mieulet, V.1    Lamb, R.F.2
  • 10
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757-768 (2011).
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 11
    • 70449900928 scopus 로고    scopus 로고
    • TOR complex 2: A signaling pathway of its own
    • Cybulski, N. & Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620-627 (2009).
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 620-627
    • Cybulski, N.1    Hall, M.N.2
  • 12
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks, C. A. & Guertin, D. A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29, 3733-3744 (2010).
    • (2010) Oncogene , vol.29 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 13
    • 84862777192 scopus 로고    scopus 로고
    • The translational landscape of mTOR signalling steers cancer initiation and metastasis
    • Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55-61 (2012).
    • (2012) Nature , vol.485 , pp. 55-61
    • Hsieh, A.C.1
  • 14
    • 84861872213 scopus 로고    scopus 로고
    • Distinct perturbation of the translatome by the antidiabetic drug metformin
    • Larsson, O. et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl Acad. Sci. USA 109, 8977-8982 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 8977-8982
    • Larsson, O.1
  • 15
    • 84860527756 scopus 로고    scopus 로고
    • A unifying model for mTORC1-mediated regulation of mRNA translation
    • Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109-113 (2012).
    • (2012) Nature , vol.485 , pp. 109-113
    • Thoreen, C.C.1
  • 16
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322 (2011).
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1
  • 17
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-1326 (2011).
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1
  • 18
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-1323 (2013).
    • (2013) Science , vol.339 , pp. 1320-1323
    • Robitaille, A.M.1
  • 19
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 20
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-1328 (2013).
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 21
    • 84896629473 scopus 로고    scopus 로고
    • Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
    • Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474-483 (2013).
    • (2013) Oncogene , vol.33 , pp. 474-483
    • Chauvin, C.1
  • 22
    • 2442574729 scopus 로고    scopus 로고
    • Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
    • Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23, 1761-1769 (2004).
    • (2004) EMBO J. , vol.23 , pp. 1761-1769
    • Raught, B.1
  • 23
    • 0035881470 scopus 로고    scopus 로고
    • Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase
    • Wang, X. et al. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 20, 4370-4379 (2001).
    • (2001) EMBO J. , vol.20 , pp. 4370-4379
    • Wang, X.1
  • 24
    • 27744569843 scopus 로고    scopus 로고
    • MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz, M. K., Ballif, B. A. & Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580 (2005).
    • (2005) Cell , vol.123 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 25
    • 34547801661 scopus 로고    scopus 로고
    • S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover
    • Mieulet, V. et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Cell Physiol. 293, C712-722 (2007).
    • (2007) Am. J. Physiol. Cell Physiol. , vol.293
    • Mieulet, V.1
  • 26
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023-8032 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 27
    • 77952967459 scopus 로고    scopus 로고
    • MTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
    • Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172-1176 (2010).
    • (2010) Science , vol.328 , pp. 1172-1176
    • Dowling, R.J.1
  • 28
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • Oh, W. J. et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29, 3939-3951 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3939-3951
    • Oh, W.J.1
  • 29
    • 84873488006 scopus 로고    scopus 로고
    • MTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts
    • Dai, N., Christiansen, J. & Nielsen, F. C. & Avruch, J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 27, 301-312 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 301-312
    • Dai, N.1    Christiansen, J.2    Nielsen, F.C.3    Avruchi, J.4
  • 30
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854 (2013).
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1
  • 31
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell. Metab. 15, 725-738 (2012).
    • (2012) Cell. Metab. , vol.15 , pp. 725-738
    • Hagiwara, A.1
  • 32
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell. Metab. 8, 224-236 (2008).
    • (2008) Cell. Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 33
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 34
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100-1104 (2010).
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4    Sabatini, D.M.5
  • 35
    • 79953177846 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
    • Kenerson, H. L., Yeh, M. M. & Yeung, R. S. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6, e18075 (2011).
    • (2011) PLoS ONE , vol.6
    • Kenerson, H.L.1    Yeh, M.M.2    Yeung, R.S.3
  • 36
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell. Metab. 14, 21-32 (2011).
    • (2011) Cell. Metab. , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 37
    • 84865503043 scopus 로고    scopus 로고
    • Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
    • Yuan, M., Pino, E., Wu, L., Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579-29588 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 29579-29588
    • Yuan, M.1    Pino, E.2    Wu, L.3    Kacergis, M.4    Soukas, A.A.5
  • 39
    • 84885187437 scopus 로고    scopus 로고
    • A central role for mTOR in lipid homeostasis
    • Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell. Metab. 18, 465-469 (2013).
    • (2013) Cell. Metab. , vol.18 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 40
    • 84874655800 scopus 로고    scopus 로고
    • The multifaceted role of mTORC1 in the control of lipid metabolism
    • Ricoult, S. J. & Manning, B. D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 14, 242-251 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 242-251
    • Ricoult, S.J.1    Manning, B.D.2
  • 41
    • 0032512636 scopus 로고    scopus 로고
    • Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
    • Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963-3966 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 3963-3966
    • Noda, T.1    Ohsumi, Y.2
  • 42
    • 0028899789 scopus 로고
    • Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
    • Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320-2326 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 2320-2326
    • Blommaart, E.F.1    Luiken, J.J.2    Blommaart, P.J.3    Van Woerkom, G.M.4    Meijer, A.J.5
  • 43
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 44
    • 66449083078 scopus 로고    scopus 로고
    • ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley, I. G. et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-12305
    • Ganley, I.G.1
  • 45
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 46
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132-141 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 47
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biol. 15, 741-750 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1
  • 48
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Yuan, H. X., Russell, R. C. & Guan, K. L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9, 1983-1995 (2013).
    • (2013) Autophagy , vol.9 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 49
    • 77955716131 scopus 로고    scopus 로고
    • DAP1 a novel substrate of mTOR, negatively regulates autophagy
    • Koren, I., Reem, E. & Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 20, 1093-1098 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 1093-1098
    • Koren, I.1    Reem, E.2    Kimchi, A.3
  • 50
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 (2010).
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 51
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 52
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 5, ra42 (2012).
    • (2012) Sci Signal. , vol.5
    • Roczniak-Ferguson, A.1
  • 53
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914 (2012).
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 54
    • 84874352229 scopus 로고    scopus 로고
    • Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
    • Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475-491 (2013).
    • (2013) J. Cell Biol. , vol.200 , pp. 475-491
    • Martina, J.A.1    Puertollano, R.2
  • 55
    • 80052841665 scopus 로고    scopus 로고
    • Regulation of TFEB and V-ATPases by mTORC1
    • Pena-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242-3258 (2011).
    • (2011) EMBO J. , vol.30 , pp. 3242-3258
    • Pena-Llopis, S.1
  • 56
    • 84872272443 scopus 로고    scopus 로고
    • Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
    • Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 172-185
    • Kim, S.G.1
  • 57
    • 79960997489 scopus 로고    scopus 로고
    • The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal
    • Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biol. 13, 877-883 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 877-883
    • Zhao, B.1    Tumaneng, K.2    Guan, K.L.3
  • 58
    • 84870610975 scopus 로고    scopus 로고
    • YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29
    • Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nature Cell Biol. 14, 1322-1329 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 1322-1329
    • Tumaneng, K.1
  • 59
    • 34548636132 scopus 로고    scopus 로고
    • Elucidation of a universal size-control mechanism in Drosophila and mammals
    • Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133 (2007).
    • (2007) Cell , vol.130 , pp. 1120-1133
    • Dong, J.1
  • 60
    • 84865455267 scopus 로고    scopus 로고
    • Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP
    • Miller, E. et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol. 19, 955-962 (2012).
    • (2012) Chem. Biol. , vol.19 , pp. 955-962
    • Miller, E.1
  • 61
    • 84865260845 scopus 로고    scopus 로고
    • Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling
    • Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791 (2012).
    • (2012) Cell , vol.150 , pp. 780-791
    • Yu, F.X.1
  • 63
    • 84870252814 scopus 로고    scopus 로고
    • The complex world of WNT receptor signalling
    • Niehrs, C. The complex world of WNT receptor signalling. Nature Rev. Mol. Cell Biol. 13, 767-779 (2012).
    • (2012) Nature Rev. Mol. Cell Biol. , vol.13 , pp. 767-779
    • Niehrs, C.1
  • 64
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968 (2006).
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1
  • 65
    • 84892429398 scopus 로고    scopus 로고
    • Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish
    • Valvezan, A. J., Huang, J., Lengner, C. J., Pack, M. & Klein, P. S. Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish. Dis. Model. Mech. 7, 63-71 (2014).
    • (2014) Dis. Model. Mech. , vol.7 , pp. 63-71
    • Valvezan, A.J.1    Huang, J.2    Lengner, C.J.3    Pack, M.4    Klein, P.S.5
  • 66
    • 84877579844 scopus 로고    scopus 로고
    • WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation
    • Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell. Metab. 17, 745-755 (2013).
    • (2013) Cell. Metab. , vol.17 , pp. 745-755
    • Esen, E.1
  • 67
    • 33747623018 scopus 로고    scopus 로고
    • Notch signalling: A simple pathway becomes complex
    • Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678-689 (2006).
    • (2006) Nature Rev. Mol. Cell Biol. , vol.7 , pp. 678-689
    • Bray, S.J.1
  • 68
    • 84882245596 scopus 로고    scopus 로고
    • Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability
    • Pajvani, U. B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Med. 19, 1054-1060 (2013).
    • (2013) Nature Med. , vol.19 , pp. 1054-1060
    • Pajvani, U.B.1
  • 69
    • 84887415150 scopus 로고    scopus 로고
    • MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
    • Morita, M. et al. mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell. Metab. 18, 698-711 (2013).
    • (2013) Cell. Metab. , vol.18 , pp. 698-711
    • Morita, M.1
  • 70
    • 84890149646 scopus 로고    scopus 로고
    • Where is mTOR and what is it doing there?
    • Betz, C. & Hall, M. N. Where is mTOR and what is it doing there? J. Cell Biol. 203, 563-574 (2013).
    • (2013) J. Cell Biol. , vol.203 , pp. 563-574
    • Betz, C.1    Hall, M.N.2
  • 71
    • 84875909085 scopus 로고    scopus 로고
    • Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver
    • Chaveroux, C. et al. Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell. Metab. 17, 586-598 (2013).
    • (2013) Cell. Metab. , vol.17 , pp. 586-598
    • Chaveroux, C.1
  • 72
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 74
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase
    • Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678-683 (2011).
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 75
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 76
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 77
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates Rag-mTORC1 signaling
    • Duran, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 349-358
    • Duran, R.V.1
  • 78
    • 84884597394 scopus 로고    scopus 로고
    • HIF-independent role of prolyl hydroxylases in the cellular response to amino acids
    • Duran, R. V. et al. HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene 32, 4549-4556 (2013).
    • (2013) Oncogene , vol.32 , pp. 4549-4556
    • Duran, R.V.1
  • 79
    • 84878357685 scopus 로고    scopus 로고
    • A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106 (2013).
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 80
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
    • Panchaud, N., Peli-Gulli, M. P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6, ra42 (2013).
    • (2013) Sci Signal , vol.6
    • Panchaud, N.1    Peli-Gulli, M.P.2    De Virgilio, C.3
  • 81
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107-1122 (2013).
    • (2013) J. Cell Biol. , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 82
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495-505 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1
  • 83
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: A new generation of mTOR inhibitors
    • Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov. 10, 868-880 (2011).
    • (2011) Nature Rev. Drug Discov. , vol.10 , pp. 868-880
    • Benjamin, D.1    Colombi, M.2    Moroni, C.3    Hall, M.N.4
  • 84
    • 84877761058 scopus 로고    scopus 로고
    • MTOR kinase structure, mechanism and regulation
    • Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223 (2013).
    • (2013) Nature , vol.497 , pp. 217-223
    • Yang, H.1
  • 85
    • 84880709668 scopus 로고    scopus 로고
    • MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
    • Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013).
    • (2013) Science , vol.341 , pp. 1236566
    • Kang, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.