메뉴 건너뛰기




Volumn 1844, Issue 8, 2014, Pages 1335-1343

Thiol-based redox switches

Author keywords

Disulfide bond; Oxidative stress; Redox regulation; Sulfenic acid

Indexed keywords

CHAPERONE; CYSTEINE; HEAT SHOCK PROTEIN; INTEIN; OXIDIZING AGENT; PEROXIREDOXIN; PROTEIN; PROTEIN TYROSINE PHOSPHATASE 1B; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; SULFENAMIDE DERIVATIVE; SULFENIC ACID DERIVATIVE; THIOL;

EID: 84902281301     PISSN: 15709639     EISSN: 18781454     Source Type: Journal    
DOI: 10.1016/j.bbapap.2014.03.007     Document Type: Review
Times cited : (184)

References (130)
  • 2
    • 47749151450 scopus 로고    scopus 로고
    • Biological roles for the NOX family NADPH oxidases
    • W.M. Nauseef Biological roles for the NOX family NADPH oxidases J. Biol. Chem. 283 25 2008 16961 16965
    • (2008) J. Biol. Chem. , vol.283 , Issue.25 , pp. 16961-16965
    • Nauseef, W.M.1
  • 3
    • 0038799736 scopus 로고    scopus 로고
    • Oxidative DNA damage: Mechanisms, mutation, and disease
    • DOI 10.1096/fj.02-0752rev
    • M.S. Cooke et al. Oxidative DNA damage: mechanisms, mutation, and disease FASEB J. 17 10 2003 1195 1214 (Pubitemid 36775767)
    • (2003) FASEB Journal , vol.17 , Issue.10 , pp. 1195-1214
    • Cooke, M.S.1    Evans, M.D.2    Dizdaroglu, M.3    Lunec, J.4
  • 4
    • 33750616737 scopus 로고    scopus 로고
    • Protein oxidation and proteolysis
    • DOI 10.1515/BC.2006.169, PII BCHM38710111351
    • N. Bader, and T. Grune Protein oxidation and proteolysis Biol. Chem. 387 10-11 2006 1351 1355 (Pubitemid 44691414)
    • (2006) Biological Chemistry , vol.387 , Issue.10-11 , pp. 1351-1355
    • Bader, N.1    Grune, T.2
  • 5
    • 78049370987 scopus 로고    scopus 로고
    • Oxidative stress, inflammation, and cancer: How are they linked?
    • S. Reuter et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49 2010 1603 1616
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1603-1616
    • Reuter, S.1
  • 6
    • 79951906200 scopus 로고    scopus 로고
    • Thiol-based redox switches and gene regulation
    • H. Antelmann, and J.D. Helmann Thiol-based redox switches and gene regulation Antioxid. Redox Signal. 14 2011 1049 1063
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1049-1063
    • Antelmann, H.1    Helmann, J.D.2
  • 7
    • 0032513362 scopus 로고    scopus 로고
    • Activation of the OxyR transcription factor by reversible disulfide bond formation
    • DOI 10.1126/science.279.5357.1718
    • M. Zheng, F. Aslund, and G. Storz Activation of the OxyR transcription factor by reversible disulfide bond formation Science 279 5357 1998 1718 1721 (Pubitemid 28164467)
    • (1998) Science , vol.279 , Issue.5357 , pp. 1718-1721
    • Zheng, M.1    Aslund, F.2    Storz, G.3
  • 8
    • 50649117912 scopus 로고    scopus 로고
    • Cellular defenses against superoxide and hydrogen peroxide
    • J.A. Imlay Cellular defenses against superoxide and hydrogen peroxide Annu. Rev. Biochem. 77 2008 755 776
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 755-776
    • Imlay, J.A.1
  • 9
    • 84896730793 scopus 로고    scopus 로고
    • Thiol-based HO signalling in microbial systems
    • S. Boronat et al. Thiol-based HO signalling in microbial systems Redox Biol. 2 2014 395 399
    • (2014) Redox Biol. , vol.2 , pp. 395-399
    • Boronat, S.1
  • 10
    • 0033524938 scopus 로고    scopus 로고
    • Chaperone activity with a redox switch
    • DOI 10.1016/S0092-8674(00)80547-4
    • U. Jakob et al. Chaperone activity with a redox switch Cell 96 3 1999 341 352 (Pubitemid 29077588)
    • (1999) Cell , vol.96 , Issue.3 , pp. 341-352
    • Jakob, U.1    Muse, W.2    Eser, M.3    Bardwell, J.C.A.4
  • 11
    • 13244279524 scopus 로고    scopus 로고
    • Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33
    • DOI 10.1016/j.molcel.2004.12.027, PII S1097276505010142
    • J. Winter et al. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33 Mol. Cell 17 3 2005 381 392 (Pubitemid 40193309)
    • (2005) Molecular Cell , vol.17 , Issue.3 , pp. 381-392
    • Winter, J.1    Linke, K.2    Jatzek, A.3    Jakob, U.4
  • 13
    • 64549097266 scopus 로고    scopus 로고
    • Thiol-based redox switches in eukaryotic proteins
    • N. Brandes, S. Schmitt, and U. Jakob Thiol-based redox switches in eukaryotic proteins Antioxid. Redox Signal. 11 5 2009 997 1014
    • (2009) Antioxid. Redox Signal. , vol.11 , Issue.5 , pp. 997-1014
    • Brandes, N.1    Schmitt, S.2    Jakob, U.3
  • 14
    • 76749096867 scopus 로고    scopus 로고
    • Redox remodeling as an immunoregulatory strategy
    • Z. Yan, and R. Banerjee Redox remodeling as an immunoregulatory strategy Biochemistry 49 6 2010 1059 1066
    • (2010) Biochemistry , vol.49 , Issue.6 , pp. 1059-1066
    • Yan, Z.1    Banerjee, R.2
  • 15
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • P.D. Ray, B.W. Huang, and Y. Tsuji Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling Cell. Signal. 24 5 2012 981 990
    • (2012) Cell. Signal. , vol.24 , Issue.5 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 16
    • 84876114193 scopus 로고    scopus 로고
    • Post-translational control of protein function by disulfide bond cleavage
    • K.M. Cook, and P.J. Hogg Post-translational control of protein function by disulfide bond cleavage Antioxid. Redox Signal. 18 15 2013 1987 2015
    • (2013) Antioxid. Redox Signal. , vol.18 , Issue.15 , pp. 1987-2015
    • Cook, K.M.1    Hogg, P.J.2
  • 17
    • 84868206533 scopus 로고    scopus 로고
    • Understanding the pK(a) of redox cysteines: The key role of hydrogen bonding
    • G. Roos, N. Foloppe, and J. Messens Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding Antioxid. Redox Signal. 18 1 2013 94 127
    • (2013) Antioxid. Redox Signal. , vol.18 , Issue.1 , pp. 94-127
    • Roos, G.1    Foloppe, N.2    Messens, J.3
  • 18
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 5 2008 549 561
    • (2008) Free Radic. Biol. Med. , vol.45 , Issue.5 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 20
    • 84883674898 scopus 로고    scopus 로고
    • The redox biochemistry of protein sulfenylation and sulfinylation
    • M. Lo Conte, and K.S. Carroll The redox biochemistry of protein sulfenylation and sulfinylation J. Biol. Chem. 288 37 2013 26480 26488
    • (2013) J. Biol. Chem. , vol.288 , Issue.37 , pp. 26480-26488
    • Lo Conte, M.1    Carroll, K.S.2
  • 21
    • 78649268193 scopus 로고    scopus 로고
    • Formation, reactivity, and detection of protein sulfenic acids
    • N.J. Kettenhofen, and M.J. Wood Formation, reactivity, and detection of protein sulfenic acids Chem. Res. Toxicol. 23 2010 1633 1646
    • (2010) Chem. Res. Toxicol. , vol.23 , pp. 1633-1646
    • Kettenhofen, N.J.1    Wood, M.J.2
  • 23
    • 0027131771 scopus 로고
    • Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation
    • A. Claiborne et al. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation FASEB J. 7 15 1993 1483 1490 (Pubitemid 24003268)
    • (1993) FASEB Journal , vol.7 , Issue.15 , pp. 1483-1490
    • Claiborne, A.1    Miller, H.2    Parsonage, D.3    Ross, R.P.4
  • 24
    • 34447623403 scopus 로고    scopus 로고
    • Characterization by Tandem Mass Spectrometry of Stable Cysteine Sulfenic Acid in a Cysteine Switch Peptide of Matrix Metalloproteinases
    • DOI 10.1016/j.jasms.2007.05.013, PII S1044030507004333
    • V. Shetty, D.S. Spellman, and T.A. Neubert Characterization by tandem mass spectrometry of stable cysteine sulfenic acid in a cysteine switch peptide of matrix metalloproteinases J. Am. Soc. Mass Spectrom. 18 8 2007 1544 1551 (Pubitemid 47089005)
    • (2007) Journal of the American Society for Mass Spectrometry , vol.18 , Issue.8 , pp. 1544-1551
    • Shetty, V.1    Spellman, D.S.2    Neubert, T.A.3
  • 25
    • 78649268193 scopus 로고    scopus 로고
    • Formation, reactivity, and detection of protein sulfenic acids
    • N.J. Kettenhofen, and M.J. Wood Formation, reactivity, and detection of protein sulfenic acids Chem. Res. Toxicol. 23 11 2010 1633 1646
    • (2010) Chem. Res. Toxicol. , vol.23 , Issue.11 , pp. 1633-1646
    • Kettenhofen, N.J.1    Wood, M.J.2
  • 26
    • 34547441421 scopus 로고    scopus 로고
    • Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance
    • S.G. Rhee et al. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance Kidney Int. Suppl. 106 2007 S3 S8
    • (2007) Kidney Int. Suppl. , vol.106
    • Rhee, S.G.1
  • 27
    • 84875274140 scopus 로고    scopus 로고
    • Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin
    • J.C. Moon et al. Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin Biochem. Biophys. Res. Commun. 432 2 2013 291 295
    • (2013) Biochem. Biophys. Res. Commun. , vol.432 , Issue.2 , pp. 291-295
    • Moon, J.C.1
  • 28
    • 84892366219 scopus 로고    scopus 로고
    • The thioredoxin antioxidant system
    • J. Lu, and A. Holmgren The thioredoxin antioxidant system Free Radic. Biol. Med. 66 2014 75 87
    • (2014) Free Radic. Biol. Med. , vol.66 , pp. 75-87
    • Lu, J.1    Holmgren, A.2
  • 29
    • 33847746679 scopus 로고    scopus 로고
    • Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: Implications for diseases in the cardiovascular system
    • C. Berndt, C.H. Lillig, and A. Holmgren Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system Am. J. Physiol. Heart Circ. Physiol. 292 3 2007 H1227 H1236
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292 , Issue.3
    • Berndt, C.1    Lillig, C.H.2    Holmgren, A.3
  • 30
    • 0029165589 scopus 로고
    • Thioredoxin - A fold for all reasons
    • J.L. Martin Thioredoxin - a fold for all reasons Structure 3 3 1995 245 250
    • (1995) Structure , vol.3 , Issue.3 , pp. 245-250
    • Martin, J.L.1
  • 31
    • 70049106936 scopus 로고    scopus 로고
    • How thioredoxin dissociates its mixed disulfide
    • G. Roos et al. How thioredoxin dissociates its mixed disulfide PLoS Comput. Biol. 5 8 2009 e1000461
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.8 , pp. 1000461
    • Roos, G.1
  • 32
    • 0028785378 scopus 로고
    • Mechanism and structure of thioredoxin reductase from Escherichia coli
    • C.H. Williams Jr. Mechanism and structure of thioredoxin reductase from Escherichia coli FASEB J. 9 13 1995 1267 1276
    • (1995) FASEB J. , vol.9 , Issue.13 , pp. 1267-1276
    • Williams Jr., C.H.1
  • 33
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • DOI 10.1016/j.coph.2007.06.003, PII S1471489207001038, Cancer/Immunomodulation
    • M.M. Gallogly, and J.J. Mieyal Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress Curr. Opin. Pharmacol. 7 4 2007 381 391 (Pubitemid 47304000)
    • (2007) Current Opinion in Pharmacology , vol.7 , Issue.4 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 35
    • 0033025238 scopus 로고    scopus 로고
    • The thioredoxin superfamily: Redundancy, specificity, and gray-area genomics
    • F. Aslund, and J. Beckwith The thioredoxin superfamily: redundancy, specificity, and gray-area genomics J. Bacteriol. 181 5 1999 1375 1379 (Pubitemid 29110793)
    • (1999) Journal of Bacteriology , vol.181 , Issue.5 , pp. 1375-1379
    • Aslund, F.1    Beckwith, J.2
  • 36
    • 84865411350 scopus 로고    scopus 로고
    • Thioredoxin and glutaredoxin systems in plants: Molecular mechanisms, crosstalks, and functional significance
    • Y. Meyer et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance Antioxid. Redox Signal. 17 8 2012 1124 1160
    • (2012) Antioxid. Redox Signal. , vol.17 , Issue.8 , pp. 1124-1160
    • Meyer, Y.1
  • 37
    • 84887478834 scopus 로고    scopus 로고
    • Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system
    • Y. Du et al. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system J. Biol. Chem. 288 45 2013 32241 32247
    • (2013) J. Biol. Chem. , vol.288 , Issue.45 , pp. 32241-32247
    • Du, Y.1
  • 41
    • 84860846749 scopus 로고    scopus 로고
    • Chemical approaches for trapping protein thiols and their oxidative modification
    • C.S. Huang et al. Chemical approaches for trapping protein thiols and their oxidative modification Yao Xue Xue Bao 47 3 2012 280 290
    • (2012) Yao Xue Xue Bao , vol.47 , Issue.3 , pp. 280-290
    • Huang, C.S.1
  • 42
    • 11144252625 scopus 로고    scopus 로고
    • Isotope-coded affinity tag (ICAT) approach to redox proteomics: Identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures
    • DOI 10.1021/pr049887e
    • M. Sethuraman et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures J. Proteome Res. 3 6 2004 1228 1233 (Pubitemid 40040377)
    • (2004) Journal of Proteome Research , vol.3 , Issue.6 , pp. 1228-1233
    • Sethuraman, M.1    McComb, M.E.2    Huang, H.3    Huang, S.4    Heibeck, T.5    Costello, C.E.6    Cohen, R.A.7
  • 45
    • 82355181555 scopus 로고    scopus 로고
    • Using quantitative redox proteomics to dissect the yeast redoxome
    • N. Brandes et al. Using quantitative redox proteomics to dissect the yeast redoxome J. Biol. Chem. 286 48 2011 41893 41903
    • (2011) J. Biol. Chem. , vol.286 , Issue.48 , pp. 41893-41903
    • Brandes, N.1
  • 46
    • 84866272849 scopus 로고    scopus 로고
    • Quantitative in vivo redox sensors uncover oxidative stress as an early event in life
    • D. Knoefler et al. Quantitative in vivo redox sensors uncover oxidative stress as an early event in life Mol. Cell 47 5 2012 767 776
    • (2012) Mol. Cell , vol.47 , Issue.5 , pp. 767-776
    • Knoefler, D.1
  • 47
    • 84875974995 scopus 로고    scopus 로고
    • Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
    • V. Kumar et al. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry Free Radic. Biol. Med. 58 2013 109 117
    • (2013) Free Radic. Biol. Med. , vol.58 , pp. 109-117
    • Kumar, V.1
  • 48
    • 77956210622 scopus 로고    scopus 로고
    • Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins
    • K.J. Nelson et al. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins Methods Enzymol. 473 2010 95 115
    • (2010) Methods Enzymol. , vol.473 , pp. 95-115
    • Nelson, K.J.1
  • 49
    • 79851512636 scopus 로고    scopus 로고
    • Mapping the cysteine proteome: Analysis of redox-sensing thiols
    • D.P. Jones, and Y.M. Go Mapping the cysteine proteome: analysis of redox-sensing thiols Curr. Opin. Chem. Biol. 15 1 2011 103 112
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , Issue.1 , pp. 103-112
    • Jones, D.P.1    Go, Y.M.2
  • 50
    • 84884528066 scopus 로고    scopus 로고
    • Bacterial responses to reactive chlorine species
    • M.J. Gray, W.Y. Wholey, and U. Jakob Bacterial responses to reactive chlorine species Annu. Rev. Microbiol. 67 2013 141 160
    • (2013) Annu. Rev. Microbiol. , vol.67 , pp. 141-160
    • Gray, M.J.1    Wholey, W.Y.2    Jakob, U.3
  • 51
    • 84863890440 scopus 로고    scopus 로고
    • Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids
    • D.I. Pattison, M.J. Davies, and C.L. Hawkins Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids Free Radic. Res. 46 8 2012 975 995
    • (2012) Free Radic. Res. , vol.46 , Issue.8 , pp. 975-995
    • Pattison, D.I.1    Davies, M.J.2    Hawkins, C.L.3
  • 52
    • 79954542342 scopus 로고    scopus 로고
    • Factors affecting protein thiol reactivity and specificity in peroxide reduction
    • G. Ferrer-Sueta et al. Factors affecting protein thiol reactivity and specificity in peroxide reduction Chem. Res. Toxicol. 24 4 2011 434 450
    • (2011) Chem. Res. Toxicol. , vol.24 , Issue.4 , pp. 434-450
    • Ferrer-Sueta, G.1
  • 53
    • 84880277784 scopus 로고    scopus 로고
    • The biological chemistry of hydrogen peroxide
    • C.C. Winterbourn The biological chemistry of hydrogen peroxide Methods Enzymol. 528 2013 3 25
    • (2013) Methods Enzymol. , vol.528 , pp. 3-25
    • Winterbourn, C.C.1
  • 54
    • 0032865515 scopus 로고    scopus 로고
    • Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
    • DOI 10.1016/S0891-5849(99)00051-9, PII S0891584999000519
    • C.C. Winterbourn, and D. Metodiewa Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide Free Radic. Biol. Med. 27 3-4 1999 322 328 (Pubitemid 29395424)
    • (1999) Free Radical Biology and Medicine , vol.27 , Issue.3-4 , pp. 322-328
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 56
    • 84866357593 scopus 로고    scopus 로고
    • Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells
    • R.M. Jarvis, S.M. Hughes, and E.C. Ledgerwood Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells Free Radic. Biol. Med. 53 7 2012 1522 1530
    • (2012) Free Radic. Biol. Med. , vol.53 , Issue.7 , pp. 1522-1530
    • Jarvis, R.M.1    Hughes, S.M.2    Ledgerwood, E.C.3
  • 58
    • 79955967159 scopus 로고    scopus 로고
    • Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study
    • P. Nagy et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study J. Biol. Chem. 286 20 2011 18048 18055
    • (2011) J. Biol. Chem. , vol.286 , Issue.20 , pp. 18048-18055
    • Nagy, P.1
  • 59
    • 77956171017 scopus 로고    scopus 로고
    • Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
    • A. Hall et al. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization J. Mol. Biol. 402 1 2010 194 209
    • (2010) J. Mol. Biol. , vol.402 , Issue.1 , pp. 194-209
    • Hall, A.1
  • 60
    • 38749094500 scopus 로고    scopus 로고
    • The catalytic mechanism of peroxiredoxins
    • L.B. Poole The catalytic mechanism of peroxiredoxins Subcell. Biochem. 44 2007 61 81
    • (2007) Subcell. Biochem. , vol.44 , pp. 61-81
    • Poole, L.B.1
  • 61
    • 55449092300 scopus 로고    scopus 로고
    • Bleach activates a redox-regulated chaperone by oxidative protein unfolding
    • J. Winter et al. Bleach activates a redox-regulated chaperone by oxidative protein unfolding Cell 135 4 2008 691 701
    • (2008) Cell , vol.135 , Issue.4 , pp. 691-701
    • Winter, J.1
  • 63
    • 74849098506 scopus 로고    scopus 로고
    • Innate immunity and gut-microbe mutualism in Drosophila
    • J.H. Ryu, E.M. Ha, and W.J. Lee Innate immunity and gut-microbe mutualism in Drosophila Dev. Comp. Immunol. 34 4 2010 369 376
    • (2010) Dev. Comp. Immunol. , vol.34 , Issue.4 , pp. 369-376
    • Ryu, J.H.1    Ha, E.M.2    Lee, W.J.3
  • 65
    • 0032579371 scopus 로고    scopus 로고
    • Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress
    • DOI 10.1074/jbc.273.5.3027
    • J. Tamarit, E. Cabiscol, and J. Ros Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress J. Biol. Chem. 273 5 1998 3027 3032 (Pubitemid 28133956)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.5 , pp. 3027-3032
    • Tamarit, J.1    Cabiscol, E.2    Ros, J.3
  • 66
    • 2442456741 scopus 로고    scopus 로고
    • -)
    • DOI 10.1074/jbc.M310045200
    • H.K. Khor, M.T. Fisher, and C. Schoneich Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO -) J. Biol. Chem. 279 19 2004 19486 19493 (Pubitemid 38623383)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.19 , pp. 19486-19493
    • Khor, H.K.1    Fisher, M.T.2    Schoneich, C.3
  • 67
    • 0034623949 scopus 로고    scopus 로고
    • Redox switch of Hsp33 has a novel zinc-binding motif
    • DOI 10.1074/jbc.M005957200
    • U. Jakob, M. Eser, and J.C. Bardwell Redox switch of Hsp33 has a novel zinc-binding motif J. Biol. Chem. 275 49 2000 38302 38310 (Pubitemid 32009152)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.49 , pp. 38302-38310
    • Jakob, U.1    Eser, M.2    Bardwell, J.C.A.3
  • 69
    • 0034990115 scopus 로고    scopus 로고
    • The 2.2 A crystal structure of Hsp33: A heat shock protein with redox-regulated chaperone activity
    • DOI 10.1016/S0969-2126(01)00597-4, PII S0969212601005974
    • J. Vijayalakshmi et al. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity Structure 9 5 2001 367 375 (Pubitemid 32497264)
    • (2001) Structure , vol.9 , Issue.5 , pp. 367-375
    • Vijayalakshmi, J.1    Mukhergee, M.K.2    Graumann, J.3    Jakob, U.4    Saper, M.A.5
  • 70
    • 0034705402 scopus 로고    scopus 로고
    • Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone
    • DOI 10.1074/jbc.M001089200
    • S. Barbirz, U. Jakob, and M.O. Glocker Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone J. Biol. Chem. 275 25 2000 18759 18766 (Pubitemid 30422836)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.25 , pp. 18759-18766
    • Barbirz, S.1    Jakob, U.2    Glocker, M.O.3
  • 73
    • 84863230577 scopus 로고    scopus 로고
    • Order out of disorder: Working cycle of an intrinsically unfolded chaperone
    • D. Reichmann et al. Order out of disorder: working cycle of an intrinsically unfolded chaperone Cell 148 5 2012 947 957
    • (2012) Cell , vol.148 , Issue.5 , pp. 947-957
    • Reichmann, D.1
  • 74
    • 77951216943 scopus 로고    scopus 로고
    • Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone
    • C.M. Cremers et al. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone J. Biol. Chem. 285 15 2010 11243 11251
    • (2010) J. Biol. Chem. , vol.285 , Issue.15 , pp. 11243-11251
    • Cremers, C.M.1
  • 75
  • 76
    • 84870065644 scopus 로고    scopus 로고
    • Conditional disorder in chaperone action
    • J.C. Bardwell, and U. Jakob Conditional disorder in chaperone action Trends Biochem. Sci. 37 12 2012 517 525
    • (2012) Trends Biochem. Sci. , vol.37 , Issue.12 , pp. 517-525
    • Bardwell, J.C.1    Jakob, U.2
  • 77
    • 65249182171 scopus 로고    scopus 로고
    • Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding
    • T.L. Tapley et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding Proc. Natl. Acad. Sci. U. S. A. 106 14 2009 5557 5562
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , Issue.14 , pp. 5557-5562
    • Tapley, T.L.1
  • 78
    • 84875833455 scopus 로고    scopus 로고
    • Chaperone activation by unfolding
    • L. Foit et al. Chaperone activation by unfolding Proc. Natl. Acad. Sci. U. S. A. 110 14 2013 E1254 E1262
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.14
    • Foit, L.1
  • 79
    • 75749153007 scopus 로고    scopus 로고
    • Protein refolding by pH-triggered chaperone binding and release
    • T.L. Tapley et al. Protein refolding by pH-triggered chaperone binding and release Proc. Natl. Acad. Sci. U. S. A. 107 3 2010 1071 1076
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.3 , pp. 1071-1076
    • Tapley, T.L.1
  • 81
    • 84885081139 scopus 로고    scopus 로고
    • Regulated structural transitions unleash the chaperone activity of alphaB-crystallin
    • J. Peschek et al. Regulated structural transitions unleash the chaperone activity of alphaB-crystallin Proc. Natl. Acad. Sci. U. S. A. 110 40 2013 E3780 E3789
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.40
    • Peschek, J.1
  • 82
    • 79551674547 scopus 로고    scopus 로고
    • Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation?
    • F. Zhao et al. Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation? Antioxid. Redox Signal. 14 5 2011 757 766
    • (2011) Antioxid. Redox Signal. , vol.14 , Issue.5 , pp. 757-766
    • Zhao, F.1
  • 83
    • 0025367254 scopus 로고
    • Self-splicing of group i introns
    • T.R. Cech Self-splicing of group I introns Annu. Rev. Biochem. 59 1990 543 568
    • (1990) Annu. Rev. Biochem. , vol.59 , pp. 543-568
    • Cech, T.R.1
  • 84
    • 0029116947 scopus 로고
    • Protein splicing: Self-splicing of genetically mobile elements at the protein level
    • A.A. Cooper, and T.H. Stevens Protein splicing: self-splicing of genetically mobile elements at the protein level Trends Biochem. Sci. 20 9 1995 351 356
    • (1995) Trends Biochem. Sci. , vol.20 , Issue.9 , pp. 351-356
    • Cooper, A.A.1    Stevens, T.H.2
  • 86
    • 84876461880 scopus 로고    scopus 로고
    • Recent progress in intein research: From mechanism to directed evolution and applications
    • G. Volkmann, and H.D. Mootz Recent progress in intein research: from mechanism to directed evolution and applications Cell. Mol. Life Sci. 70 7 2013 1185 1206
    • (2013) Cell. Mol. Life Sci. , vol.70 , Issue.7 , pp. 1185-1206
    • Volkmann, G.1    Mootz, H.D.2
  • 88
    • 0032498234 scopus 로고    scopus 로고
    • Protein splicing of inteins and hedgehog autoproteolysis: Structure, function, and evolution
    • DOI 10.1016/S0092-8674(00)80892-2
    • F.B. Perler Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution Cell 92 1 1998 1 4 (Pubitemid 28053291)
    • (1998) Cell , vol.92 , Issue.1 , pp. 1-4
    • Perler, F.B.1
  • 89
    • 84890496915 scopus 로고    scopus 로고
    • Naturally split inteins assemble through a "capture and collapse" mechanism
    • N.H. Shah et al. Naturally split inteins assemble through a "capture and collapse" mechanism J. Am. Chem. Soc. 135 49 2013 18673 18681
    • (2013) J. Am. Chem. Soc. , vol.135 , Issue.49 , pp. 18673-18681
    • Shah, N.H.1
  • 90
    • 0034511180 scopus 로고    scopus 로고
    • Protein-splicing intein: Genetic mobility, origin, and evolution
    • X.Q. Liu Protein-splicing intein: genetic mobility, origin, and evolution Annu. Rev. Genet. 34 2000 61 76
    • (2000) Annu. Rev. Genet. , vol.34 , pp. 61-76
    • Liu, X.Q.1
  • 91
    • 0034665054 scopus 로고    scopus 로고
    • An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile
    • M.W. Southworth, J. Benner, and F.B. Perler An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile EMBO J. 19 18 2000 5019 5026
    • (2000) EMBO J. , vol.19 , Issue.18 , pp. 5019-5026
    • Southworth, M.W.1    Benner, J.2    Perler, F.B.3
  • 92
    • 79955619798 scopus 로고    scopus 로고
    • Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications
    • B.P. Callahan et al. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications Nat. Struct. Mol. Biol. 18 5 2011 630 633
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , Issue.5 , pp. 630-633
    • Callahan, B.P.1
  • 93
    • 0030941829 scopus 로고    scopus 로고
    • The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm
    • DOI 10.1074/jbc.272.25.15661
    • W.A. Prinz et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm J. Biol. Chem. 272 25 1997 15661 15667 (Pubitemid 27265536)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.25 , pp. 15661-15667
    • Prinz, W.A.1    Aslund, F.2    Holmgren, A.3    Beckwith, J.4
  • 94
    • 84863031089 scopus 로고    scopus 로고
    • Intramolecular disulfide bond between catalytic cysteines in an intein precursor
    • W. Chen et al. Intramolecular disulfide bond between catalytic cysteines in an intein precursor J. Am. Chem. Soc. 134 5 2012 2500 2503
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.5 , pp. 2500-2503
    • Chen, W.1
  • 95
    • 84883228193 scopus 로고    scopus 로고
    • Internal disulfide bond acts as a switch for intein activity
    • M.C. Nicastri et al. Internal disulfide bond acts as a switch for intein activity Biochemistry 52 34 2013 5920 5927
    • (2013) Biochemistry , vol.52 , Issue.34 , pp. 5920-5927
    • Nicastri, M.C.1
  • 96
    • 0035425040 scopus 로고    scopus 로고
    • Intein spread and extinction in evolution
    • DOI 10.1016/S0168-9525(01)02365-4, PII S0168952501023654
    • S. Pietrokovski Intein spread and extinction in evolution Trends Genet. 17 8 2001 465 472 (Pubitemid 32727239)
    • (2001) Trends in Genetics , vol.17 , Issue.8 , pp. 465-472
    • Pietrokovski, S.1
  • 97
    • 84902277107 scopus 로고    scopus 로고
    • H, C, and N NMR assignments of a Drosophila Hedgehog autoprocessing domain
    • © Springer Science Media Dordrecht 2013
    • J. Xie et al. H, C, and N NMR assignments of a Drosophila Hedgehog autoprocessing domain Biomol. NMR Assign. 2013 (© Springer Scienc Media Dordrecht 2013)
    • (2013) Biomol. NMR Assign.
    • Xie, J.1
  • 98
    • 79952433637 scopus 로고    scopus 로고
    • Processing and turnover of the Hedgehog protein in the endoplasmic reticulum
    • X. Chen et al. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum J. Cell Biol. 192 5 2011 825 838
    • (2011) J. Cell Biol. , vol.192 , Issue.5 , pp. 825-838
    • Chen, X.1
  • 99
    • 59249109389 scopus 로고    scopus 로고
    • Methods for preparing crystals of reversibly oxidized proteins: Crystallization of protein tyrosine phosphatase 1B as an example
    • A. Salmeen, and D. Barford Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example Methods Mol. Biol. 476 2008 101 116
    • (2008) Methods Mol. Biol. , vol.476 , pp. 101-116
    • Salmeen, A.1    Barford, D.2
  • 101
    • 84871714245 scopus 로고    scopus 로고
    • Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical
    • F.G. Meng, and Z.Y. Zhang Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical Biochim. Biophys. Acta 1834 1 2013 464 469
    • (2013) Biochim. Biophys. Acta , vol.1834 , Issue.1 , pp. 464-469
    • Meng, F.G.1    Zhang, Z.Y.2
  • 102
    • 80053513183 scopus 로고    scopus 로고
    • Regulation of protein tyrosine phosphatases by reversible oxidation
    • A. Ostman et al. Regulation of protein tyrosine phosphatases by reversible oxidation J. Biochem. 150 4 2011 345 356
    • (2011) J. Biochem. , vol.150 , Issue.4 , pp. 345-356
    • Ostman, A.1
  • 105
    • 17644371347 scopus 로고    scopus 로고
    • Functions and mechanisms of redox regulation of cysteine-based phosphatases
    • DOI 10.1089/ars.2005.7.560
    • A. Salmeen, and D. Barford Functions and mechanisms of redox regulation of cysteine-based phosphatases Antioxid. Redox Signal. 7 5-6 2005 560 577 (Pubitemid 40563195)
    • (2005) Antioxidants and Redox Signaling , vol.7 , Issue.5-6 , pp. 560-577
    • Salmeen, A.1    Barford, D.2
  • 106
    • 84859897794 scopus 로고    scopus 로고
    • Regulation of reactive oxygen species generation in cell signaling
    • Y.S. Bae et al. Regulation of reactive oxygen species generation in cell signaling Mol. Cells 32 6 2011 491 509
    • (2011) Mol. Cells , vol.32 , Issue.6 , pp. 491-509
    • Bae, Y.S.1
  • 107
    • 0038749600 scopus 로고    scopus 로고
    • Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B
    • DOI 10.1038/nature01681
    • R.L. van Montfort et al. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B Nature 423 6941 2003 773 777 (Pubitemid 36735702)
    • (2003) Nature , vol.423 , Issue.6941 , pp. 773-777
    • Van Montfort, R.L.M.1    Congreve, M.2    Tisi, D.3    Carr, R.4    Jhoti, H.5
  • 109
    • 62549099131 scopus 로고    scopus 로고
    • Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro
    • W. Eiamphungporn et al. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro Nucleic. Acids Res. 37 4 2009 1174 1181
    • (2009) Nucleic. Acids Res. , vol.37 , Issue.4 , pp. 1174-1181
    • Eiamphungporn, W.1
  • 111
    • 84868603203 scopus 로고    scopus 로고
    • Peroxide-sensing transcriptional regulators in bacteria
    • J.M. Dubbs, and S. Mongkolsuk Peroxide-sensing transcriptional regulators in bacteria J. Bacteriol. 194 20 2012 5495 5503
    • (2012) J. Bacteriol. , vol.194 , Issue.20 , pp. 5495-5503
    • Dubbs, J.M.1    Mongkolsuk, S.2
  • 112
    • 84888599347 scopus 로고    scopus 로고
    • Chemical biology approaches to study protein cysteine sulfenylation
    • J. Pan, and K.S. Carroll Chemical biology approaches to study protein cysteine sulfenylation Biopolymers 2 2014 165 172
    • (2014) Biopolymers , vol.2 , pp. 165-172
    • Pan, J.1    Carroll, K.S.2
  • 113
    • 79551676040 scopus 로고    scopus 로고
    • Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone
    • Y.H. Seo, and K.S. Carroll Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone Angew. Chem. Int. Ed. Engl. 50 6 2011 1342 1345
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , Issue.6 , pp. 1342-1345
    • Seo, Y.H.1    Carroll, K.S.2
  • 115
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • DOI 10.1016/j.freeradbiomed.2005.02.026, PII S0891584905000985
    • S.G. Rhee, H.Z. Chae, and K. Kim Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling Free Radic. Biol. Med. 38 12 2005 1543 1552 (Pubitemid 40726061)
    • (2005) Free Radical Biology and Medicine , vol.38 , Issue.12 , pp. 1543-1552
    • Sue, G.R.1    Ho, Z.C.2    Kim, K.3
  • 116
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • DOI 10.1126/science.1080405
    • Z.A. Wood, L.B. Poole, and P.A. Karplus Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling Science 300 5619 2003 650 653 (Pubitemid 36520591)
    • (2003) Science , vol.300 , Issue.5619 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 117
    • 10744233389 scopus 로고    scopus 로고
    • Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice
    • T.H. Lee et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice Blood 101 12 2003 5033 5038
    • (2003) Blood , vol.101 , Issue.12 , pp. 5033-5038
    • Lee, T.H.1
  • 119
    • 79951896245 scopus 로고    scopus 로고
    • Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans
    • C. Kumsta, M. Thamsen, and U. Jakob Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans Antioxid. Redox Signal. 14 6 2011 1023 1037
    • (2011) Antioxid. Redox Signal. , vol.14 , Issue.6 , pp. 1023-1037
    • Kumsta, C.1    Thamsen, M.2    Jakob, U.3
  • 120
    • 79958059617 scopus 로고    scopus 로고
    • Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
    • A. Hall et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins Antioxid. Redox Signal. 15 3 2011 795 815
    • (2011) Antioxid. Redox Signal. , vol.15 , Issue.3 , pp. 795-815
    • Hall, A.1
  • 121
    • 84890116227 scopus 로고    scopus 로고
    • Peroxiredoxins as biomarkers of oxidative stress
    • R.A. Poynton, and M.B. Hampton Peroxiredoxins as biomarkers of oxidative stress Biochim. Biophys. Acta 1840 2 2014 906 912
    • (2014) Biochim. Biophys. Acta , vol.1840 , Issue.2 , pp. 906-912
    • Poynton, R.A.1    Hampton, M.B.2
  • 123
  • 124
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. Cerevisiae sulphiredoxin
    • DOI 10.1038/nature02075
    • B. Biteau, J. Labarre, and M.B. Toledano ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin Nature 425 6961 2003 980 984 (Pubitemid 37376931)
    • (2003) Nature , vol.425 , Issue.6961 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 125
    • 84862777700 scopus 로고    scopus 로고
    • Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
    • A.M. Day et al. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival Mol. Cell 45 3 2012 398 408
    • (2012) Mol. Cell , vol.45 , Issue.3 , pp. 398-408
    • Day, A.M.1
  • 126
    • 84861964383 scopus 로고    scopus 로고
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria Mol. Cell 46 5 2012 584 594
    • (2012) Mol. Cell , vol.46 , Issue.5 , pp. 584-594
    • Kil, I.S.1
  • 128
    • 84863230834 scopus 로고    scopus 로고
    • Moonlighting by different stressors: Crystal structure of the chaperone species of a 2-Cys peroxiredoxin
    • F. Saccoccia et al. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin Structure 20 3 2012 429 439
    • (2012) Structure , vol.20 , Issue.3 , pp. 429-439
    • Saccoccia, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.