-
2
-
-
47749151450
-
Biological roles for the NOX family NADPH oxidases
-
W.M. Nauseef Biological roles for the NOX family NADPH oxidases J. Biol. Chem. 283 25 2008 16961 16965
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.25
, pp. 16961-16965
-
-
Nauseef, W.M.1
-
3
-
-
0038799736
-
Oxidative DNA damage: Mechanisms, mutation, and disease
-
DOI 10.1096/fj.02-0752rev
-
M.S. Cooke et al. Oxidative DNA damage: mechanisms, mutation, and disease FASEB J. 17 10 2003 1195 1214 (Pubitemid 36775767)
-
(2003)
FASEB Journal
, vol.17
, Issue.10
, pp. 1195-1214
-
-
Cooke, M.S.1
Evans, M.D.2
Dizdaroglu, M.3
Lunec, J.4
-
4
-
-
33750616737
-
Protein oxidation and proteolysis
-
DOI 10.1515/BC.2006.169, PII BCHM38710111351
-
N. Bader, and T. Grune Protein oxidation and proteolysis Biol. Chem. 387 10-11 2006 1351 1355 (Pubitemid 44691414)
-
(2006)
Biological Chemistry
, vol.387
, Issue.10-11
, pp. 1351-1355
-
-
Bader, N.1
Grune, T.2
-
5
-
-
78049370987
-
Oxidative stress, inflammation, and cancer: How are they linked?
-
S. Reuter et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49 2010 1603 1616
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1603-1616
-
-
Reuter, S.1
-
6
-
-
79951906200
-
Thiol-based redox switches and gene regulation
-
H. Antelmann, and J.D. Helmann Thiol-based redox switches and gene regulation Antioxid. Redox Signal. 14 2011 1049 1063
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 1049-1063
-
-
Antelmann, H.1
Helmann, J.D.2
-
7
-
-
0032513362
-
Activation of the OxyR transcription factor by reversible disulfide bond formation
-
DOI 10.1126/science.279.5357.1718
-
M. Zheng, F. Aslund, and G. Storz Activation of the OxyR transcription factor by reversible disulfide bond formation Science 279 5357 1998 1718 1721 (Pubitemid 28164467)
-
(1998)
Science
, vol.279
, Issue.5357
, pp. 1718-1721
-
-
Zheng, M.1
Aslund, F.2
Storz, G.3
-
8
-
-
50649117912
-
Cellular defenses against superoxide and hydrogen peroxide
-
J.A. Imlay Cellular defenses against superoxide and hydrogen peroxide Annu. Rev. Biochem. 77 2008 755 776
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 755-776
-
-
Imlay, J.A.1
-
9
-
-
84896730793
-
Thiol-based HO signalling in microbial systems
-
S. Boronat et al. Thiol-based HO signalling in microbial systems Redox Biol. 2 2014 395 399
-
(2014)
Redox Biol.
, vol.2
, pp. 395-399
-
-
Boronat, S.1
-
10
-
-
0033524938
-
Chaperone activity with a redox switch
-
DOI 10.1016/S0092-8674(00)80547-4
-
U. Jakob et al. Chaperone activity with a redox switch Cell 96 3 1999 341 352 (Pubitemid 29077588)
-
(1999)
Cell
, vol.96
, Issue.3
, pp. 341-352
-
-
Jakob, U.1
Muse, W.2
Eser, M.3
Bardwell, J.C.A.4
-
11
-
-
13244279524
-
Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33
-
DOI 10.1016/j.molcel.2004.12.027, PII S1097276505010142
-
J. Winter et al. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33 Mol. Cell 17 3 2005 381 392 (Pubitemid 40193309)
-
(2005)
Molecular Cell
, vol.17
, Issue.3
, pp. 381-392
-
-
Winter, J.1
Linke, K.2
Jatzek, A.3
Jakob, U.4
-
13
-
-
64549097266
-
Thiol-based redox switches in eukaryotic proteins
-
N. Brandes, S. Schmitt, and U. Jakob Thiol-based redox switches in eukaryotic proteins Antioxid. Redox Signal. 11 5 2009 997 1014
-
(2009)
Antioxid. Redox Signal.
, vol.11
, Issue.5
, pp. 997-1014
-
-
Brandes, N.1
Schmitt, S.2
Jakob, U.3
-
14
-
-
76749096867
-
Redox remodeling as an immunoregulatory strategy
-
Z. Yan, and R. Banerjee Redox remodeling as an immunoregulatory strategy Biochemistry 49 6 2010 1059 1066
-
(2010)
Biochemistry
, vol.49
, Issue.6
, pp. 1059-1066
-
-
Yan, Z.1
Banerjee, R.2
-
15
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
P.D. Ray, B.W. Huang, and Y. Tsuji Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling Cell. Signal. 24 5 2012 981 990
-
(2012)
Cell. Signal.
, vol.24
, Issue.5
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
16
-
-
84876114193
-
Post-translational control of protein function by disulfide bond cleavage
-
K.M. Cook, and P.J. Hogg Post-translational control of protein function by disulfide bond cleavage Antioxid. Redox Signal. 18 15 2013 1987 2015
-
(2013)
Antioxid. Redox Signal.
, vol.18
, Issue.15
, pp. 1987-2015
-
-
Cook, K.M.1
Hogg, P.J.2
-
17
-
-
84868206533
-
Understanding the pK(a) of redox cysteines: The key role of hydrogen bonding
-
G. Roos, N. Foloppe, and J. Messens Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding Antioxid. Redox Signal. 18 1 2013 94 127
-
(2013)
Antioxid. Redox Signal.
, vol.18
, Issue.1
, pp. 94-127
-
-
Roos, G.1
Foloppe, N.2
Messens, J.3
-
18
-
-
48449107159
-
Thiol chemistry and specificity in redox signaling
-
C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 5 2008 549 561
-
(2008)
Free Radic. Biol. Med.
, vol.45
, Issue.5
, pp. 549-561
-
-
Winterbourn, C.C.1
Hampton, M.B.2
-
20
-
-
84883674898
-
The redox biochemistry of protein sulfenylation and sulfinylation
-
M. Lo Conte, and K.S. Carroll The redox biochemistry of protein sulfenylation and sulfinylation J. Biol. Chem. 288 37 2013 26480 26488
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.37
, pp. 26480-26488
-
-
Lo Conte, M.1
Carroll, K.S.2
-
21
-
-
78649268193
-
Formation, reactivity, and detection of protein sulfenic acids
-
N.J. Kettenhofen, and M.J. Wood Formation, reactivity, and detection of protein sulfenic acids Chem. Res. Toxicol. 23 2010 1633 1646
-
(2010)
Chem. Res. Toxicol.
, vol.23
, pp. 1633-1646
-
-
Kettenhofen, N.J.1
Wood, M.J.2
-
23
-
-
0027131771
-
Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation
-
A. Claiborne et al. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation FASEB J. 7 15 1993 1483 1490 (Pubitemid 24003268)
-
(1993)
FASEB Journal
, vol.7
, Issue.15
, pp. 1483-1490
-
-
Claiborne, A.1
Miller, H.2
Parsonage, D.3
Ross, R.P.4
-
24
-
-
34447623403
-
Characterization by Tandem Mass Spectrometry of Stable Cysteine Sulfenic Acid in a Cysteine Switch Peptide of Matrix Metalloproteinases
-
DOI 10.1016/j.jasms.2007.05.013, PII S1044030507004333
-
V. Shetty, D.S. Spellman, and T.A. Neubert Characterization by tandem mass spectrometry of stable cysteine sulfenic acid in a cysteine switch peptide of matrix metalloproteinases J. Am. Soc. Mass Spectrom. 18 8 2007 1544 1551 (Pubitemid 47089005)
-
(2007)
Journal of the American Society for Mass Spectrometry
, vol.18
, Issue.8
, pp. 1544-1551
-
-
Shetty, V.1
Spellman, D.S.2
Neubert, T.A.3
-
25
-
-
78649268193
-
Formation, reactivity, and detection of protein sulfenic acids
-
N.J. Kettenhofen, and M.J. Wood Formation, reactivity, and detection of protein sulfenic acids Chem. Res. Toxicol. 23 11 2010 1633 1646
-
(2010)
Chem. Res. Toxicol.
, vol.23
, Issue.11
, pp. 1633-1646
-
-
Kettenhofen, N.J.1
Wood, M.J.2
-
26
-
-
34547441421
-
Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance
-
S.G. Rhee et al. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance Kidney Int. Suppl. 106 2007 S3 S8
-
(2007)
Kidney Int. Suppl.
, vol.106
-
-
Rhee, S.G.1
-
27
-
-
84875274140
-
Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin
-
J.C. Moon et al. Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin Biochem. Biophys. Res. Commun. 432 2 2013 291 295
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.432
, Issue.2
, pp. 291-295
-
-
Moon, J.C.1
-
28
-
-
84892366219
-
The thioredoxin antioxidant system
-
J. Lu, and A. Holmgren The thioredoxin antioxidant system Free Radic. Biol. Med. 66 2014 75 87
-
(2014)
Free Radic. Biol. Med.
, vol.66
, pp. 75-87
-
-
Lu, J.1
Holmgren, A.2
-
29
-
-
33847746679
-
Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: Implications for diseases in the cardiovascular system
-
C. Berndt, C.H. Lillig, and A. Holmgren Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system Am. J. Physiol. Heart Circ. Physiol. 292 3 2007 H1227 H1236
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, Issue.3
-
-
Berndt, C.1
Lillig, C.H.2
Holmgren, A.3
-
30
-
-
0029165589
-
Thioredoxin - A fold for all reasons
-
J.L. Martin Thioredoxin - a fold for all reasons Structure 3 3 1995 245 250
-
(1995)
Structure
, vol.3
, Issue.3
, pp. 245-250
-
-
Martin, J.L.1
-
31
-
-
70049106936
-
How thioredoxin dissociates its mixed disulfide
-
G. Roos et al. How thioredoxin dissociates its mixed disulfide PLoS Comput. Biol. 5 8 2009 e1000461
-
(2009)
PLoS Comput. Biol.
, vol.5
, Issue.8
, pp. 1000461
-
-
Roos, G.1
-
32
-
-
0028785378
-
Mechanism and structure of thioredoxin reductase from Escherichia coli
-
C.H. Williams Jr. Mechanism and structure of thioredoxin reductase from Escherichia coli FASEB J. 9 13 1995 1267 1276
-
(1995)
FASEB J.
, vol.9
, Issue.13
, pp. 1267-1276
-
-
Williams Jr., C.H.1
-
33
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
DOI 10.1016/j.coph.2007.06.003, PII S1471489207001038, Cancer/Immunomodulation
-
M.M. Gallogly, and J.J. Mieyal Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress Curr. Opin. Pharmacol. 7 4 2007 381 391 (Pubitemid 47304000)
-
(2007)
Current Opinion in Pharmacology
, vol.7
, Issue.4
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
35
-
-
0033025238
-
The thioredoxin superfamily: Redundancy, specificity, and gray-area genomics
-
F. Aslund, and J. Beckwith The thioredoxin superfamily: redundancy, specificity, and gray-area genomics J. Bacteriol. 181 5 1999 1375 1379 (Pubitemid 29110793)
-
(1999)
Journal of Bacteriology
, vol.181
, Issue.5
, pp. 1375-1379
-
-
Aslund, F.1
Beckwith, J.2
-
36
-
-
84865411350
-
Thioredoxin and glutaredoxin systems in plants: Molecular mechanisms, crosstalks, and functional significance
-
Y. Meyer et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance Antioxid. Redox Signal. 17 8 2012 1124 1160
-
(2012)
Antioxid. Redox Signal.
, vol.17
, Issue.8
, pp. 1124-1160
-
-
Meyer, Y.1
-
37
-
-
84887478834
-
Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system
-
Y. Du et al. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system J. Biol. Chem. 288 45 2013 32241 32247
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.45
, pp. 32241-32247
-
-
Du, Y.1
-
41
-
-
84860846749
-
Chemical approaches for trapping protein thiols and their oxidative modification
-
C.S. Huang et al. Chemical approaches for trapping protein thiols and their oxidative modification Yao Xue Xue Bao 47 3 2012 280 290
-
(2012)
Yao Xue Xue Bao
, vol.47
, Issue.3
, pp. 280-290
-
-
Huang, C.S.1
-
42
-
-
11144252625
-
Isotope-coded affinity tag (ICAT) approach to redox proteomics: Identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures
-
DOI 10.1021/pr049887e
-
M. Sethuraman et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures J. Proteome Res. 3 6 2004 1228 1233 (Pubitemid 40040377)
-
(2004)
Journal of Proteome Research
, vol.3
, Issue.6
, pp. 1228-1233
-
-
Sethuraman, M.1
McComb, M.E.2
Huang, H.3
Huang, S.4
Heibeck, T.5
Costello, C.E.6
Cohen, R.A.7
-
43
-
-
46149125288
-
Quantifying changes in the thiol redox proteome upon oxidative stress in vivo
-
DOI 10.1073/pnas.0707723105
-
L.I. Leichert et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo Proc. Natl. Acad. Sci. U. S. A. 105 2008 8197 8202 (Pubitemid 351904734)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.24
, pp. 8197-8202
-
-
Leichert, L.I.1
Gehrke, F.2
Gudiseva, H.V.3
Blackwell, T.4
Ilbert, M.5
Walker, A.K.6
Strahler, J.R.7
Andrews, P.C.8
Jakob, U.9
-
45
-
-
82355181555
-
Using quantitative redox proteomics to dissect the yeast redoxome
-
N. Brandes et al. Using quantitative redox proteomics to dissect the yeast redoxome J. Biol. Chem. 286 48 2011 41893 41903
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.48
, pp. 41893-41903
-
-
Brandes, N.1
-
46
-
-
84866272849
-
Quantitative in vivo redox sensors uncover oxidative stress as an early event in life
-
D. Knoefler et al. Quantitative in vivo redox sensors uncover oxidative stress as an early event in life Mol. Cell 47 5 2012 767 776
-
(2012)
Mol. Cell
, vol.47
, Issue.5
, pp. 767-776
-
-
Knoefler, D.1
-
47
-
-
84875974995
-
Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
-
V. Kumar et al. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry Free Radic. Biol. Med. 58 2013 109 117
-
(2013)
Free Radic. Biol. Med.
, vol.58
, pp. 109-117
-
-
Kumar, V.1
-
48
-
-
77956210622
-
Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins
-
K.J. Nelson et al. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins Methods Enzymol. 473 2010 95 115
-
(2010)
Methods Enzymol.
, vol.473
, pp. 95-115
-
-
Nelson, K.J.1
-
49
-
-
79851512636
-
Mapping the cysteine proteome: Analysis of redox-sensing thiols
-
D.P. Jones, and Y.M. Go Mapping the cysteine proteome: analysis of redox-sensing thiols Curr. Opin. Chem. Biol. 15 1 2011 103 112
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, Issue.1
, pp. 103-112
-
-
Jones, D.P.1
Go, Y.M.2
-
51
-
-
84863890440
-
Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids
-
D.I. Pattison, M.J. Davies, and C.L. Hawkins Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids Free Radic. Res. 46 8 2012 975 995
-
(2012)
Free Radic. Res.
, vol.46
, Issue.8
, pp. 975-995
-
-
Pattison, D.I.1
Davies, M.J.2
Hawkins, C.L.3
-
52
-
-
79954542342
-
Factors affecting protein thiol reactivity and specificity in peroxide reduction
-
G. Ferrer-Sueta et al. Factors affecting protein thiol reactivity and specificity in peroxide reduction Chem. Res. Toxicol. 24 4 2011 434 450
-
(2011)
Chem. Res. Toxicol.
, vol.24
, Issue.4
, pp. 434-450
-
-
Ferrer-Sueta, G.1
-
53
-
-
84880277784
-
The biological chemistry of hydrogen peroxide
-
C.C. Winterbourn The biological chemistry of hydrogen peroxide Methods Enzymol. 528 2013 3 25
-
(2013)
Methods Enzymol.
, vol.528
, pp. 3-25
-
-
Winterbourn, C.C.1
-
54
-
-
0032865515
-
Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
-
DOI 10.1016/S0891-5849(99)00051-9, PII S0891584999000519
-
C.C. Winterbourn, and D. Metodiewa Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide Free Radic. Biol. Med. 27 3-4 1999 322 328 (Pubitemid 29395424)
-
(1999)
Free Radical Biology and Medicine
, vol.27
, Issue.3-4
, pp. 322-328
-
-
Winterbourn, C.C.1
Metodiewa, D.2
-
56
-
-
84866357593
-
Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells
-
R.M. Jarvis, S.M. Hughes, and E.C. Ledgerwood Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells Free Radic. Biol. Med. 53 7 2012 1522 1530
-
(2012)
Free Radic. Biol. Med.
, vol.53
, Issue.7
, pp. 1522-1530
-
-
Jarvis, R.M.1
Hughes, S.M.2
Ledgerwood, E.C.3
-
58
-
-
79955967159
-
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study
-
P. Nagy et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study J. Biol. Chem. 286 20 2011 18048 18055
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.20
, pp. 18048-18055
-
-
Nagy, P.1
-
59
-
-
77956171017
-
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
-
A. Hall et al. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization J. Mol. Biol. 402 1 2010 194 209
-
(2010)
J. Mol. Biol.
, vol.402
, Issue.1
, pp. 194-209
-
-
Hall, A.1
-
60
-
-
38749094500
-
The catalytic mechanism of peroxiredoxins
-
L.B. Poole The catalytic mechanism of peroxiredoxins Subcell. Biochem. 44 2007 61 81
-
(2007)
Subcell. Biochem.
, vol.44
, pp. 61-81
-
-
Poole, L.B.1
-
61
-
-
55449092300
-
Bleach activates a redox-regulated chaperone by oxidative protein unfolding
-
J. Winter et al. Bleach activates a redox-regulated chaperone by oxidative protein unfolding Cell 135 4 2008 691 701
-
(2008)
Cell
, vol.135
, Issue.4
, pp. 691-701
-
-
Winter, J.1
-
62
-
-
34249866216
-
The redox-switch domain of Hsp33 functions as dual stress sensor
-
DOI 10.1038/nsmb1244, PII NSMB1244
-
M. Ilbert et al. The redox-switch domain of Hsp33 functions as dual stress sensor Nat. Struct. Mol. Biol. 14 2007 556 563 (Pubitemid 46871808)
-
(2007)
Nature Structural and Molecular Biology
, vol.14
, Issue.6
, pp. 556-563
-
-
Ilbert, M.1
Horst, J.2
Ahrens, S.3
Winter, J.4
Graf, P.C.F.5
Lilie, H.6
Jakob, U.7
-
63
-
-
74849098506
-
Innate immunity and gut-microbe mutualism in Drosophila
-
J.H. Ryu, E.M. Ha, and W.J. Lee Innate immunity and gut-microbe mutualism in Drosophila Dev. Comp. Immunol. 34 4 2010 369 376
-
(2010)
Dev. Comp. Immunol.
, vol.34
, Issue.4
, pp. 369-376
-
-
Ryu, J.H.1
Ha, E.M.2
Lee, W.J.3
-
65
-
-
0032579371
-
Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress
-
DOI 10.1074/jbc.273.5.3027
-
J. Tamarit, E. Cabiscol, and J. Ros Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress J. Biol. Chem. 273 5 1998 3027 3032 (Pubitemid 28133956)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.5
, pp. 3027-3032
-
-
Tamarit, J.1
Cabiscol, E.2
Ros, J.3
-
66
-
-
2442456741
-
-)
-
DOI 10.1074/jbc.M310045200
-
H.K. Khor, M.T. Fisher, and C. Schoneich Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO -) J. Biol. Chem. 279 19 2004 19486 19493 (Pubitemid 38623383)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.19
, pp. 19486-19493
-
-
Khor, H.K.1
Fisher, M.T.2
Schoneich, C.3
-
67
-
-
0034623949
-
Redox switch of Hsp33 has a novel zinc-binding motif
-
DOI 10.1074/jbc.M005957200
-
U. Jakob, M. Eser, and J.C. Bardwell Redox switch of Hsp33 has a novel zinc-binding motif J. Biol. Chem. 275 49 2000 38302 38310 (Pubitemid 32009152)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.49
, pp. 38302-38310
-
-
Jakob, U.1
Eser, M.2
Bardwell, J.C.A.3
-
68
-
-
4644266682
-
2+-bound form of the B. Subtilis Hsp33 chaperone and its implications for the activation mechanism
-
DOI 10.1016/j.str.2004.08.003, PII S0969212604003077
-
I. Janda et al. The crystal structure of the reduced, Zn2 +bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism Structure (Camb) 12 10 2004 1901 1907 (Pubitemid 39298973)
-
(2004)
Structure
, vol.12
, Issue.10
, pp. 1901-1907
-
-
Janda, I.1
Devedjiev, Y.2
Derewenda, U.3
Dauter, Z.4
Bielnicki, J.5
Cooper, D.R.6
Graf, P.C.F.7
Joachimiak, A.8
Jakob, U.9
Derewenda, Z.S.10
-
69
-
-
0034990115
-
The 2.2 A crystal structure of Hsp33: A heat shock protein with redox-regulated chaperone activity
-
DOI 10.1016/S0969-2126(01)00597-4, PII S0969212601005974
-
J. Vijayalakshmi et al. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity Structure 9 5 2001 367 375 (Pubitemid 32497264)
-
(2001)
Structure
, vol.9
, Issue.5
, pp. 367-375
-
-
Vijayalakshmi, J.1
Mukhergee, M.K.2
Graumann, J.3
Jakob, U.4
Saper, M.A.5
-
70
-
-
0034705402
-
Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone
-
DOI 10.1074/jbc.M001089200
-
S. Barbirz, U. Jakob, and M.O. Glocker Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone J. Biol. Chem. 275 25 2000 18759 18766 (Pubitemid 30422836)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.25
, pp. 18759-18766
-
-
Barbirz, S.1
Jakob, U.2
Glocker, M.O.3
-
72
-
-
0034991998
-
Activation of the redox-regulated molecular chaperone Hsp33 - A two-step mechanism
-
DOI 10.1016/S0969-2126(01)00599-8, PII S0969212601005998
-
J. Graumann et al. Activation of the redox-regulated molecular chaperone Hsp33 - a two-step mechanism Structure 9 5 2001 377 387 (Pubitemid 32497265)
-
(2001)
Structure
, vol.9
, Issue.5
, pp. 377-387
-
-
Graumann, J.1
Lilie, H.2
Tang, X.3
Tucker, K.A.4
Hoffmann, J.H.5
Vijayalakshmi, J.6
Saper, M.7
Bardwell, J.C.A.8
Jakob, U.9
-
73
-
-
84863230577
-
Order out of disorder: Working cycle of an intrinsically unfolded chaperone
-
D. Reichmann et al. Order out of disorder: working cycle of an intrinsically unfolded chaperone Cell 148 5 2012 947 957
-
(2012)
Cell
, vol.148
, Issue.5
, pp. 947-957
-
-
Reichmann, D.1
-
74
-
-
77951216943
-
Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone
-
C.M. Cremers et al. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone J. Biol. Chem. 285 15 2010 11243 11251
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.15
, pp. 11243-11251
-
-
Cremers, C.M.1
-
76
-
-
84870065644
-
Conditional disorder in chaperone action
-
J.C. Bardwell, and U. Jakob Conditional disorder in chaperone action Trends Biochem. Sci. 37 12 2012 517 525
-
(2012)
Trends Biochem. Sci.
, vol.37
, Issue.12
, pp. 517-525
-
-
Bardwell, J.C.1
Jakob, U.2
-
77
-
-
65249182171
-
Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding
-
T.L. Tapley et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding Proc. Natl. Acad. Sci. U. S. A. 106 14 2009 5557 5562
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, Issue.14
, pp. 5557-5562
-
-
Tapley, T.L.1
-
78
-
-
84875833455
-
Chaperone activation by unfolding
-
L. Foit et al. Chaperone activation by unfolding Proc. Natl. Acad. Sci. U. S. A. 110 14 2013 E1254 E1262
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.14
-
-
Foit, L.1
-
79
-
-
75749153007
-
Protein refolding by pH-triggered chaperone binding and release
-
T.L. Tapley et al. Protein refolding by pH-triggered chaperone binding and release Proc. Natl. Acad. Sci. U. S. A. 107 3 2010 1071 1076
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.3
, pp. 1071-1076
-
-
Tapley, T.L.1
-
80
-
-
4644313922
-
A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization
-
DOI 10.1016/j.jmb.2004.08.048, PII S0022283604010289
-
M. Haslbeck et al. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization J. Mol. Biol. 343 2 2004 445 455 (Pubitemid 39296877)
-
(2004)
Journal of Molecular Biology
, vol.343
, Issue.2
, pp. 445-455
-
-
Haslbeck, M.1
Ignatiou, A.2
Saibil, H.3
Helmich, S.4
Frenzl, E.5
Stromer, T.6
Buchner, J.7
-
81
-
-
84885081139
-
Regulated structural transitions unleash the chaperone activity of alphaB-crystallin
-
J. Peschek et al. Regulated structural transitions unleash the chaperone activity of alphaB-crystallin Proc. Natl. Acad. Sci. U. S. A. 110 40 2013 E3780 E3789
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.40
-
-
Peschek, J.1
-
82
-
-
79551674547
-
Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation?
-
F. Zhao et al. Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation? Antioxid. Redox Signal. 14 5 2011 757 766
-
(2011)
Antioxid. Redox Signal.
, vol.14
, Issue.5
, pp. 757-766
-
-
Zhao, F.1
-
83
-
-
0025367254
-
Self-splicing of group i introns
-
T.R. Cech Self-splicing of group I introns Annu. Rev. Biochem. 59 1990 543 568
-
(1990)
Annu. Rev. Biochem.
, vol.59
, pp. 543-568
-
-
Cech, T.R.1
-
84
-
-
0029116947
-
Protein splicing: Self-splicing of genetically mobile elements at the protein level
-
A.A. Cooper, and T.H. Stevens Protein splicing: self-splicing of genetically mobile elements at the protein level Trends Biochem. Sci. 20 9 1995 351 356
-
(1995)
Trends Biochem. Sci.
, vol.20
, Issue.9
, pp. 351-356
-
-
Cooper, A.A.1
Stevens, T.H.2
-
85
-
-
0028214350
-
Protein splicing elements: Inteins and exteins - A definition of terms and recommended nomenclature
-
F.B. Perler et al. Protein splicing elements: inteins and exteins - a definition of terms and recommended nomenclature Nucleic Acids Res. 22 7 1994 1125 1127 (Pubitemid 24162112)
-
(1994)
Nucleic Acids Research
, vol.22
, Issue.7
, pp. 1125-1127
-
-
Perler, F.B.1
Davis, E.O.2
Dean, G.E.3
Gimble, F.S.4
Jack, W.E.5
Neff, N.6
Noren, C.J.7
Thorner, J.8
Belfort, M.9
-
86
-
-
84876461880
-
Recent progress in intein research: From mechanism to directed evolution and applications
-
G. Volkmann, and H.D. Mootz Recent progress in intein research: from mechanism to directed evolution and applications Cell. Mol. Life Sci. 70 7 2013 1185 1206
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, Issue.7
, pp. 1185-1206
-
-
Volkmann, G.1
Mootz, H.D.2
-
87
-
-
0036405356
-
Inteins: Structure, function, and evolution
-
DOI 10.1146/annurev.micro.56.012302.160741
-
J.P. Gogarten et al. Inteins: structure, function, and evolution Annu. Rev. Microbiol. 56 2002 263 287 (Pubitemid 35217456)
-
(2002)
Annual Review of Microbiology
, vol.56
, pp. 263-287
-
-
Gogarten, J.P.1
Senejani, A.G.2
Zhaxybayeva, O.3
Olendzenski, L.4
Hilario, E.5
-
88
-
-
0032498234
-
Protein splicing of inteins and hedgehog autoproteolysis: Structure, function, and evolution
-
DOI 10.1016/S0092-8674(00)80892-2
-
F.B. Perler Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution Cell 92 1 1998 1 4 (Pubitemid 28053291)
-
(1998)
Cell
, vol.92
, Issue.1
, pp. 1-4
-
-
Perler, F.B.1
-
89
-
-
84890496915
-
Naturally split inteins assemble through a "capture and collapse" mechanism
-
N.H. Shah et al. Naturally split inteins assemble through a "capture and collapse" mechanism J. Am. Chem. Soc. 135 49 2013 18673 18681
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.49
, pp. 18673-18681
-
-
Shah, N.H.1
-
90
-
-
0034511180
-
Protein-splicing intein: Genetic mobility, origin, and evolution
-
X.Q. Liu Protein-splicing intein: genetic mobility, origin, and evolution Annu. Rev. Genet. 34 2000 61 76
-
(2000)
Annu. Rev. Genet.
, vol.34
, pp. 61-76
-
-
Liu, X.Q.1
-
91
-
-
0034665054
-
An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile
-
M.W. Southworth, J. Benner, and F.B. Perler An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile EMBO J. 19 18 2000 5019 5026
-
(2000)
EMBO J.
, vol.19
, Issue.18
, pp. 5019-5026
-
-
Southworth, M.W.1
Benner, J.2
Perler, F.B.3
-
92
-
-
79955619798
-
Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications
-
B.P. Callahan et al. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications Nat. Struct. Mol. Biol. 18 5 2011 630 633
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, Issue.5
, pp. 630-633
-
-
Callahan, B.P.1
-
93
-
-
0030941829
-
The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm
-
DOI 10.1074/jbc.272.25.15661
-
W.A. Prinz et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm J. Biol. Chem. 272 25 1997 15661 15667 (Pubitemid 27265536)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.25
, pp. 15661-15667
-
-
Prinz, W.A.1
Aslund, F.2
Holmgren, A.3
Beckwith, J.4
-
94
-
-
84863031089
-
Intramolecular disulfide bond between catalytic cysteines in an intein precursor
-
W. Chen et al. Intramolecular disulfide bond between catalytic cysteines in an intein precursor J. Am. Chem. Soc. 134 5 2012 2500 2503
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.5
, pp. 2500-2503
-
-
Chen, W.1
-
95
-
-
84883228193
-
Internal disulfide bond acts as a switch for intein activity
-
M.C. Nicastri et al. Internal disulfide bond acts as a switch for intein activity Biochemistry 52 34 2013 5920 5927
-
(2013)
Biochemistry
, vol.52
, Issue.34
, pp. 5920-5927
-
-
Nicastri, M.C.1
-
96
-
-
0035425040
-
Intein spread and extinction in evolution
-
DOI 10.1016/S0168-9525(01)02365-4, PII S0168952501023654
-
S. Pietrokovski Intein spread and extinction in evolution Trends Genet. 17 8 2001 465 472 (Pubitemid 32727239)
-
(2001)
Trends in Genetics
, vol.17
, Issue.8
, pp. 465-472
-
-
Pietrokovski, S.1
-
97
-
-
84902277107
-
H, C, and N NMR assignments of a Drosophila Hedgehog autoprocessing domain
-
© Springer Science Media Dordrecht 2013
-
J. Xie et al. H, C, and N NMR assignments of a Drosophila Hedgehog autoprocessing domain Biomol. NMR Assign. 2013 (© Springer Scienc Media Dordrecht 2013)
-
(2013)
Biomol. NMR Assign.
-
-
Xie, J.1
-
98
-
-
79952433637
-
Processing and turnover of the Hedgehog protein in the endoplasmic reticulum
-
X. Chen et al. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum J. Cell Biol. 192 5 2011 825 838
-
(2011)
J. Cell Biol.
, vol.192
, Issue.5
, pp. 825-838
-
-
Chen, X.1
-
99
-
-
59249109389
-
Methods for preparing crystals of reversibly oxidized proteins: Crystallization of protein tyrosine phosphatase 1B as an example
-
A. Salmeen, and D. Barford Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example Methods Mol. Biol. 476 2008 101 116
-
(2008)
Methods Mol. Biol.
, vol.476
, pp. 101-116
-
-
Salmeen, A.1
Barford, D.2
-
100
-
-
33846456252
-
Reversible oxidation of the membrane distal domain of receptor PTPα is mediated by a cyclic sulfenamide
-
DOI 10.1021/bi061546m
-
J. Yang et al. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide Biochemistry 46 3 2007 709 719 (Pubitemid 46137775)
-
(2007)
Biochemistry
, vol.46
, Issue.3
, pp. 709-719
-
-
Yang, J.1
Groen, A.2
Lemeer, S.3
Jans, A.4
Slijper, M.5
Roe, S.M.6
Den Hertog, J.7
Barford, D.8
-
101
-
-
84871714245
-
Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical
-
F.G. Meng, and Z.Y. Zhang Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical Biochim. Biophys. Acta 1834 1 2013 464 469
-
(2013)
Biochim. Biophys. Acta
, vol.1834
, Issue.1
, pp. 464-469
-
-
Meng, F.G.1
Zhang, Z.Y.2
-
102
-
-
80053513183
-
Regulation of protein tyrosine phosphatases by reversible oxidation
-
A. Ostman et al. Regulation of protein tyrosine phosphatases by reversible oxidation J. Biochem. 150 4 2011 345 356
-
(2011)
J. Biochem.
, vol.150
, Issue.4
, pp. 345-356
-
-
Ostman, A.1
-
105
-
-
17644371347
-
Functions and mechanisms of redox regulation of cysteine-based phosphatases
-
DOI 10.1089/ars.2005.7.560
-
A. Salmeen, and D. Barford Functions and mechanisms of redox regulation of cysteine-based phosphatases Antioxid. Redox Signal. 7 5-6 2005 560 577 (Pubitemid 40563195)
-
(2005)
Antioxidants and Redox Signaling
, vol.7
, Issue.5-6
, pp. 560-577
-
-
Salmeen, A.1
Barford, D.2
-
106
-
-
84859897794
-
Regulation of reactive oxygen species generation in cell signaling
-
Y.S. Bae et al. Regulation of reactive oxygen species generation in cell signaling Mol. Cells 32 6 2011 491 509
-
(2011)
Mol. Cells
, vol.32
, Issue.6
, pp. 491-509
-
-
Bae, Y.S.1
-
107
-
-
0038749600
-
Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B
-
DOI 10.1038/nature01681
-
R.L. van Montfort et al. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B Nature 423 6941 2003 773 777 (Pubitemid 36735702)
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 773-777
-
-
Van Montfort, R.L.M.1
Congreve, M.2
Tisi, D.3
Carr, R.4
Jhoti, H.5
-
108
-
-
0038411479
-
Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate
-
DOI 10.1038/nature01680
-
A. Salmeen et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate Nature 423 6941 2003 769 773 (Pubitemid 36735701)
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 769-773
-
-
Salmeen, A.1
Andersen, J.N.2
Myers, M.P.3
Meng, T.-C.4
Hinks, J.A.5
Tonks, N.K.6
Barford, D.7
-
109
-
-
62549099131
-
Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro
-
W. Eiamphungporn et al. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro Nucleic. Acids Res. 37 4 2009 1174 1181
-
(2009)
Nucleic. Acids Res.
, vol.37
, Issue.4
, pp. 1174-1181
-
-
Eiamphungporn, W.1
-
111
-
-
84868603203
-
Peroxide-sensing transcriptional regulators in bacteria
-
J.M. Dubbs, and S. Mongkolsuk Peroxide-sensing transcriptional regulators in bacteria J. Bacteriol. 194 20 2012 5495 5503
-
(2012)
J. Bacteriol.
, vol.194
, Issue.20
, pp. 5495-5503
-
-
Dubbs, J.M.1
Mongkolsuk, S.2
-
112
-
-
84888599347
-
Chemical biology approaches to study protein cysteine sulfenylation
-
J. Pan, and K.S. Carroll Chemical biology approaches to study protein cysteine sulfenylation Biopolymers 2 2014 165 172
-
(2014)
Biopolymers
, vol.2
, pp. 165-172
-
-
Pan, J.1
Carroll, K.S.2
-
113
-
-
79551676040
-
Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone
-
Y.H. Seo, and K.S. Carroll Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone Angew. Chem. Int. Ed. Engl. 50 6 2011 1342 1345
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, Issue.6
, pp. 1342-1345
-
-
Seo, Y.H.1
Carroll, K.S.2
-
115
-
-
19444375216
-
Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
-
DOI 10.1016/j.freeradbiomed.2005.02.026, PII S0891584905000985
-
S.G. Rhee, H.Z. Chae, and K. Kim Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling Free Radic. Biol. Med. 38 12 2005 1543 1552 (Pubitemid 40726061)
-
(2005)
Free Radical Biology and Medicine
, vol.38
, Issue.12
, pp. 1543-1552
-
-
Sue, G.R.1
Ho, Z.C.2
Kim, K.3
-
116
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
DOI 10.1126/science.1080405
-
Z.A. Wood, L.B. Poole, and P.A. Karplus Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling Science 300 5619 2003 650 653 (Pubitemid 36520591)
-
(2003)
Science
, vol.300
, Issue.5619
, pp. 650-653
-
-
Wood, Z.A.1
Poole, L.B.2
Karplus, P.A.3
-
117
-
-
10744233389
-
Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice
-
T.H. Lee et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice Blood 101 12 2003 5033 5038
-
(2003)
Blood
, vol.101
, Issue.12
, pp. 5033-5038
-
-
Lee, T.H.1
-
118
-
-
0042568938
-
Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression
-
DOI 10.1038/nature01819
-
C.A. Neumann et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression Nature 424 6948 2003 561 565 (Pubitemid 36975778)
-
(2003)
Nature
, vol.424
, Issue.6948
, pp. 561-565
-
-
Neumann, C.A.1
Krause, D.S.2
Carman, C.V.3
Das, S.4
Dubey, D.P.5
Abraham, J.L.6
Bronson, R.T.7
Fujiwara, Y.8
Orkin, S.H.9
Van Etten, R.A.10
-
119
-
-
79951896245
-
Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans
-
C. Kumsta, M. Thamsen, and U. Jakob Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans Antioxid. Redox Signal. 14 6 2011 1023 1037
-
(2011)
Antioxid. Redox Signal.
, vol.14
, Issue.6
, pp. 1023-1037
-
-
Kumsta, C.1
Thamsen, M.2
Jakob, U.3
-
120
-
-
79958059617
-
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
-
A. Hall et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins Antioxid. Redox Signal. 15 3 2011 795 815
-
(2011)
Antioxid. Redox Signal.
, vol.15
, Issue.3
, pp. 795-815
-
-
Hall, A.1
-
121
-
-
84890116227
-
Peroxiredoxins as biomarkers of oxidative stress
-
R.A. Poynton, and M.B. Hampton Peroxiredoxins as biomarkers of oxidative stress Biochim. Biophys. Acta 1840 2 2014 906 912
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, Issue.2
, pp. 906-912
-
-
Poynton, R.A.1
Hampton, M.B.2
-
124
-
-
0242416188
-
ATP-dependent reduction of cysteine-sulphinic acid by S. Cerevisiae sulphiredoxin
-
DOI 10.1038/nature02075
-
B. Biteau, J. Labarre, and M.B. Toledano ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin Nature 425 6961 2003 980 984 (Pubitemid 37376931)
-
(2003)
Nature
, vol.425
, Issue.6961
, pp. 980-984
-
-
Biteau, B.1
Labarre, J.2
Toledano, M.B.3
-
125
-
-
84862777700
-
Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
-
A.M. Day et al. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival Mol. Cell 45 3 2012 398 408
-
(2012)
Mol. Cell
, vol.45
, Issue.3
, pp. 398-408
-
-
Day, A.M.1
-
126
-
-
84861964383
-
2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
2-dependent, reversible inactivation of peroxiredoxin III in mitochondria Mol. Cell 46 5 2012 584 594
-
(2012)
Mol. Cell
, vol.46
, Issue.5
, pp. 584-594
-
-
Kil, I.S.1
-
127
-
-
2542464938
-
Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
-
DOI 10.1016/j.cell.2004.05.002, PII S0092867404004878
-
H.H. Jang et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function Cell 117 5 2004 625 635 (Pubitemid 38692528)
-
(2004)
Cell
, vol.117
, Issue.5
, pp. 625-635
-
-
Jang, H.H.1
Lee, K.O.2
Chi, Y.H.3
Jung, B.G.4
Park, S.K.5
Park, J.H.6
Lee, J.R.7
Lee, S.S.8
Moon, J.C.9
Yun, J.W.10
Choi, Y.O.11
Kim, W.Y.12
Kang, J.S.13
Cheong, G.-W.14
Yun, D.-J.15
Rhee, S.G.16
Cho, M.J.17
Lee, S.Y.18
-
128
-
-
84863230834
-
Moonlighting by different stressors: Crystal structure of the chaperone species of a 2-Cys peroxiredoxin
-
F. Saccoccia et al. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin Structure 20 3 2012 429 439
-
(2012)
Structure
, vol.20
, Issue.3
, pp. 429-439
-
-
Saccoccia, F.1
-
129
-
-
0036133115
-
The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease
-
G. Aliev et al. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease Brain Pathol. 12 1 2002 21 35 (Pubitemid 33131359)
-
(2002)
Brain Pathology
, vol.12
, Issue.1
, pp. 21-35
-
-
Aliev, G.1
Smith, M.A.2
Seyidova, D.3
Neal, M.L.4
Lamb, B.T.5
Nunomura, A.6
Gasimov, E.K.7
Vinters, H.V.8
Perry, G.9
Lamanna, J.C.10
Friedland, R.P.11
-
130
-
-
33749986298
-
Free radicals and antioxidants in normal physiological functions and human disease
-
DOI 10.1016/j.biocel.2006.07.001, PII S1357272506002196
-
M. Valko et al. Free radicals and antioxidants in normal physiological functions and human disease Int. J. Biochem. Cell Biol. 39 1 2007 44 84 (Pubitemid 44566469)
-
(2007)
International Journal of Biochemistry and Cell Biology
, vol.39
, Issue.1
, pp. 44-84
-
-
Valko, M.1
Leibfritz, D.2
Moncol, J.3
Cronin, M.T.D.4
Mazur, M.5
Telser, J.6
|