-
1
-
-
84856013431
-
Clonal evolution in cancer
-
Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481: 306-13.
-
(2012)
Nature
, vol.481
, pp. 306-313
-
-
Greaves, M.1
Maley, C.C.2
-
3
-
-
84857784212
-
Cancer biomarkers: Selecting the right drug for the right patient
-
KelloffGJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov 2012; 11: 1-14.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 1-14
-
-
Kelloff, G.J.1
Sigman, C.C.2
-
5
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883-92.
-
(2012)
N Engl J Med
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
Rowan, A.J.2
Horswell, S.3
Larkin, J.4
Endesfelder, D.5
Gronroos, E.6
-
7
-
-
84860214990
-
Intra-tumour heterogeneity: A looking glass for cancer?
-
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012; 12: 323-34.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 323-334
-
-
Marusyk, A.1
Almendro, V.2
Polyak, K.3
-
8
-
-
79952284127
-
Hallmarks of Cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of Cancer: the next generation. Cell 2011; 144: 646-74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
10
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander, H.M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
11
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703-7.
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
12
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
13
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956; 123: 309-14.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
14
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. On respiratory impairment in cancer cells. Science 1956; 124: 269-70.
-
(1956)
Science
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
15
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325-37.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
17
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev 2012; 26: 877-90.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
18
-
-
75149148563
-
Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
-
Deberardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313-24.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
Deberardinis, R.J.1
Cheng, T.2
-
19
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 1-14.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 1-14
-
-
Vander, H.M.G.1
-
20
-
-
84857992195
-
Targeting cancer metabolism-aiming at a tumour's sweet-spot
-
Jones NP, Schulze A. Targeting cancer metabolism-aiming at a tumour's sweet-spot. Drug Discov Today 2012; 17: 1-10.
-
(2012)
Drug Discov Today
, vol.17
, pp. 1-10
-
-
Jones, N.P.1
Schulze, A.2
-
21
-
-
84860800305
-
The immune diet: Meeting the metabolic demands of lymphocyte activation
-
Wang R, Green DR. The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biol Rep 2012; 4: 9.
-
(2012)
F1000 Biol Rep
, vol.4
, pp. 9
-
-
Wang, R.1
Green, D.R.2
-
22
-
-
84865169609
-
Metabolic pathway alterations that support cell proliferation
-
Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol 2012; 76: 325-34.
-
(2012)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 325-334
-
-
Vander, H.M.G.1
Lunt, S.Y.2
Dayton, T.L.3
Fiske, B.P.4
Israelsen, W.J.5
Mattaini, K.R.6
-
24
-
-
80054046029
-
Aerobic Glycolysis: Meeting the metabolic eequirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic Glycolysis: meeting the metabolic eequirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441-64.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander, H.M.G.2
-
25
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
26
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011; 14: 443-51.
-
(2011)
Cell Metab
, vol.14
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
27
-
-
61849135453
-
Tumor suppressors and cell metabolism: A recipe for cancer growth
-
Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009; 23: 537-48.
-
(2009)
Genes Dev
, vol.23
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
28
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, YudoffM, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007; 104: 19345-50.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19345-19350
-
-
Deberardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudoff, M.5
Wehrli, S.6
-
30
-
-
77953785070
-
The metabolic life and times of a T-cell
-
Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev 2010; 236: 190-202.
-
(2010)
Immunol Rev
, vol.236
, pp. 190-202
-
-
Michalek, R.D.1
Rathmell, J.C.2
-
31
-
-
1642471831
-
PI3K/Akt and apoptosis: Size matters
-
Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003; 22: 8983-98.
-
(2003)
Oncogene
, vol.22
, pp. 8983-8998
-
-
Franke, T.F.1
Hornik, C.P.2
Segev, L.3
Shostak, G.A.4
Sugimoto, C.5
-
32
-
-
27844526600
-
Akt-dependent transformation: There is more to growth than just surviving
-
Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene 2005; 24: 7435-42.
-
(2005)
Oncogene
, vol.24
, pp. 7435-7442
-
-
Plas, D.R.1
Thompson, C.B.2
-
33
-
-
0142227019
-
Targeting the PI3K-Akt pathway in human cancer: Rationale and promise
-
Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257-62.
-
(2003)
Cancer Cell
, vol.4
, pp. 257-262
-
-
Luo, J.1
Manning, B.D.2
Cantley, L.C.3
-
34
-
-
33745307617
-
PI(3)K and mTOR signalling controls tumour cell growth
-
Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424-30.
-
(2006)
Nature
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Ras, C.L.C.2
-
35
-
-
51849111556
-
PI3K pathway alterations in cancer: Variations on a theme
-
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497-510.
-
(2008)
Oncogene
, vol.27
, pp. 5497-5510
-
-
Yuan, T.L.1
Cantley, L.C.2
-
36
-
-
0029908016
-
Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
-
Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372-8.
-
(1996)
J Biol Chem
, vol.271
, pp. 31372-31378
-
-
Kohn, A.D.1
Summers, S.A.2
Birnbaum, M.J.3
Roth, R.A.4
-
37
-
-
0030748651
-
Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades
-
Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17269-75.
-
(1997)
J Biol Chem
, vol.272
, pp. 17269-17275
-
-
Deprez, J.1
Vertommen, D.2
Alessi, D.R.3
Hue, L.4
Rider, M.H.5
-
38
-
-
0034983918
-
Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase
-
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406-18.
-
(2001)
Genes Dev
, vol.15
, pp. 1406-1418
-
-
Gottlob, K.1
Majewski, N.2
Kennedy, S.3
Kandel, E.4
Robey, R.B.5
Hay, N.6
-
39
-
-
0141863388
-
Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival
-
Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 2003; 23: 7315-28.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 7315-7328
-
-
Rathmell, J.C.1
Fox, C.J.2
Plas, D.R.3
Hammerman, P.S.4
Cinalli, R.M.5
Thompson, C.B.6
-
40
-
-
0037072780
-
The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes
-
Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem 2002; 277: 33895-900.
-
(2002)
J Biol Chem
, vol.277
, pp. 33895-33900
-
-
Berwick, D.C.1
Hers, I.2
Heesom, K.J.3
Moule, S.K.4
Tavare, J.M.5
-
41
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-93.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
42
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21-35.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
43
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774-85.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
44
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016-23.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
45
-
-
0023642627
-
A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
-
Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987; 223: 217-22.
-
(1987)
FEBS Lett
, vol.223
, pp. 217-222
-
-
Carling, D.1
Zammit, V.A.2
Hardie, D.G.3
-
46
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-90.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
47
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vazquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-26.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vazquez, D.S.6
-
48
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMPactivated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMPactivated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004; 101: 3329-35.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
Depinho, R.A.6
-
49
-
-
84861845402
-
The updated biology of hypoxia-inducible factor
-
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31: 2448-60.
-
(2012)
EMBO J
, vol.31
, pp. 2448-2460
-
-
Greer, S.N.1
Metcalf, J.L.2
Wang, Y.3
Ohh, M.4
-
50
-
-
84866601479
-
Regulation of metabolism by hypoxia-inducible factor 1
-
Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 2012; 76: 347-53.
-
(2012)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 347-353
-
-
Semenza, G.L.1
-
51
-
-
76049100577
-
HIF-1: Upstream and downstream of cancer metabolism
-
Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010; 20: 51-6.
-
(2010)
Curr Opin Genet Dev
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
52
-
-
76249110471
-
Rethinking the Warburg effect with Myc micromanaging glutamine metabolism
-
Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 2010; 70: 859-62.
-
(2010)
Cancer Res
, vol.70
, pp. 859-862
-
-
Dang, C.V.1
-
53
-
-
70350728803
-
MYC-induced cancer cell energy metabolism and therapeutic opportunities
-
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479-83.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 6479-6483
-
-
Dang, C.V.1
Le, A.2
Gao, P.3
-
54
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93-105.
-
(2007)
J Cell Biol
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
Zamboni, N.2
Oefner, P.3
Sachidanandam, R.4
Lazebnik, Y.5
-
55
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBeradinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 2008; 105: 18782-7.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
Deberadinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
56
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762-5.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
57
-
-
34547580590
-
HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation
-
Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007; 12: 108-13.
-
(2007)
Cancer Cell
, vol.12
, pp. 108-113
-
-
Gordan, J.D.1
Thompson, C.B.2
Simon, M.C.3
-
58
-
-
10044271037
-
SREBP transcription factors: Master regulators of lipid homeostasis
-
Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86: 839-48.
-
(2004)
Biochimie
, vol.86
, pp. 839-848
-
-
Eberlé, D.1
Hegarty, B.2
Bossard, P.3
Ferré, P.4
Foufelle, F.5
-
59
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza A L, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171-83.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
60
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-20.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
-
63
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science 2006; 312: 1650-3.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.G.2
Patino, W.D.3
Wragg, A.4
Boehm, M.5
Gavrilova, O.6
-
64
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107-20.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.4
Nakano, K.5
Bartrons, R.6
-
65
-
-
1942506067
-
The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
-
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004; 64: 2627-33.
-
(2004)
Cancer Res
, vol.64
, pp. 2627-2633
-
-
Schwartzenberg-Bar-Yoseph, F.1
Armoni, M.2
Karnieli, E.3
-
66
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65: 177-85.
-
(2005)
Cancer Res
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
Lleonart, M.E.2
Gil, J.3
Wang, J.4
Degan, P.5
Peters, G.6
-
67
-
-
84855878565
-
P53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2
-
Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012; 72: 560-7.
-
(2012)
Cancer Res
, vol.72
, pp. 560-567
-
-
Contractor, T.1
Harris, C.R.2
-
68
-
-
79952280229
-
P53 regulates biosynthesis through direct inactivation of glucose-6- phosphate dehydrogenase
-
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, et al. p53 regulates biosynthesis through direct inactivation of glucose-6- phosphate dehydrogenase. Nat Cell Biol 2011; 13: 310-6.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 310-316
-
-
Jiang, P.1
Du, W.2
Wang, X.3
Mancuso, A.4
Gao, X.5
Wu, M.6
-
69
-
-
34248194200
-
The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
-
Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007; 67: 3043-53.
-
(2007)
Cancer Res
, vol.67
, pp. 3043-3053
-
-
Feng, Z.1
Hu, W.2
de Stanchina, E.3
Teresky, A.K.4
Jin, S.5
Lowe, S.6
-
70
-
-
20844449238
-
AMPactivated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMPactivated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18: 283-93.
-
(2005)
Mol Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
Buzzai, M.4
Mu, J.5
Xu, Y.6
-
71
-
-
77949967131
-
Targeting metabolic transformation for cancer therapy
-
Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10: 267-77
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 267-277
-
-
Tennant, D.A.1
Durán, R.V.2
Gottlieb, E.3
-
72
-
-
0347694776
-
Cancer metabolism: Facts, fantasy, and fiction
-
Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 2004; 313: 459-65.
-
(2004)
Biochem Biophys Res Commun
, vol.313
, pp. 459-465
-
-
Zu, X.L.1
Guppy, M.2
-
73
-
-
58249119446
-
Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response
-
Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 2009; 50: 88-99.
-
(2009)
J Nucl Med
, vol.50
, pp. 88-99
-
-
Ben-Haim, S.1
-
74
-
-
51449121886
-
Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues
-
Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL, et al. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 2008; 60: 510-6.
-
(2008)
Magn Reson Med
, vol.60
, pp. 510-516
-
-
Tessem, M.B.1
Swanson, M.G.2
Keshari, K.R.3
Albers, M.J.4
Joun, D.5
Tabatabai, Z.L.6
-
75
-
-
80052338863
-
Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia
-
Kung H-N, Marks JR, Chi J-T. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011; 7: e1002229.
-
(2011)
PLoS Genet
, vol.7
-
-
Kung, H.-N.1
Marks, J.R.2
Chi, J.-T.3
-
76
-
-
79957774646
-
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
-
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 2011; 108: 8674-9.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 8674-8679
-
-
Cheng, T.1
Sudderth, J.2
Yang, C.3
Mullen, A.R.4
Jin, E.S.5
Mates, J.M.6
-
77
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120: 142-56.
-
(2010)
J Clin Invest
, vol.120
, pp. 142-156
-
-
Samudio, I.1
Harmancey, R.2
Fiegl, M.3
Kantarjian, H.4
Konopleva, M.5
Korchin, B.6
-
78
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011; 25: 1041-51.
-
(2011)
Genes Dev
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
Yao, Y.2
Reilly, P.T.3
Kannan, K.4
Kiarash, R.5
Mason, J.6
-
79
-
-
79960939546
-
Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer
-
Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol 2011; 18: 846-56.
-
(2011)
Chem Biol
, vol.18
, pp. 846-856
-
-
Nomura, D.K.1
Lombardi, D.P.2
Chang, J.W.3
Niessen, S.4
Ward, A.M.5
Long, J.Z.6
-
80
-
-
0042887042
-
The emerging role of lysophosphatidic acid in cancer
-
Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003; 3: 582-91.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 582-591
-
-
Mills, G.B.1
Moolenaar, W.H.2
-
81
-
-
34147220392
-
Mediators of vascular remodelling co-opted for sequential steps in lung metastasis
-
Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007; 446: 765-70.
-
(2007)
Nature
, vol.446
, pp. 765-770
-
-
Gupta, G.P.1
Nguyen, D.X.2
Chiang, A.C.3
Bos, P.D.4
Kim, J.Y.5
Nadal, C.6
-
83
-
-
28544446058
-
Mitochondrial tumour suppressors: A genetic and biochemical update
-
Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 2005; 5: 857-66.
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 857-866
-
-
Gottlieb, E.1
Tomlinson, I.P.2
-
84
-
-
19944433653
-
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
-
Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7: 77-85.
-
(2005)
Cancer Cell
, vol.7
, pp. 77-85
-
-
Selak, M.A.1
Armour, S.M.2
Mackenzie, E.D.3
Boulahbel, H.4
Watson, D.G.5
Mansfield, K.D.6
-
85
-
-
23644448721
-
HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability
-
Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 2005; 8: 143-53.
-
(2005)
Cancer Cell
, vol.8
, pp. 143-153
-
-
Isaacs, J.S.1
Jung, Y.J.2
Mole, D.R.3
Lee, S.4
Torres-Cabala, C.5
Chung, Y.L.6
-
86
-
-
23644436667
-
Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer
-
Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005; 8: 155-67.
-
(2005)
Cancer Cell
, vol.8
, pp. 155-167
-
-
Lee, S.1
Nakamura, E.2
Yang, H.3
Wei, W.4
Linggi, M.S.5
Sajan, M.P.6
-
87
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807-12.
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
Jones, S.2
Zhang, X.3
Lin, J.C.4
Leary, R.J.5
Angenendt, P.6
-
88
-
-
70149093912
-
Recurring mutations found by sequencing an acute myeloid leukemia genome
-
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058-66.
-
(2009)
N Engl J Med
, vol.361
, pp. 1058-1066
-
-
Mardis, E.R.1
Ding, L.2
Dooling, D.J.3
Larson, D.E.4
McLellan, M.D.5
Chen, K.6
-
89
-
-
79958226901
-
IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours
-
Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 2011; 224: 334-43.
-
(2011)
J Pathol
, vol.224
, pp. 334-343
-
-
Amary, M.F.1
Bacsi, K.2
Maggiani, F.3
Damato, S.4
Halai, D.5
Berisha, F.6
-
90
-
-
72049125350
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739-44.
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
Driggers, E.M.6
-
91
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553-67.
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
Abdel-Wahab, O.2
Lu, C.3
Ward, P.S.4
Patel, J.5
Shih, A.6
-
92
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate- dependent dioxygenases
-
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate- dependent dioxygenases. Cancer Cell 2011; 19: 17-30.
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
Yang, Y.4
Wang, P.5
Kim, S.H.6
-
93
-
-
84858796262
-
IDH mutation impairs histone demethylation and results in a block to cell differentiation
-
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474-8.
-
(2012)
Nature
, vol.483
, pp. 474-478
-
-
Lu, C.1
Ward, P.S.2
Kapoor, G.S.3
Rohle, D.4
Turcan, S.5
Abdel-Wahab, O.6
-
94
-
-
84858796263
-
IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
-
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483: 479-83.
-
(2012)
Nature
, vol.483
, pp. 479-483
-
-
Turcan, S.1
Rohle, D.2
Goenka, A.3
Walsh, L.A.4
Fang, F.5
Yilmaz, E.6
-
95
-
-
84865520089
-
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
-
Jul 4. [Epub ahead of print]
-
Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brüstle A, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012 Jul 4. [Epub ahead of print].
-
(2012)
Nature
-
-
Sasaki, M.1
Knobbe, C.B.2
Munger, J.C.3
Lind, E.F.4
Brenner, D.5
Brüstle, A.6
-
96
-
-
84862632865
-
Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
-
Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26: 1326-38.
-
(2012)
Genes Dev
, vol.26
, pp. 1326-1338
-
-
Xiao, M.1
Yang, H.2
Xu, W.3
Ma, S.4
Lin, H.5
Zhu, H.6
-
97
-
-
84862776918
-
Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation
-
Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 2012; 483: 484-8.
-
(2012)
Nature
, vol.483
, pp. 484-488
-
-
Koivunen, P.1
Lee, S.2
Duncan, C.G.3
Lopez, G.4
Lu, G.5
Ramkissoon, S.6
-
98
-
-
80052258995
-
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
-
Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43: 869-74.
-
(2011)
Nat Genet
, vol.43
, pp. 869-874
-
-
Locasale, J.W.1
Grassian, A.R.2
Melman, T.3
Lyssiotis, C.A.4
Mattaini, K.R.5
Bass, A.J.6
-
99
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsory K. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346-50.
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
Marks, K.M.2
Shaul, Y.D.3
Pacold, M.E.4
Kim, D.5
Birsory, K.6
-
100
-
-
84856087055
-
Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis
-
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 2012; 148: 259-72.
-
(2012)
Cell
, vol.148
, pp. 259-272
-
-
Zhang, W.C.1
Shyh-Chang, N.2
Yang, H.3
Rai, A.4
Umashankar, S.5
Ma, S.6
-
101
-
-
84855410026
-
Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer
-
Cantor JR, Panayiotou V, Agnello G, Georgiou G, Stone EM. Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. Methods Enzymol 2012; 502: 291-319.
-
(2012)
Methods Enzymol
, vol.502
, pp. 291-319
-
-
Cantor, J.R.1
Panayiotou, V.2
Agnello, G.3
Georgiou, G.4
Stone, E.M.5
-
102
-
-
77951109481
-
Peg-asparaginase for acute lymphoblastic leukemia
-
Rytting M. Peg-asparaginase for acute lymphoblastic leukemia. Expert Opin Biol Ther 2010; 10: 833-9.
-
(2010)
Expert Opin Biol Ther
, vol.10
, pp. 833-839
-
-
Rytting, M.1
-
103
-
-
0014401714
-
Asparagine synthetase activity of mouse leukemias
-
Horowitz B, Madras BK, Meister A, Old LJ, Boyes EA, Stockert E. Asparagine synthetase activity of mouse leukemias. Science 1968; 160: 533-5.
-
(1968)
Science
, vol.160
, pp. 533-535
-
-
Horowitz, B.1
Madras, B.K.2
Meister, A.3
Old, L.J.4
Boyes, E.A.5
Stockert, E.6
-
104
-
-
0014588094
-
L-asparaginase resistance in human leukemia- asparagine synthetase
-
Haskell CM, Canellos GP. l-asparaginase resistance in human leukemia- asparagine synthetase. Biochem Pharmacol 1969; 18: 2578-80.
-
(1969)
Biochem Pharmacol
, vol.18
, pp. 2578-2580
-
-
Haskell, C.M.1
Canellos, G.P.2
-
107
-
-
0030711017
-
Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase
-
Ueno T, Ohtawa K, Mitsui K, Kodera Y, Hiroto M, Matsushima A. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia 1997; 11: 1858-61.
-
(1997)
Leukemia
, vol.11
, pp. 1858-1861
-
-
Ueno, T.1
Ohtawa, K.2
Mitsui, K.3
Kodera, Y.4
Hiroto, M.5
Matsushima, A.6
-
108
-
-
34548776939
-
Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia
-
Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomedicine 2006; 1: 241-54.
-
(2006)
Int J Nanomedicine
, vol.1
, pp. 241-254
-
-
Avramis, V.I.1
Tiwari, P.N.2
-
109
-
-
30444437486
-
Treatment of acute lymphoblastic leukemia
-
Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166-78.
-
(2006)
N Engl J Med
, vol.354
, pp. 166-178
-
-
Pui, C.-H.1
Evans, W.E.2
-
110
-
-
30444431556
-
Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: A report of POG study 9296
-
Winter SS, Holdsworth MT, Devidas M, Raisch DW, Chauvenet A, Ravindranath Y, et al. Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: a report of POG study 9296. Pediatr Blood Cancer 2006; 46: 179-86.
-
(2006)
Pediatr Blood Cancer
, vol.46
, pp. 179-186
-
-
Winter, S.S.1
Holdsworth, M.T.2
Devidas, M.3
Raisch, D.W.4
Chauvenet, A.5
Ravindranath, Y.6
-
111
-
-
55749114384
-
Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines
-
Lorenzi PL, Llamas J, Gunsior M, Ozbun L, Reinhold WC, Varma S, et al. Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines. Mol Cancer Ther 2008; 7: 3123-8.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 3123-3128
-
-
Lorenzi, P.L.1
Llamas, J.2
Gunsior, M.3
Ozbun, L.4
Reinhold, W.C.5
Varma, S.6
-
112
-
-
73649089964
-
Asparaginase
-
Bast R, Kufe D, Pollock R, Weichselbaum R, Holland J, Frei E, editors, 5th ed. Hamilton (ON): BC Decker
-
Kurtzberg J. Asparaginase. In: Bast R, Kufe D, Pollock R, Weichselbaum R, Holland J, Frei E, editors. Cancer medicine, 5th ed. Hamilton (ON): BC Decker; 2000. p. 699-705.
-
(2000)
Cancer Medicine
, pp. 699-705
-
-
Kurtzberg, J.1
-
113
-
-
0033773575
-
Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248
-
Derst C, Henseling J, Röhm KH. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci 2000; 9: 2009-17.
-
(2000)
Protein Sci
, vol.9
, pp. 2009-2017
-
-
Derst, C.1
Henseling, J.2
Röhm, K.H.3
-
114
-
-
34147153377
-
Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase
-
Iwamoto S, Mihara K, Downing JR, Pui C-H, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117: 1049-57.
-
(2007)
J Clin Invest
, vol.117
, pp. 1049-1057
-
-
Iwamoto, S.1
Mihara, K.2
Downing, J.R.3
Pui, C.-H.4
Campana, D.5
-
115
-
-
37549042826
-
Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines
-
Su N, Pan Y, Zhou M, Harvey R, Hunger S, Kilberg M. Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines. Pediatr. Blood Cancer 2008; 50: 274-9.
-
(2008)
Pediatr. Blood Cancer
, vol.50
, pp. 274-279
-
-
Su, N.1
Pan, Y.2
Zhou, M.3
Harvey, R.4
Hunger, S.5
Kilberg, M.6
-
116
-
-
78651337990
-
A genomewide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity
-
Chen SH, Yang W, Fan Y, Stocco G, Crews KR, Yang JJ, et al. A genomewide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity. L eukemia 2010; 25: 66-74.
-
(2010)
L Eukemia
, vol.25
, pp. 66-74
-
-
Chen, S.H.1
Yang, W.2
Fan, Y.3
Stocco, G.4
Crews, K.R.5
Yang, J.J.6
-
117
-
-
2942682886
-
Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia
-
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004; 23: 4275-83.
-
(2004)
Oncogene
, vol.23
, pp. 4275-4283
-
-
Zelent, A.1
Greaves, M.2
Enver, T.3
-
118
-
-
19344377657
-
Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TELAML1- positive pediatric acute lymphoblastic leukemia
-
Stams WA, den Boer ML, Holleman A, Appel IM, Beverloo HB, van Wering ER, et al. Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TELAML1- positive pediatric acute lymphoblastic leukemia. Blood 2005; 105: 4223-5.
-
(2005)
Blood
, vol.105
, pp. 4223-4225
-
-
Stams, W.A.1
den Boer, M.L.2
Holleman, A.3
Appel, I.M.4
Beverloo, H.B.5
van Wering, E.R.6
-
119
-
-
0038784374
-
Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL
-
Stams WA, den Boer ML, Beverloo HB, Meijernik JP, Stigter RL, v an Wering ER, et al. Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood 2003; 101: 2743-7.
-
(2003)
Blood
, vol.101
, pp. 2743-2747
-
-
Stams, W.A.1
den Boer, M.L.2
Beverloo, H.B.3
Meijernik, J.P.4
Stigter, R.L.5
van Wering, E.R.6
-
120
-
-
33747181970
-
Pegylated arginine deiminase: A novel anticancer enzyme agent
-
Feun L, Savaraj N. Pegylated arginine deiminase: a novel anticancer enzyme agent. Expert Opin Investig Drugs 2006; 15: 815-22.
-
(2006)
Expert Opin Investig Drugs
, vol.15
, pp. 815-822
-
-
Feun, L.1
Savaraj, N.2
-
121
-
-
79954775922
-
Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes
-
Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget 2010; 1: 246-51.
-
(2010)
Oncotarget
, vol.1
, pp. 246-251
-
-
Kuo, M.T.1
Savaraj, N.2
Feun, L.G.3
-
122
-
-
79951699777
-
Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
-
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208: 313-26.
-
(2011)
J Exp Med
, vol.208
, pp. 313-326
-
-
Wolf, A.1
Agnihotri, S.2
Micallef, J.3
Mukherjee, J.4
Sabha, N.5
Cairns, R.6
-
123
-
-
60249083822
-
Hexokinase-2 bound to mitochondria: Cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy
-
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 2009; 19: 17-24.
-
(2009)
Semin Cancer Biol
, vol.19
, pp. 17-24
-
-
Mathupala, S.P.1
Ko, Y.H.2
Pedersen, P.L.3
-
124
-
-
67349131613
-
Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer
-
Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 2009; 86: 174-9.
-
(2009)
Exp Mol Pathol
, vol.86
, pp. 174-179
-
-
Yalcin, A.1
Telang, S.2
Clem, B.3
Chesney, J.4
-
125
-
-
0037108709
-
High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (iPFK-2; PFKFB3) in human cancers
-
Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 2002; 62: 5881-7.
-
(2002)
Cancer Res
, vol.62
, pp. 5881-5887
-
-
Atsumi, T.1
Chesney, J.2
Metz, C.3
Leng, L.4
Donnelly, S.5
Makita, Z.6
-
126
-
-
38349183620
-
Smallmolecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Smallmolecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008; 7: 110-20.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 110-120
-
-
Clem, B.1
Telang, S.2
Clem, A.3
Yalcin, A.4
Meier, J.5
Simmons, A.6
-
127
-
-
84864767268
-
Functional metabolic screen identifies 6-phosphofructo-2-kinase/ fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival
-
Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/ fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2012; 2: 328-43.
-
(2012)
Cancer Discov
, vol.2
, pp. 328-343
-
-
Ros, S.1
Santos, C.R.2
Moco, S.3
Baenke, F.4
Kelly, G.5
Howell, M.6
-
128
-
-
77952200593
-
Alternative fuel-another role for p53 in the regulation of metabolism
-
Vousden KH. Alternative fuel-another role for p53 in the regulation of metabolism. Proc Natl Acad Sci U S A 2010; 107: 7117-8.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 7117-7118
-
-
Vousden, K.H.1
-
129
-
-
33645854641
-
Glutaminase: A multifaceted protein not only involved in generating glutamate
-
Márquez J, López de la Oliva AR, Matés JM, Segura JA, Alonso FJ. Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 2006; 48: 465-71.
-
(2006)
Neurochem Int
, vol.48
, pp. 465-471
-
-
Márquez, J.1
de la oliva, A.R.L.2
Matés, J.M.3
Segura, J.A.4
Alonso, F.J.5
-
130
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 2010; 107: 7455-60.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
131
-
-
79960006190
-
13C-pyruvate imaging reveals alterations in glycolysis that precede c-Mycinduced tumor formation and regression
-
Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Mycinduced tumor formation and regression. Cell Metab 2011; 14: 131-42.
-
(2011)
Cell Metab
, vol.14
, pp. 131-142
-
-
Hu, S.1
Balakrishnan, A.2
Bok, R.A.3
Anderton, B.4
Larson, P.E.5
Nelson, S.J.6
-
132
-
-
77956497712
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18: 207-19.
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
Dinavahi, R.6
-
133
-
-
78549283855
-
Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1. Cancer Res 2010; 70: 8981-7.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
-
134
-
-
84855453655
-
Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B Cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B Cells. Cell Metab 2012; 15: 110-21.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
135
-
-
84867424108
-
Therapeutic targeting of Myc-reprogrammed cancer cell metabolism
-
Dang CV. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp on Quant Biol 2012; 76: 369-74.
-
(2012)
Cold Spring Harb Symp On Quant Biol
, vol.76
, pp. 369-374
-
-
Dang, C.V.1
-
137
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230-3.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
Vander, H.M.G.2
Harris, M.H.3
Ramanathan, A.4
Gerszten, R.E.5
Wei, R.6
-
138
-
-
77956674635
-
Evidence for an alternative glycolytic pathway in rapidly proliferating cells
-
Vander Heiden MG, Locasale JW, Swanson KD, SharfiH, Heffron GJ, Amador-Noguez D, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 2010; 329: 1492-9.
-
(2010)
Science
, vol.329
, pp. 1492-1499
-
-
van der He, M.G.1
Locasale, J.W.2
Swanson, K.D.3
Sharfi, H.4
Heffron, G.J.5
Amador-Noguez, D.6
-
139
-
-
40749099894
-
Pyruvate kinase M2 is a phosphotyrosine-binding protein
-
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452: 181-6.
-
(2008)
Nature
, vol.452
, pp. 181-186
-
-
Christofk, H.R.1
Vander, H.M.G.2
Wu, N.3
Asara, J.M.4
Cantley, L.C.5
-
140
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334: 1278-83.
-
(2011)
Science
, vol.334
, pp. 1278-1283
-
-
Anastasiou, D.1
Poulogiannis, G.2
Asara, J.M.3
Boxer, M.B.4
Jiang, J.K.5
Shen, M.6
-
141
-
-
80052731244
-
No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis
-
Bluemlein K, Grüning NM, Feichtinger RG, Lehrach H, Kofler B, Ralser M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2011; 2: 393-400.
-
(2011)
Oncotarget
, vol.2
, pp. 393-400
-
-
Bluemlein, K.1
Grüning, N.M.2
Feichtinger, R.G.3
Lehrach, H.4
Kofler, B.5
Ralser, M.6
-
142
-
-
82555170271
-
Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation
-
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 2011; 480: 118-22.
-
(2011)
Nature
, vol.480
, pp. 118-122
-
-
Yang, W.1
Xia, Y.2
Ji, H.3
Zheng, Y.4
Liang, J.5
Huang, W.6
-
143
-
-
79957567239
-
Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxiainducible factor 1
-
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxiainducible factor 1. Cell 2011; 145: 732-44.
-
(2011)
Cell
, vol.145
, pp. 732-744
-
-
Luo, W.1
Hu, H.2
Chang, R.3
Zhong, J.4
Knabel, M.5
O'Meally, R.6
-
144
-
-
84862776933
-
Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase
-
Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45: 598-609.
-
(2012)
Mol Cell
, vol.45
, pp. 598-609
-
-
Gao, X.1
Wang, H.2
Yang, J.J.3
Liu, X.4
Liu, Z.R.5
-
146
-
-
37549013776
-
A microenvironmental model of carcinogenesis
-
Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer 2008; 8: 56-61.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 56-61
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
147
-
-
78649659788
-
PH control mechanisms of tumor survival and growth
-
Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol 2011; 226: 299-308.
-
(2011)
J Cell Physiol
, vol.226
, pp. 299-308
-
-
Parks, S.K.1
Chiche, J.2
Pouyssegur, J.3
-
148
-
-
84855434874
-
Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms
-
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 2012; 7: 423-67.
-
(2012)
Annu Rev Pathol
, vol.7
, pp. 423-467
-
-
Sotgia, F.1
Martinez-Outschoorn, U.E.2
Howell, A.3
Pestell, R.G.4
Pavlides, S.5
Lisanti, M.P.6
-
149
-
-
84865068502
-
Metabolic symbiosis in cancer: Refocusing the Warburg lens
-
Jan 6. [Epub ahead of print ]
-
Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog. 2012 Jan 6. [Epub ahead of print ].
-
(2012)
Mol Carcinog
-
-
Nakajima, E.C.1
van Houten, B.2
-
150
-
-
81555210940
-
Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells
-
Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 2011; 12: 924-38.
-
(2011)
Cancer Biol Ther
, vol.12
, pp. 924-938
-
-
Martinez-Outschoorn, U.E.1
Goldberg, A.2
Lin, Z.3
Ko, Y.H.4
Flomenberg, N.5
Wang, C.6
-
151
-
-
82855167795
-
Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment
-
Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 2011; 13: 213.
-
(2011)
Breast Cancer Res
, vol.13
, pp. 213
-
-
Sotgia, F.1
Martinez-Outschoorn, U.E.2
Pavlides, S.3
Howell, A.4
Pestell, R.G.5
Lisanti, M.P.6
-
152
-
-
81255157465
-
Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
-
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011; 17: 1498-503.
-
(2011)
Nat Med
, vol.17
, pp. 1498-1503
-
-
Nieman, K.M.1
Kenny, H.A.2
Penicka, C.V.3
Ladanyi, A.4
Buell-Gutbrod, R.5
Zillhardt, M.R.6
-
153
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gamerio PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380-4.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gamerio, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
154
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability
-
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 2011; 108: 19611-6.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
Ward, P.S.2
Shay, J.E.3
Cross, J.R.4
Gruber, J.J.5
Sachdeva, U.M.6
-
155
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385-8.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
156
-
-
84863011452
-
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
-
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012; 15: 157-70.
-
(2012)
Cell Metab
, vol.15
, pp. 157-170
-
-
Yuneva, M.O.1
Fan, T.W.2
Allen, T.D.3
Higashi, R.M.4
Ferraris, D.V.5
Tsukamoto, T.6
-
157
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher- Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656-70.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
Fletcher-Sananikone, E.6
-
158
-
-
84862016091
-
Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
-
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15: 827-37.
-
(2012)
Cell Metab
, vol.15
, pp. 827-837
-
-
Marin-Valencia, I.1
Yang, C.2
Mashimo, T.3
Cho, S.4
Baek, H.5
Yang, X.L.6
-
159
-
-
77952995998
-
Metabolic modulation of glioblastoma with dichloroacetate
-
31ra34
-
Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010; 12: 31ra34.
-
(2010)
Sci Transl Med
, vol.12
-
-
Michelakis, E.D.1
Sutendra, G.2
Dromparis, P.3
Webster, L.4
Haromy, A.5
Niven, E.6
|