-
1
-
-
50149097983
-
Hypoxia HIF1 and glucose metabolism in the solid tumour
-
Denko NC. 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8:705-713. http://dx.doi.org/10.1038/nrc2468.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 705-713
-
-
Denko, N.C.1
-
2
-
-
43649093915
-
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
-
Kaelin WG, Jr, Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393-402. http://dx.doi.org/10.1016/j.molcel.2008.04.009.
-
(2008)
Mol. Cell
, vol.30
, pp. 393-402
-
-
Kaelin Jr., W.G.1
Ratcliffe, P.J.2
-
3
-
-
76049100577
-
HIF- 1 upstream and downstream of cancer metabolism
-
Semenza GL. 2010. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20:51-56. http://dx.doi.org/10.1016/j.gde.2009.10.009.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
4
-
-
84655161946
-
HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression
-
Keith B, Johnson RS, Simon MC. 2012. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:9-22. http://dx.doi.org/10.1038/nrc3183.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 9-22
-
-
Keith, B.1
Johnson, R.S.2
Simon, M.C.3
-
5
-
-
1642387020
-
Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
-
Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. 2004. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med. 36:1-12. http://dx.doi.org/10.1038/emm.2004.1.
-
(2004)
Exp. Mol. Med.
, vol.36
, pp. 1-12
-
-
Lee, J.W.1
Bae, S.H.2
Jeong, J.W.3
Kim, S.H.4
Kim, K.W.5
-
6
-
-
0028068606
-
Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor J
-
Semenza GL, Roth PH, Fang HM, Wang GL. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor J. Biol. Chem. 269:23757-23763.
-
(1994)
Biol. Chem.
, vol.269
, pp. 23757-23763
-
-
Semenza, G.L.1
Roth, P.H.2
Fang, H.M.3
Wang, G.L.4
-
7
-
-
0041465022
-
HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia
-
Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. 2003. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22:4082-4090. http://dx.doi.org/10.1093/emboj/cdg392.
-
(2003)
EMBO J
, vol.22
, pp. 4082-4090
-
-
Berra, E.1
Benizri, E.2
Ginouves, A.3
Volmat, V.4
Roux, D.5
Pouyssegur, J.6
-
8
-
-
54549113030
-
The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer
-
Kaelin WG, Jr. 2008. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8:865-873. http://dx.doi.org/10.1038/nrc2502.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 865-873
-
-
Kaelin Jr., W.G.1
-
9
-
-
0037097861
-
FIH- 1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor
-
Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466-1471. http://dx.doi.org/10.1101/gad.991402.
-
(2002)
Genes Dev
, vol.16
, pp. 1466-1471
-
-
Lando, D.1
Peet, D.J.2
Gorman, J.J.3
Whelan, D.A.4
Whitelaw, M.L.5
Bruick, R.K.6
-
10
-
-
0035887011
-
FIH- 1 a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity
-
Mahon PC, Hirota K, Semenza GL. 2001. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15:2675-2686. http://dx.doi.org/10.1101/gad.924501.
-
(2001)
Genes Dev
, vol.15
, pp. 2675-2686
-
-
Mahon, P.C.1
Hirota, K.2
Semenza, G.L.3
-
11
-
-
8144228566
-
Why do cancers have high aerobic glycolysis? Nat
-
Gatenby RA, Gillies RJ. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4:891-899. http://dx.doi.org/10.1038/nrc1478.
-
(2004)
Rev. Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
12
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. 1956. On the origin of cancer cells. Science 123:309-314. http://dx.doi.org/10.1126/science.123.3191.309.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
13
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
-
Ward PS, Thompson CB. 2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297-308. http://dx.doi.org/10.1016/j.ccr.2012.02.014.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
14
-
-
79954607456
-
Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase
-
Sakamoto T, Niiya D, Seiki M. 2011. Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase. J. Biol. Chem. 286:14691-14704. http://dx.doi.org/10.1074/jbc. M110.188714.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14691-14704
-
-
Sakamoto, T.1
Niiya, D.2
Seiki, M.3
-
15
-
-
0037423948
-
HIF- 1alpha is essential for myeloid cellmediated inflammation
-
Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. 2003. HIF-1alpha is essential for myeloid cellmediated inflammation. Cell 112:645-657. http://dx.doi.org/10.1016/S0092-8674(03)00154-5.
-
(2003)
Cell
, vol.112
, pp. 645-657
-
-
Cramer, T.1
Yamanishi, Y.2
Clausen, B.E.3
Forster, I.4
Pawlinski, R.5
Mackman, N.6
Haase, V.H.7
Jaenisch, R.8
Corr, M.9
Nizet, V.10
Firestein, G.S.11
Gerber, H.P.12
Ferrara, N.13
Johnson, R.S.14
-
16
-
-
71049186343
-
Mint3 enhances the activity of hypoxiainducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1
-
Sakamoto T, Seiki M. 2009. Mint3 enhances the activity of hypoxiainducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. J. Biol. Chem. 284:30350-30359. http://dx.doi.org/10.1074/jbc. M109.019216.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 30350-30359
-
-
Sakamoto, T.1
Seiki, M.2
-
17
-
-
0031736233
-
Mint 3 a ubiquitous mint isoform that does not bind to munc18-1 or -2
-
Okamoto M, Sudhof TC. 1998. Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. Eur. J. Cell Biol. 77:161-165. http://dx.doi.org/10.1016/S0171-9335(98)80103-9.
-
(1998)
Eur. J. Cell Biol.
, vol.77
, pp. 161-165
-
-
Okamoto, M.1
Sudhof, T.C.2
-
18
-
-
0033599341
-
X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein
-
Tanahashi H, Tabira T. 1999. X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein. Biochem. Biophys. Res. Commun. 255:663-667. http://dx.doi.org/10.1006/bbrc.1999.0265.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.255
, pp. 663-667
-
-
Tanahashi, H.1
Tabira, T.2
-
19
-
-
48049087904
-
Interaction of Mint3 with furin regulates the localization of furin in the trans-Golgi network
-
Han J, Wang Y, Wang S, Chi C. 2008. Interaction of Mint3 with furin regulates the localization of furin in the trans-Golgi network. J. Cell Sci. 121:2217-2223. http://dx.doi.org/10.1242/jcs.019745.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2217-2223
-
-
Han, J.1
Wang, Y.2
Wang, S.3
Chi, C.4
-
20
-
-
0035859209
-
Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane
-
Okamoto M, Nakajima Y, Matsuyama T, Sugita M. 2001. Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane. Neuroscience 104:653-665. http://dx.doi.org/10.1016/S0306-4522(01)00124-5.
-
(2001)
Neuroscience 104:653-665
-
-
Okamoto, M.1
Nakajima, Y.2
Matsuyama, T.3
Sugita, M.4
-
21
-
-
77956910491
-
A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism
-
Sakamoto T, Seiki M. 2010. A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J. Biol. Chem. 285:29951-29964. http://dx.doi.org/10.1074/jbc. M110.132704.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29951-29964
-
-
Sakamoto, T.1
Seiki, M.2
-
22
-
-
80052778834
-
Deletion of the Mint3/Apba3 gene in mice abrogates macrophage functions and increases resistance to lipopolysaccharide-induced septic shock
-
Hara T, Mimura K, Abe T, Shioi G, Seiki M, Sakamoto T. 2011. Deletion of the Mint3/Apba3 gene in mice abrogates macrophage functions and increases resistance to lipopolysaccharide-induced septic shock. J. Biol. Chem. 286:32542-32551. http://dx.doi.org/10.1074/jbc. M111.271726.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 32542-32551
-
-
Hara, T.1
Mimura, K.2
Abe, T.3
Shioi, G.4
Seiki, M.5
Sakamoto, T.6
-
23
-
-
80053119490
-
Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion
-
Hara T, Mimura K, Seiki M, Sakamoto T. 2011. Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion. Biochem. Biophys. Res. Commun. 413:277-281. http://dx.doi.org/10.1016/j.bbrc.2011.08.085.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.413
, pp. 277-281
-
-
Hara, T.1
Mimura, K.2
Seiki, M.3
Sakamoto, T.4
-
24
-
-
0042062324
-
Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis
-
Seiki M, Yana I. 2003. Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci. 94:569-574. http://dx.doi.org/10.1111/j.1349-7006.2003.tb01484.x.
-
(2003)
Cancer Sci
, vol.94
, pp. 569-574
-
-
Seiki, M.1
Yana, I.2
-
25
-
-
65449123485
-
Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity
-
Sakamoto T, Seiki M. 2009. Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14:617-626. http://dx.doi.org/10.1111/j.1365-2443.2009.01293.x.
-
(2009)
Genes Cells
, vol.14
, pp. 617-626
-
-
Sakamoto, T.1
Seiki, M.2
-
26
-
-
84859879204
-
Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library
-
Yoshino S, Hara T, Weng JS, Takahashi Y, Seiki M, Sakamoto T. 2012. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library. PLoS One 7:e35590. http://dx.doi.org/10.1371/journal.pone.0035590.
-
(2012)
PLoS One
, vol.7
-
-
Yoshino, S.1
Hara, T.2
Weng, J.S.3
Takahashi, Y.4
Seiki, M.5
Sakamoto, T.6
-
27
-
-
33847651745
-
Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
-
Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. 2007. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 104:3514-3519. http://dx.doi.org/10.1073/pnas.0608510104.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 3514-3519
-
-
Urano, J.1
Sato, T.2
Matsuo, T.3
Otsubo, Y.4
Yamamoto, M.5
Tamanoi, F.6
-
28
-
-
33646269943
-
Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer
-
Kawada M, Inoue H, Masuda T, Ikeda D. 2006. Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Res. 66:4419-4425. http://dx.doi.org/10.1158/0008-5472.CAN-05-4239.
-
(2006)
Cancer Res
, vol.66
, pp. 4419-4425
-
-
Kawada, M.1
Inoue, H.2
Masuda, T.3
Ikeda, D.4
-
29
-
-
33947116423
-
Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression
-
Tsuchiya A, Tashiro E, Yoshida M, Imoto M. 2007. Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression. Oncogene 26:1522-1532. http://dx.doi.org/10.1038/sj.onc.1209962.
-
(2007)
Oncogene
, vol.26
, pp. 1522-1532
-
-
Tsuchiya, A.1
Tashiro, E.2
Yoshida, M.3
Imoto, M.4
-
30
-
-
84865077341
-
Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome
-
Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, Oyama M. 2012. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. PLoS One 7:e43398. http://dx.doi.org/10.1371/journal.pone.0043398.
-
(2012)
PLoS One
, vol.7
-
-
Kozuka-Hata, H.1
Nasu-Nishimura, Y.2
Koyama-Nasu, R.3
Ao-Kondo, H.4
Tsumoto, K.5
Akiyama, T.6
Oyama, M.7
-
31
-
-
84861167206
-
Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies
-
Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, Seiki M, Ichikawa K. 2012. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS Comput. Biol. 8:e1002479. http://dx.doi.org/10.1371/journal.pcbi.1002479.
-
(2012)
PLoS Comput. Biol.
, vol.8
-
-
Hoshino, D.1
Koshikawa, N.2
Suzuki, T.3
Quaranta, V.4
Weaver, A.M.5
Seiki, M.6
Ichikawa, K.7
-
32
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
33
-
-
33747819801
-
mTOR and cancer: insights into a complex relationship
-
Sabatini DM. 2006. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6:729-734. http://dx.doi.org/10.1038/nrc1974.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 729-734
-
-
Sabatini, D.M.1
-
34
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189. http://dx.doi.org/10.1016/S0092-8674(02)00833-4.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
35
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
36
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122-1128. http://dx.doi.org/10.1038/ncb1183.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
Hall, M.N.7
-
37
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39:171-183. http://dx.doi.org/10.1016/j.molcel.2010.06.022.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
Triantafellow, E.7
Ma, Q.8
Gorski, R.9
Cleaver, S.10
Vander Heiden, M.G.11
MacKeigan, J.P.12
Finan, P.M.13
Clish, C.B.14
Murphy, L.O.15
Manning, B.D.16
-
38
-
-
0036789574
-
Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
-
Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22:7004-7014. http://dx.doi.org/10.1128/MCB.22.20.7004-7014.2002.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 7004-7014
-
-
Hudson, C.C.1
Liu, M.2
Chiang, G.G.3
Otterness, D.M.4
Loomis, D.C.5
Kaper, F.6
Giaccia, A.J.7
Abraham, R.T.8
-
39
-
-
0037154264
-
Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin
-
Huffman TA, Mothe-Satney I, Lawrence JC, Jr. 2002. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc. Natl. Acad. Sci. U. S. A. 99:1047-1052. http://dx.doi.org/10.1073/pnas.022634399.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 1047-1052
-
-
Huffman, T.A.1
Mothe-Satney, I.2
Lawrence Jr., J.C.3
-
40
-
-
79961165137
-
2011.mTORcomplex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM. 2011.mTORcomplex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408-420. http://dx.doi.org/10.1016/j.cell.2011.06.034.
-
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
Guertin, D.A.7
Madden, K.L.8
Carpenter, A.E.9
Finck, B.N.10
Sabatini, D.M.11
-
41
-
-
0036774805
-
The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase
-
Choi JH, Bertram PG, Drenan R, Carvalho J, Zhou HH, Zheng XF. 2002. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3:988-994. http://dx.doi.org/10.1093/embo-reports/kvf197.
-
(2002)
EMBO Rep
, vol.3
, pp. 988-994
-
-
Choi, J.H.1
Bertram, P.G.2
Drenan, R.3
Carvalho, J.4
Zhou, H.H.5
Zheng, X.F.6
-
42
-
-
0033968596
-
Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR
-
Yokogami K, Wakisaka S, Avruch J, Reeves SA. 2000. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. 10:47-50. http://dx.doi.org/10.1016/S0960-9822(99)00268-7.
-
(2000)
Curr. Biol.
, vol.10
, pp. 47-50
-
-
Yokogami, K.1
Wakisaka, S.2
Avruch, J.3
Reeves, S.A.4
-
43
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22. http://dx.doi.org/10.1016/j.ccr.2007.05.008.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
44
-
-
54549089738
-
Hypoxia signalling through mTOR and the unfolded protein response in cancer
-
Wouters BG, Koritzinsky M. 2008. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8:851-864. http://dx.doi.org/10.1038/nrc2501.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 851-864
-
-
Wouters, B.G.1
Koritzinsky, M.2
-
45
-
-
0041920901
-
TSC2 regulates VEGF through mTOR-dependent and -independent pathways
-
Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG, Jr. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147-158. http://dx.doi.org/10.1016/S1535-6108(03)00187-9.
-
(2003)
Cancer Cell
, vol.4
, pp. 147-158
-
-
Brugarolas, J.B.1
Vazquez, F.2
Reddy, A.3
Sellers, W.R.4
Kaelin Jr., W.G.5
-
46
-
-
0038784546
-
Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix
-
Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. 2003. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33-45. http://dx.doi.org/10.1016/S0092-8674(03)00513-0.
-
(2003)
Cell
, vol.114
, pp. 33-45
-
-
Hotary, K.B.1
Allen, E.D.2
Brooks, P.C.3
Datta, N.S.4
Long, M.W.5
Weiss, S.J.6
-
47
-
-
78650182619
-
Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells
-
Koshikawa N, Mizushima H, Minegishi T, Eguchi F, Yotsumoto F, Nabeshima K, Miyamoto S, Mekada E, Seiki M. 2011. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Sci. 102:111-116. http://dx.doi.org/10.1111/j.1349-7006.2010.01748.x.
-
(2011)
Cancer Sci
, vol.102
, pp. 111-116
-
-
Koshikawa, N.1
Mizushima, H.2
Minegishi, T.3
Eguchi, F.4
Yotsumoto, F.5
Nabeshima, K.6
Miyamoto, S.7
Mekada, E.8
Seiki, M.9
-
48
-
-
77955029941
-
Membrane type 1-matrix metalloproteinase cleaves offthe NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor
-
Koshikawa N, Mizushima H, Minegishi T, Iwamoto R, Mekada E, Seiki M. 2010. Membrane type 1-matrix metalloproteinase cleaves offthe NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Res. 70:6093-6103. http://dx.doi.org/10.1158/0008-5472.CAN-10-0346.
-
(2010)
Cancer Res
, vol.70
, pp. 6093-6103
-
-
Koshikawa, N.1
Mizushima, H.2
Minegishi, T.3
Iwamoto, R.4
Mekada, E.5
Seiki, M.6
-
49
-
-
0037453001
-
Heparinbinding EGF-like growth factor and ErbB signaling is essential for heart function
-
Iwamoto R, Yamazaki S, Asakura M, Takashima S, Hasuwa H, Miyado K, Adachi S, kitakaze M, Hashimoto K, Raab G, Nanba D, Higashiyama S, Hori M, Klagsbrun M, Mekada E. 2003. Heparinbinding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. U. S. A. 100:3221-3226. http://dx.doi.org/10.1073/pnas.0537588100.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 3221-3226
-
-
Iwamoto, R.1
Yamazaki, S.2
Asakura, M.3
Takashima, S.4
Hasuwa, H.5
Miyado, K.6
Adachi, S.7
Kitakaze, M.8
Hashimoto, K.9
Raab, G.10
Nanba, D.11
Higashiyama, S.12
Hori, M.13
Klagsbrun, M.14
Mekada, E.15
-
50
-
-
33645540607
-
Heparin-binding epidermal growth factor-like growth factor as a novel targeting molecule for cancer therapy
-
Miyamoto S, Yagi H, Yotsumoto F, Kawarabayashi T, Mekada E. 2006. Heparin-binding epidermal growth factor-like growth factor as a novel targeting molecule for cancer therapy. Cancer Sci. 97:341-347. http://dx.doi.org/10.1111/j.1349-7006.2006.00188.x.
-
(2006)
Cancer Sci
, vol.97
, pp. 341-347
-
-
Miyamoto, S.1
Yagi, H.2
Yotsumoto, F.3
Kawarabayashi, T.4
Mekada, E.5
-
53
-
-
33747366672
-
Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment
-
Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ. 2006. Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281:22575-22585. http://dx.doi.org/10.1074/jbc. M600288200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 22575-22585
-
-
Bracken, C.P.1
Fedele, A.O.2
Linke, S.3
Balrak, W.4
Lisy, K.5
Whitelaw, M.L.6
Peet, D.J.7
-
54
-
-
1642315195
-
Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases
-
Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. 2004. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279:9899-9904. http://dx.doi.org/10.1074/jbc. M312254200.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 9899-9904
-
-
Koivunen, P.1
Hirsila, M.2
Gunzler, V.3
Kivirikko, K.I.4
Myllyharju, J.5
|