메뉴 건너뛰기




Volumn 34, Issue 1, 2014, Pages 30-42

Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP

Author keywords

[No Author keywords available]

Indexed keywords

DACTINOMYCIN; FIH 1 PROTEIN; HYPOXIA INDUCIBLE FACTOR 1; KT 5823; MAMMALIAN TARGET OF RAPAMYCIN; MATRIX METALLOPROTEINASE 14; PROTEIN; PROTEIN KINASE B INHIBITOR; RAPAMYCIN; TRICHOSTATIN A; UNCLASSIFIED DRUG;

EID: 84891469248     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01169-13     Document Type: Article
Times cited : (50)

References (54)
  • 1
    • 50149097983 scopus 로고    scopus 로고
    • Hypoxia HIF1 and glucose metabolism in the solid tumour
    • Denko NC. 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8:705-713. http://dx.doi.org/10.1038/nrc2468.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 705-713
    • Denko, N.C.1
  • 2
    • 43649093915 scopus 로고    scopus 로고
    • Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
    • Kaelin WG, Jr, Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393-402. http://dx.doi.org/10.1016/j.molcel.2008.04.009.
    • (2008) Mol. Cell , vol.30 , pp. 393-402
    • Kaelin Jr., W.G.1    Ratcliffe, P.J.2
  • 3
    • 76049100577 scopus 로고    scopus 로고
    • HIF- 1 upstream and downstream of cancer metabolism
    • Semenza GL. 2010. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20:51-56. http://dx.doi.org/10.1016/j.gde.2009.10.009.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 51-56
    • Semenza, G.L.1
  • 4
    • 84655161946 scopus 로고    scopus 로고
    • HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression
    • Keith B, Johnson RS, Simon MC. 2012. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:9-22. http://dx.doi.org/10.1038/nrc3183.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 9-22
    • Keith, B.1    Johnson, R.S.2    Simon, M.C.3
  • 5
    • 1642387020 scopus 로고    scopus 로고
    • Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
    • Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. 2004. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med. 36:1-12. http://dx.doi.org/10.1038/emm.2004.1.
    • (2004) Exp. Mol. Med. , vol.36 , pp. 1-12
    • Lee, J.W.1    Bae, S.H.2    Jeong, J.W.3    Kim, S.H.4    Kim, K.W.5
  • 6
    • 0028068606 scopus 로고
    • Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor J
    • Semenza GL, Roth PH, Fang HM, Wang GL. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor J. Biol. Chem. 269:23757-23763.
    • (1994) Biol. Chem. , vol.269 , pp. 23757-23763
    • Semenza, G.L.1    Roth, P.H.2    Fang, H.M.3    Wang, G.L.4
  • 7
    • 0041465022 scopus 로고    scopus 로고
    • HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia
    • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. 2003. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22:4082-4090. http://dx.doi.org/10.1093/emboj/cdg392.
    • (2003) EMBO J , vol.22 , pp. 4082-4090
    • Berra, E.1    Benizri, E.2    Ginouves, A.3    Volmat, V.4    Roux, D.5    Pouyssegur, J.6
  • 8
    • 54549113030 scopus 로고    scopus 로고
    • The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer
    • Kaelin WG, Jr. 2008. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8:865-873. http://dx.doi.org/10.1038/nrc2502.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 865-873
    • Kaelin Jr., W.G.1
  • 9
    • 0037097861 scopus 로고    scopus 로고
    • FIH- 1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor
    • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466-1471. http://dx.doi.org/10.1101/gad.991402.
    • (2002) Genes Dev , vol.16 , pp. 1466-1471
    • Lando, D.1    Peet, D.J.2    Gorman, J.J.3    Whelan, D.A.4    Whitelaw, M.L.5    Bruick, R.K.6
  • 10
    • 0035887011 scopus 로고    scopus 로고
    • FIH- 1 a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity
    • Mahon PC, Hirota K, Semenza GL. 2001. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15:2675-2686. http://dx.doi.org/10.1101/gad.924501.
    • (2001) Genes Dev , vol.15 , pp. 2675-2686
    • Mahon, P.C.1    Hirota, K.2    Semenza, G.L.3
  • 11
    • 8144228566 scopus 로고    scopus 로고
    • Why do cancers have high aerobic glycolysis? Nat
    • Gatenby RA, Gillies RJ. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4:891-899. http://dx.doi.org/10.1038/nrc1478.
    • (2004) Rev. Cancer , vol.4 , pp. 891-899
    • Gatenby, R.A.1    Gillies, R.J.2
  • 12
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. 1956. On the origin of cancer cells. Science 123:309-314. http://dx.doi.org/10.1126/science.123.3191.309.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 13
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
    • Ward PS, Thompson CB. 2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297-308. http://dx.doi.org/10.1016/j.ccr.2012.02.014.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 14
    • 79954607456 scopus 로고    scopus 로고
    • Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase
    • Sakamoto T, Niiya D, Seiki M. 2011. Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase. J. Biol. Chem. 286:14691-14704. http://dx.doi.org/10.1074/jbc. M110.188714.
    • (2011) J. Biol. Chem. , vol.286 , pp. 14691-14704
    • Sakamoto, T.1    Niiya, D.2    Seiki, M.3
  • 16
    • 71049186343 scopus 로고    scopus 로고
    • Mint3 enhances the activity of hypoxiainducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1
    • Sakamoto T, Seiki M. 2009. Mint3 enhances the activity of hypoxiainducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. J. Biol. Chem. 284:30350-30359. http://dx.doi.org/10.1074/jbc. M109.019216.
    • (2009) J. Biol. Chem. , vol.284 , pp. 30350-30359
    • Sakamoto, T.1    Seiki, M.2
  • 17
    • 0031736233 scopus 로고    scopus 로고
    • Mint 3 a ubiquitous mint isoform that does not bind to munc18-1 or -2
    • Okamoto M, Sudhof TC. 1998. Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. Eur. J. Cell Biol. 77:161-165. http://dx.doi.org/10.1016/S0171-9335(98)80103-9.
    • (1998) Eur. J. Cell Biol. , vol.77 , pp. 161-165
    • Okamoto, M.1    Sudhof, T.C.2
  • 18
    • 0033599341 scopus 로고    scopus 로고
    • X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein
    • Tanahashi H, Tabira T. 1999. X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein. Biochem. Biophys. Res. Commun. 255:663-667. http://dx.doi.org/10.1006/bbrc.1999.0265.
    • (1999) Biochem. Biophys. Res. Commun. , vol.255 , pp. 663-667
    • Tanahashi, H.1    Tabira, T.2
  • 19
    • 48049087904 scopus 로고    scopus 로고
    • Interaction of Mint3 with furin regulates the localization of furin in the trans-Golgi network
    • Han J, Wang Y, Wang S, Chi C. 2008. Interaction of Mint3 with furin regulates the localization of furin in the trans-Golgi network. J. Cell Sci. 121:2217-2223. http://dx.doi.org/10.1242/jcs.019745.
    • (2008) J. Cell Sci. , vol.121 , pp. 2217-2223
    • Han, J.1    Wang, Y.2    Wang, S.3    Chi, C.4
  • 20
    • 0035859209 scopus 로고    scopus 로고
    • Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane
    • Okamoto M, Nakajima Y, Matsuyama T, Sugita M. 2001. Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane. Neuroscience 104:653-665. http://dx.doi.org/10.1016/S0306-4522(01)00124-5.
    • (2001) Neuroscience 104:653-665
    • Okamoto, M.1    Nakajima, Y.2    Matsuyama, T.3    Sugita, M.4
  • 21
    • 77956910491 scopus 로고    scopus 로고
    • A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism
    • Sakamoto T, Seiki M. 2010. A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J. Biol. Chem. 285:29951-29964. http://dx.doi.org/10.1074/jbc. M110.132704.
    • (2010) J. Biol. Chem. , vol.285 , pp. 29951-29964
    • Sakamoto, T.1    Seiki, M.2
  • 22
    • 80052778834 scopus 로고    scopus 로고
    • Deletion of the Mint3/Apba3 gene in mice abrogates macrophage functions and increases resistance to lipopolysaccharide-induced septic shock
    • Hara T, Mimura K, Abe T, Shioi G, Seiki M, Sakamoto T. 2011. Deletion of the Mint3/Apba3 gene in mice abrogates macrophage functions and increases resistance to lipopolysaccharide-induced septic shock. J. Biol. Chem. 286:32542-32551. http://dx.doi.org/10.1074/jbc. M111.271726.
    • (2011) J. Biol. Chem. , vol.286 , pp. 32542-32551
    • Hara, T.1    Mimura, K.2    Abe, T.3    Shioi, G.4    Seiki, M.5    Sakamoto, T.6
  • 23
    • 80053119490 scopus 로고    scopus 로고
    • Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion
    • Hara T, Mimura K, Seiki M, Sakamoto T. 2011. Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion. Biochem. Biophys. Res. Commun. 413:277-281. http://dx.doi.org/10.1016/j.bbrc.2011.08.085.
    • (2011) Biochem. Biophys. Res. Commun. , vol.413 , pp. 277-281
    • Hara, T.1    Mimura, K.2    Seiki, M.3    Sakamoto, T.4
  • 24
    • 0042062324 scopus 로고    scopus 로고
    • Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis
    • Seiki M, Yana I. 2003. Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci. 94:569-574. http://dx.doi.org/10.1111/j.1349-7006.2003.tb01484.x.
    • (2003) Cancer Sci , vol.94 , pp. 569-574
    • Seiki, M.1    Yana, I.2
  • 25
    • 65449123485 scopus 로고    scopus 로고
    • Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity
    • Sakamoto T, Seiki M. 2009. Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14:617-626. http://dx.doi.org/10.1111/j.1365-2443.2009.01293.x.
    • (2009) Genes Cells , vol.14 , pp. 617-626
    • Sakamoto, T.1    Seiki, M.2
  • 26
    • 84859879204 scopus 로고    scopus 로고
    • Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library
    • Yoshino S, Hara T, Weng JS, Takahashi Y, Seiki M, Sakamoto T. 2012. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library. PLoS One 7:e35590. http://dx.doi.org/10.1371/journal.pone.0035590.
    • (2012) PLoS One , vol.7
    • Yoshino, S.1    Hara, T.2    Weng, J.S.3    Takahashi, Y.4    Seiki, M.5    Sakamoto, T.6
  • 27
    • 33847651745 scopus 로고    scopus 로고
    • Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
    • Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. 2007. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 104:3514-3519. http://dx.doi.org/10.1073/pnas.0608510104.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 3514-3519
    • Urano, J.1    Sato, T.2    Matsuo, T.3    Otsubo, Y.4    Yamamoto, M.5    Tamanoi, F.6
  • 28
    • 33646269943 scopus 로고    scopus 로고
    • Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer
    • Kawada M, Inoue H, Masuda T, Ikeda D. 2006. Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Res. 66:4419-4425. http://dx.doi.org/10.1158/0008-5472.CAN-05-4239.
    • (2006) Cancer Res , vol.66 , pp. 4419-4425
    • Kawada, M.1    Inoue, H.2    Masuda, T.3    Ikeda, D.4
  • 29
    • 33947116423 scopus 로고    scopus 로고
    • Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression
    • Tsuchiya A, Tashiro E, Yoshida M, Imoto M. 2007. Involvement of protein phosphatase 2A nuclear accumulation and subsequent inactivation of activator protein-1 in leptomycin B-inhibited cyclin D1 expression. Oncogene 26:1522-1532. http://dx.doi.org/10.1038/sj.onc.1209962.
    • (2007) Oncogene , vol.26 , pp. 1522-1532
    • Tsuchiya, A.1    Tashiro, E.2    Yoshida, M.3    Imoto, M.4
  • 30
    • 84865077341 scopus 로고    scopus 로고
    • Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome
    • Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, Oyama M. 2012. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. PLoS One 7:e43398. http://dx.doi.org/10.1371/journal.pone.0043398.
    • (2012) PLoS One , vol.7
    • Kozuka-Hata, H.1    Nasu-Nishimura, Y.2    Koyama-Nasu, R.3    Ao-Kondo, H.4    Tsumoto, K.5    Akiyama, T.6    Oyama, M.7
  • 31
    • 84861167206 scopus 로고    scopus 로고
    • Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies
    • Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, Seiki M, Ichikawa K. 2012. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS Comput. Biol. 8:e1002479. http://dx.doi.org/10.1371/journal.pcbi.1002479.
    • (2012) PLoS Comput. Biol. , vol.8
    • Hoshino, D.1    Koshikawa, N.2    Suzuki, T.3    Quaranta, V.4    Weaver, A.M.5    Seiki, M.6    Ichikawa, K.7
  • 32
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 33
    • 33747819801 scopus 로고    scopus 로고
    • mTOR and cancer: insights into a complex relationship
    • Sabatini DM. 2006. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6:729-734. http://dx.doi.org/10.1038/nrc1974.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 729-734
    • Sabatini, D.M.1
  • 35
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 36
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122-1128. http://dx.doi.org/10.1038/ncb1183.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4    Ruegg, M.A.5    Hall, A.6    Hall, M.N.7
  • 38
    • 0036789574 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
    • Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22:7004-7014. http://dx.doi.org/10.1128/MCB.22.20.7004-7014.2002.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 7004-7014
    • Hudson, C.C.1    Liu, M.2    Chiang, G.G.3    Otterness, D.M.4    Loomis, D.C.5    Kaper, F.6    Giaccia, A.J.7    Abraham, R.T.8
  • 39
    • 0037154264 scopus 로고    scopus 로고
    • Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin
    • Huffman TA, Mothe-Satney I, Lawrence JC, Jr. 2002. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc. Natl. Acad. Sci. U. S. A. 99:1047-1052. http://dx.doi.org/10.1073/pnas.022634399.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 1047-1052
    • Huffman, T.A.1    Mothe-Satney, I.2    Lawrence Jr., J.C.3
  • 41
    • 0036774805 scopus 로고    scopus 로고
    • The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase
    • Choi JH, Bertram PG, Drenan R, Carvalho J, Zhou HH, Zheng XF. 2002. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3:988-994. http://dx.doi.org/10.1093/embo-reports/kvf197.
    • (2002) EMBO Rep , vol.3 , pp. 988-994
    • Choi, J.H.1    Bertram, P.G.2    Drenan, R.3    Carvalho, J.4    Zhou, H.H.5    Zheng, X.F.6
  • 42
    • 0033968596 scopus 로고    scopus 로고
    • Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR
    • Yokogami K, Wakisaka S, Avruch J, Reeves SA. 2000. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. 10:47-50. http://dx.doi.org/10.1016/S0960-9822(99)00268-7.
    • (2000) Curr. Biol. , vol.10 , pp. 47-50
    • Yokogami, K.1    Wakisaka, S.2    Avruch, J.3    Reeves, S.A.4
  • 43
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22. http://dx.doi.org/10.1016/j.ccr.2007.05.008.
    • (2007) Cancer Cell , vol.12 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 44
    • 54549089738 scopus 로고    scopus 로고
    • Hypoxia signalling through mTOR and the unfolded protein response in cancer
    • Wouters BG, Koritzinsky M. 2008. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8:851-864. http://dx.doi.org/10.1038/nrc2501.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 851-864
    • Wouters, B.G.1    Koritzinsky, M.2
  • 45
    • 0041920901 scopus 로고    scopus 로고
    • TSC2 regulates VEGF through mTOR-dependent and -independent pathways
    • Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG, Jr. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147-158. http://dx.doi.org/10.1016/S1535-6108(03)00187-9.
    • (2003) Cancer Cell , vol.4 , pp. 147-158
    • Brugarolas, J.B.1    Vazquez, F.2    Reddy, A.3    Sellers, W.R.4    Kaelin Jr., W.G.5
  • 46
    • 0038784546 scopus 로고    scopus 로고
    • Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix
    • Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. 2003. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33-45. http://dx.doi.org/10.1016/S0092-8674(03)00513-0.
    • (2003) Cell , vol.114 , pp. 33-45
    • Hotary, K.B.1    Allen, E.D.2    Brooks, P.C.3    Datta, N.S.4    Long, M.W.5    Weiss, S.J.6
  • 47
    • 78650182619 scopus 로고    scopus 로고
    • Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells
    • Koshikawa N, Mizushima H, Minegishi T, Eguchi F, Yotsumoto F, Nabeshima K, Miyamoto S, Mekada E, Seiki M. 2011. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Sci. 102:111-116. http://dx.doi.org/10.1111/j.1349-7006.2010.01748.x.
    • (2011) Cancer Sci , vol.102 , pp. 111-116
    • Koshikawa, N.1    Mizushima, H.2    Minegishi, T.3    Eguchi, F.4    Yotsumoto, F.5    Nabeshima, K.6    Miyamoto, S.7    Mekada, E.8    Seiki, M.9
  • 48
    • 77955029941 scopus 로고    scopus 로고
    • Membrane type 1-matrix metalloproteinase cleaves offthe NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor
    • Koshikawa N, Mizushima H, Minegishi T, Iwamoto R, Mekada E, Seiki M. 2010. Membrane type 1-matrix metalloproteinase cleaves offthe NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Res. 70:6093-6103. http://dx.doi.org/10.1158/0008-5472.CAN-10-0346.
    • (2010) Cancer Res , vol.70 , pp. 6093-6103
    • Koshikawa, N.1    Mizushima, H.2    Minegishi, T.3    Iwamoto, R.4    Mekada, E.5    Seiki, M.6
  • 50
    • 33645540607 scopus 로고    scopus 로고
    • Heparin-binding epidermal growth factor-like growth factor as a novel targeting molecule for cancer therapy
    • Miyamoto S, Yagi H, Yotsumoto F, Kawarabayashi T, Mekada E. 2006. Heparin-binding epidermal growth factor-like growth factor as a novel targeting molecule for cancer therapy. Cancer Sci. 97:341-347. http://dx.doi.org/10.1111/j.1349-7006.2006.00188.x.
    • (2006) Cancer Sci , vol.97 , pp. 341-347
    • Miyamoto, S.1    Yagi, H.2    Yotsumoto, F.3    Kawarabayashi, T.4    Mekada, E.5
  • 51
  • 53
    • 33747366672 scopus 로고    scopus 로고
    • Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment
    • Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ. 2006. Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281:22575-22585. http://dx.doi.org/10.1074/jbc. M600288200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 22575-22585
    • Bracken, C.P.1    Fedele, A.O.2    Linke, S.3    Balrak, W.4    Lisy, K.5    Whitelaw, M.L.6    Peet, D.J.7
  • 54
    • 1642315195 scopus 로고    scopus 로고
    • Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases
    • Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. 2004. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279:9899-9904. http://dx.doi.org/10.1074/jbc. M312254200.
    • (2004) J. Biol. Chem , vol.279 , pp. 9899-9904
    • Koivunen, P.1    Hirsila, M.2    Gunzler, V.3    Kivirikko, K.I.4    Myllyharju, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.