메뉴 건너뛰기




Volumn 77, Issue , 2018, Pages 354-377

Recent advances in convolutional neural networks

Author keywords

Convolutional neural network; Deep learning

Indexed keywords

CONVOLUTION; DEEP LEARNING; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; PROGRAM PROCESSORS; SPEECH RECOGNITION; VISUAL LANGUAGES;

EID: 85031710709     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.10.013     Document Type: Article
Times cited : (4418)

References (316)
  • 1
    • 0014266913 scopus 로고
    • Receptive fields and functional architecture of monkey striate cortex
    • Hubel, D.H., Wiesel, T.N., Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 1968, 215–243.
    • (1968) J. Physiol. , pp. 215-243
    • Hubel, D.H.1    Wiesel, T.N.2
  • 2
    • 27744522225 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition
    • Fukushima, K., Miyake, S., Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. Competition and Cooperation in Neural Nets, 1982, 267–285.
    • (1982) Competition and Cooperation in Neural Nets , pp. 267-285
    • Fukushima, K.1    Miyake, S.2
  • 4
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 5
    • 0024176270 scopus 로고
    • Theory of the backpropagation neural network
    • Hecht-Nielsen, R., Theory of the backpropagation neural network. Neural Networks 1:Supplement-1 (1988), 445–448.
    • (1988) Neural Networks , vol.1 , pp. 445-448
    • Hecht-Nielsen, R.1
  • 6
    • 84975624046 scopus 로고
    • Parallel distributed processing model with local space-invariant interconnections and its optical architecture
    • Zhang, W., Itoh, K., Tanida, J., Ichioka, Y., Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt. 29:32 (1990), 4790–4797.
    • (1990) Appl. Opt. , vol.29 , Issue.32 , pp. 4790-4797
    • Zhang, W.1    Itoh, K.2    Tanida, J.3    Ichioka, Y.4
  • 7
    • 83655163714 scopus 로고    scopus 로고
    • A novel hybrid CNN–SVM classifier for recognizing handwritten digits
    • Niu, X.-X., Suen, C.Y., A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 45:4 (2012), 1318–1325.
    • (2012) Pattern Recognit. , vol.45 , Issue.4 , pp. 1318-1325
    • Niu, X.-X.1    Suen, C.Y.2
  • 20
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S., An extensive experimental comparison of methods for multi-label learning. Pattern Recognit. 45:9 (2012), 3084–3104.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 43
    • 35649018818 scopus 로고    scopus 로고
    • Complex cell pooling and the statistics of natural images
    • Hyvärinen, A., Köster, U., Complex cell pooling and the statistics of natural images. Network 18:2 (2007), 81–100.
    • (2007) Network , vol.18 , Issue.2 , pp. 81-100
    • Hyvärinen, A.1    Köster, U.2
  • 50
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 37:9 (2015), 1904–1916.
    • (2015) IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 60
    • 85032833156 scopus 로고    scopus 로고
    • Improving deep neural networks with probabilistic maxout units
    • Springenberg, J.T., Riedmiller, M., Improving deep neural networks with probabilistic maxout units. CoRR abs/1312.6116, 2013.
    • (2013) CoRR abs/1312.6116
    • Springenberg, J.T.1    Riedmiller, M.2
  • 62
    • 85032752689 scopus 로고    scopus 로고
    • The mnist database of handwritten digit images for machine learning research
    • Deng, L., The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29:6 (2012), 141–142.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 141-142
    • Deng, L.1
  • 67
    • 85050959081 scopus 로고    scopus 로고
    • Learning by coincidence: siamese networks and common variable learning
    • Shaham, U., Lederman, R.R., Learning by coincidence: siamese networks and common variable learning. Pattern Recognit., 2017.
    • (2017) Pattern Recognit.
    • Shaham, U.1    Lederman, R.R.2
  • 71
    • 84931572590 scopus 로고    scopus 로고
    • Deep feature learning with relative distance comparison for person re-identification
    • Ding, S., Lin, L., Wang, G., Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48:10 (2015), 2993–3003.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 2993-3003
    • Ding, S.1    Lin, L.2    Wang, G.3    Chao, H.4
  • 79
    • 84994895363 scopus 로고    scopus 로고
    • Dual autoencoders features for imbalance classification problem
    • Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W., Dual autoencoders features for imbalance classification problem. Pattern Recognit. 60 (2016), 875–889.
    • (2016) Pattern Recognit. , vol.60 , pp. 875-889
    • Ng, W.W.1    Zeng, G.2    Zhang, J.3    Yeung, D.S.4    Pedrycz, W.5
  • 80
    • 84999015221 scopus 로고    scopus 로고
    • Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction
    • Mehta, J., Majumdar, A., Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit. 63 (2017), 499–510.
    • (2017) Pattern Recognit. , vol.63 , pp. 499-510
    • Mehta, J.1    Majumdar, A.2
  • 81
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B.A., et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 1996, 607.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607
    • Olshausen, B.A.1
  • 89
    • 0000418073 scopus 로고
    • On the stability of inverse problems
    • Tikhonov, A.N., On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39, 1943, 195–198.
    • (1943) Dokl. Akad. Nauk SSSR , vol.39 , pp. 195-198
    • Tikhonov, A.N.1
  • 95
    • 85015238568 scopus 로고    scopus 로고
    • Deep convolutional neural networks and data augmentation for environmental sound classification
    • Salamon, J., Bello, J.P., Deep convolutional neural networks and data augmentation for environmental sound classification. Signal Process. Lett. (SPL) 24:3 (2017), 279–283.
    • (2017) Signal Process. Lett. (SPL) , vol.24 , Issue.3 , pp. 279-283
    • Salamon, J.1    Bello, J.P.2
  • 96
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • Eigen, D., Fergus, R., Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2650–2658.
    • (2015) Proceedings of the International Conference on Computer Vision (ICCV) , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 108
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian, N., On the momentum term in gradient descent learning algorithms. Neural Netw. 12:1 (1999), 145–151.
    • (1999) Neural Netw. , vol.12 , Issue.1 , pp. 145-151
    • Qian, N.1
  • 115
    • 84938823248 scopus 로고    scopus 로고
    • GPU asynchronous stochastic gradient descent to speed up neural network training
    • abs/1107.2490
    • Paine, T., Jin, H., Yang, J., Lin, Z., Huang, T., GPU asynchronous stochastic gradient descent to speed up neural network training. CoRR, 2011 abs/1107.2490.
    • (2011) CoRR
    • Paine, T.1    Jin, H.2    Yang, J.3    Lin, Z.4    Huang, T.5
  • 117
    • 34547435898 scopus 로고    scopus 로고
    • On early stopping in gradient descent learning
    • Yao, Y., Rosasco, L., Caponnetto, A., On early stopping in gradient descent learning. Constructive Approx. 26:2 (2007), 289–315.
    • (2007) Constructive Approx. , vol.26 , Issue.2 , pp. 289-315
    • Yao, Y.1    Rosasco, L.2    Caponnetto, A.3
  • 120
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. J. Mach. Learn. Res. (JMLR), 2015, 448–456.
    • (2015) J. Mach. Learn. Res. (JMLR) , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 121
  • 127
    • 85015283427 scopus 로고    scopus 로고
    • Resnet in resnet: generalizing residual architectures
    • abs/1603.08029
    • Targ, S., Almeida, D., Lyman, K., Resnet in resnet: generalizing residual architectures. CoRR, 2016 abs/1603.08029.
    • (2016) CoRR
    • Targ, S.1    Almeida, D.2    Lyman, K.3
  • 132
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks (2014).
    • (2014)
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 140
    • 80053896203 scopus 로고    scopus 로고
    • Tensor-train decomposition
    • Oseledets, I.V., Tensor-train decomposition. SIAM J. Sci. Comput. 33:5 (2011), 2295–2317.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.5 , pp. 2295-2317
    • Oseledets, I.V.1
  • 149
    • 85016066495 scopus 로고    scopus 로고
    • Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients
    • abs/1606.06160
    • Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y., Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, 2016 abs/1606.06160.
    • (2016) CoRR
    • Zhou, S.1    Wu, Y.2    Ni, Z.3    Zhou, X.4    Wen, H.5    Zou, Y.6
  • 151
    • 0030242609 scopus 로고    scopus 로고
    • Efficient scalar quantization of exponential and Laplacian random variables
    • Sullivan, G.J., Efficient scalar quantization of exponential and Laplacian random variables. IEEE Trans. Inf. Theory 42:5 (1996), 1365–1374.
    • (1996) IEEE Trans. Inf. Theory , vol.42 , Issue.5 , pp. 1365-1374
    • Sullivan, G.J.1
  • 152
    • 84940682866 scopus 로고    scopus 로고
    • Compressing deep convolutional networks using vector quantization
    • arXiv preprint, volume abs/1412.6115.
    • Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint arXiv:1412.6115, volume abs/1412.6115, 2014.
    • (2014)
    • Gong, Y.1    Liu, L.2    Yang, M.3    Bourdev, L.4
  • 153
    • 78650259835 scopus 로고    scopus 로고
    • Approximate nearest neighbor search by residual vector quantization
    • Chen, Y., Guan, T., Wang, C., Approximate nearest neighbor search by residual vector quantization. Sensors 10:12 (2010), 11259–11273.
    • (2010) Sensors , vol.10 , Issue.12 , pp. 11259-11273
    • Chen, Y.1    Guan, T.2    Wang, C.3
  • 158
    • 85050987846 scopus 로고    scopus 로고
    • Designing energy-efficient convolutional neural networks using energy-aware pruning
    • Yang, T.-J., Chen, Y.-H., Sze, V., Designing energy-efficient convolutional neural networks using energy-aware pruning. CoRR abs/1611.05128, 2016.
    • (2016) CoRR abs/1611.05128
    • Yang, T.-J.1    Chen, Y.-H.2    Sze, V.3
  • 159
    • 85050992412 scopus 로고    scopus 로고
    • Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250.
    • H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016.
    • (2016)
    • Hu, H.1    Peng, R.2    Tai, Y.-W.3    Tang, C.-K.4
  • 168
    • 0036779091 scopus 로고    scopus 로고
    • Image processing with neural networksa review
    • Egmont-Petersen, M., de Ridder, D., Handels, H., Image processing with neural networksa review. Pattern Recognit. 35:10 (2002), 2279–2301.
    • (2002) Pattern Recognit. , vol.35 , Issue.10 , pp. 2279-2301
    • Egmont-Petersen, M.1    de Ridder, D.2    Handels, H.3
  • 169
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Nogueira, K., Penatti, O.A., dos Santos, J.A., Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 61 (2017), 539–556.
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.2    dos Santos, J.A.3
  • 170
    • 84931564462 scopus 로고    scopus 로고
    • Exemplar based deep discriminative and shareable feature learning for scene image classification
    • Zuo, Z., Wang, G., Shuai, B., Zhao, L., Yang, Q., Exemplar based deep discriminative and shareable feature learning for scene image classification. Pattern Recognit. 48:10 (2015), 3004–3015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3004-3015
    • Zuo, Z.1    Wang, G.2    Shuai, B.3    Zhao, L.4    Yang, Q.5
  • 171
    • 84991821737 scopus 로고    scopus 로고
    • Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
    • Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T., Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61 (2017), 610–628.
    • (2017) Pattern Recognit. , vol.61 , pp. 610-628
    • Lopes, A.T.1    de Aguiar, E.2    De Souza, A.F.3    Oliveira-Santos, T.4
  • 173
    • 80052769306 scopus 로고    scopus 로고
    • Semantic hierarchies for image annotation: a survey
    • Tousch, A.-M., Herbin, S., Audibert, J.-Y., Semantic hierarchies for image annotation: a survey. Pattern Recognit. 45:1 (2012), 333–345.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 333-345
    • Tousch, A.-M.1    Herbin, S.2    Audibert, J.-Y.3
  • 175
    • 85016550549 scopus 로고    scopus 로고
    • Learning fine-grained features via a CNN tree for large-scale classification
    • Wang, Z., Wang, X., Wang, G., Learning fine-grained features via a CNN tree for large-scale classification. CoRR abs/1511.04534, 2015.
    • (2015) CoRR abs/1511.04534
    • Wang, Z.1    Wang, X.2    Wang, G.3
  • 176
    • 84913546601 scopus 로고    scopus 로고
    • Error-driven incremental learning in deep convolutional neural network for large-scale image classification
    • Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z., Error-driven incremental learning in deep convolutional neural network for large-scale image classification. Proceedings of the ACM Multimedia Conference, 2014, 177–186.
    • (2014) Proceedings of the ACM Multimedia Conference , pp. 177-186
    • Xiao, T.1    Zhang, J.2    Yang, K.3    Peng, Y.4    Zhang, Z.5
  • 177
    • 84986253708 scopus 로고    scopus 로고
    • Hd-cnn: hierarchical deep convolutional neural network for image classification
    • Proceedings of the International Conference on Computer Vision (ICCV)
    • Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748.
    • Yan, Z.1    Jagadeesh, V.2    DeCoste, D.3    Di, W.4    Piramuthu, R.5
  • 182
    • 85023175472 scopus 로고    scopus 로고
    • Lg-cnn: from local parts to global discrimination for fine-grained recognition
    • Xie, G.-S., Zhang, X.-Y., Yang, W., Xu, M.-L., Yan, S., Liu, C.-L., Lg-cnn: from local parts to global discrimination for fine-grained recognition. Pattern Recognit. 71 (2017), 118–131.
    • (2017) Pattern Recognit. , vol.71 , pp. 118-131
    • Xie, G.-S.1    Zhang, X.-Y.2    Yang, W.3    Xu, M.-L.4    Yan, S.5    Liu, C.-L.6
  • 187
    • 0043028206 scopus 로고    scopus 로고
    • Mutual-information-based registration of medical images: a survey
    • Pluim, J.P., Maintz, J.A., Viergever, M., et al. Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22:8 (2003), 986–1004.
    • (2003) IEEE Trans. Med. Imaging , vol.22 , Issue.8 , pp. 986-1004
    • Pluim, J.P.1    Maintz, J.A.2    Viergever, M.3
  • 190
    • 84964246694 scopus 로고    scopus 로고
    • Weakly supervised fine-grained categorization with part-based image representation
    • Zhang, Y., Wei, X.-S., Wu, J., Cai, J., Lu, J., Nguyen, V.-A., Do, M.N., Weakly supervised fine-grained categorization with part-based image representation. IEEE Trans. Image Process. 25:4 (2016), 1713–1725.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.4 , pp. 1713-1725
    • Zhang, Y.1    Wei, X.-S.2    Wu, J.3    Cai, J.4    Lu, J.5    Nguyen, V.-A.6    Do, M.N.7
  • 193
    • 84955600326 scopus 로고    scopus 로고
    • Human detection from images and videos: a survey
    • Nguyen, D.T., Li, W., Ogunbona, P.O., Human detection from images and videos: a survey. Pattern Recognit. 51 (2016), 148–175.
    • (2016) Pattern Recognit. , vol.51 , pp. 148-175
    • Nguyen, D.T.1    Li, W.2    Ogunbona, P.O.3
  • 194
    • 84937811514 scopus 로고    scopus 로고
    • Feature representation for statistical-learning-based object detection: a review
    • Li, Y., Wang, S., Tian, Q., Ding, X., Feature representation for statistical-learning-based object detection: a review. Pattern Recognit. 48:11 (2015), 3542–3559.
    • (2015) Pattern Recognit. , vol.48 , Issue.11 , pp. 3542-3559
    • Li, Y.1    Wang, S.2    Tian, Q.3    Ding, X.4
  • 195
    • 84921810743 scopus 로고    scopus 로고
    • A coarse-to-fine approach for fast deformable object detection
    • Pedersoli, M., Vedaldi, A., Gonzalez, J., Roca, X., A coarse-to-fine approach for fast deformable object detection. Pattern Recognit. 48:5 (2015), 1844–1853.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1844-1853
    • Pedersoli, M.1    Vedaldi, A.2    Gonzalez, J.3    Roca, X.4
  • 198
  • 201
    • 85019970310 scopus 로고    scopus 로고
    • Textproposals: a text-specific selective search algorithm for word spotting in the wild
    • Gómez, L., Karatzas, D., Textproposals: a text-specific selective search algorithm for word spotting in the wild. Pattern Recognit. 70 (2017), 60–74.
    • (2017) Pattern Recognit. , vol.70 , pp. 60-74
    • Gómez, L.1    Karatzas, D.2
  • 203
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 37:9 (2015), 1904–1916.
    • (2015) IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 204
    • 85019258369 scopus 로고    scopus 로고
    • Faster r-CNN: towards real-time object detection with region proposal networks
    • Ren, S., He, K., Girshick, R., Sun, J., Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 39:6 (2017), 1137–1149.
    • (2017) IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) , vol.39 , Issue.6 , pp. 1137-1149
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 213
    • 84866051181 scopus 로고    scopus 로고
    • Real-time visual tracking via online weighted multiple instance learning
    • Zhang, K., Song, H., Real-time visual tracking via online weighted multiple instance learning. Pattern Recognit. 46:1 (2013), 397–411.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 397-411
    • Zhang, K.1    Song, H.2
  • 214
    • 84875236224 scopus 로고    scopus 로고
    • Sparse coding based visual tracking: review and experimental comparison
    • Zhang, S., Yao, H., Sun, X., Lu, X., Sparse coding based visual tracking: review and experimental comparison. Pattern Recognit. 46:7 (2013), 1772–1788.
    • (2013) Pattern Recognit. , vol.46 , Issue.7 , pp. 1772-1788
    • Zhang, S.1    Yao, H.2    Sun, X.3    Lu, X.4
  • 215
    • 84910109487 scopus 로고    scopus 로고
    • Multi-target tracking by learning local-to-global trajectory models
    • Zhang, S., Wang, J., Wang, Z., Gong, Y., Liu, Y., Multi-target tracking by learning local-to-global trajectory models. Pattern Recognit. 48:2 (2015), 580–590.
    • (2015) Pattern Recognit. , vol.48 , Issue.2 , pp. 580-590
    • Zhang, S.1    Wang, J.2    Wang, Z.3    Gong, Y.4    Liu, Y.5
  • 216
    • 77957774108 scopus 로고    scopus 로고
    • Human tracking using convolutional neural networks
    • Fan, J., Xu, W., Wu, Y., Gong, Y., Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. (TNN) 21:10 (2010), 1610–1623.
    • (2010) IEEE Trans. Neural Netw. (TNN) , vol.21 , Issue.10 , pp. 1610-1623
    • Fan, J.1    Xu, W.2    Wu, Y.3    Gong, Y.4
  • 217
    • 85088746113 scopus 로고    scopus 로고
    • Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking
    • Li, H., Li, Y., Porikli, F., Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking. Proceedings of the British Machine Vision Conference (BMVC), 2014.
    • (2014) Proceedings of the British Machine Vision Conference (BMVC)
    • Li, H.1    Li, Y.2    Porikli, F.3
  • 218
    • 84950121900 scopus 로고    scopus 로고
    • Cnntracker: online discriminative object tracking via deep convolutional neural network
    • Chen, Y., Yang, X., Zhong, B., Pan, S., Chen, D., Zhang, H., Cnntracker: online discriminative object tracking via deep convolutional neural network. Appl. Soft Comput. 38 (2016), 1088–1098.
    • (2016) Appl. Soft Comput. , vol.38 , pp. 1088-1098
    • Chen, Y.1    Yang, X.2    Zhong, B.3    Pan, S.4    Chen, D.5    Zhang, H.6
  • 220
    • 85023196509 scopus 로고    scopus 로고
    • Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods
    • Patacchiola, M., Cangelosi, A., Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods. Pattern Recognit. 71 (2017), 132–143.
    • (2017) Pattern Recognit. , vol.71 , pp. 132-143
    • Patacchiola, M.1    Cangelosi, A.2
  • 221
    • 85020431075 scopus 로고    scopus 로고
    • Generation of human depth images with body part labels for complex human pose recognition
    • Nishi, K., Miura, J., Generation of human depth images with body part labels for complex human pose recognition. Pattern Recognit., 2017.
    • (2017) Pattern Recognit.
    • Nishi, K.1    Miura, J.2
  • 225
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • Proceedings of the Advances in Neural Information Processing Systems (NIPS)
    • X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744.
    • (2014) , pp. 1736-1744
    • Chen, X.1    Yuille, A.L.2
  • 229
    • 0030384386 scopus 로고    scopus 로고
    • Automatic document processing: a survey
    • Tang, Y.Y., Lee, S.-W., Suen, C.Y., Automatic document processing: a survey. Pattern Recognit. 29:12 (1996), 1931–1952.
    • (1996) Pattern Recognit. , vol.29 , Issue.12 , pp. 1931-1952
    • Tang, Y.Y.1    Lee, S.-W.2    Suen, C.Y.3
  • 230
    • 0036643342 scopus 로고    scopus 로고
    • A survey on off-line cursive word recognition
    • Vinciarelli, A., A survey on off-line cursive word recognition. Pattern Recognit. 35:7 (2002), 1433–1446.
    • (2002) Pattern Recognit. , vol.35 , Issue.7 , pp. 1433-1446
    • Vinciarelli, A.1
  • 231
    • 1842712330 scopus 로고    scopus 로고
    • Text information extraction in images and video: a survey
    • Jung, K., Kim, K.I., Jain, A.K., Text information extraction in images and video: a survey. Pattern Recognit. 37:5 (2004), 977–997.
    • (2004) Pattern Recognit. , vol.37 , Issue.5 , pp. 977-997
    • Jung, K.1    Kim, K.I.2    Jain, A.K.3
  • 232
    • 85007152020 scopus 로고    scopus 로고
    • A comprehensive survey of mostly textual document segmentation algorithms since 2008
    • Eskenazi, S., Gomez-Krämer, P., Ogier, J.-M., A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recognit. 64 (2017), 1–14.
    • (2017) Pattern Recognit. , vol.64 , pp. 1-14
    • Eskenazi, S.1    Gomez-Krämer, P.2    Ogier, J.-M.3
  • 233
    • 85011582891 scopus 로고    scopus 로고
    • Text/non-text image classification in the wild with convolutional neural networks
    • Bai, X., Shi, B., Zhang, C., Cai, X., Qi, L., Text/non-text image classification in the wild with convolutional neural networks. Pattern Recognit. 66 (2017), 437–446.
    • (2017) Pattern Recognit. , vol.66 , pp. 437-446
    • Bai, X.1    Shi, B.2    Zhang, C.3    Cai, X.4    Qi, L.5
  • 234
    • 85015987251 scopus 로고    scopus 로고
    • Improving patch-based scene text script identification with ensembles of conjoined networks
    • Gomez, L., Nicolaou, A., Karatzas, D., Improving patch-based scene text script identification with ensembles of conjoined networks. Pattern Recognit. 67 (2017), 85–96.
    • (2017) Pattern Recognit. , vol.67 , pp. 85-96
    • Gomez, L.1    Nicolaou, A.2    Karatzas, D.3
  • 242
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: continual prediction with lstm
    • Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: continual prediction with lstm. Neural Comput. 12:10 (2000), 2451–2471.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 243
    • 84986282482 scopus 로고    scopus 로고
    • An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
    • Shi, B., Bai, X., Yao, C., An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. CoRR abs/1507.05717, 2015.
    • (2015) CoRR abs/1507.05717
    • Shi, B.1    Bai, X.2    Yao, C.3
  • 245
    • 84943153743 scopus 로고    scopus 로고
    • Reading text in the wild with convolutional neural networks
    • M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20.
    • (2016) , vol.116 , pp. 1-20
    • Jaderberg, M.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 250
    • 84947025839 scopus 로고    scopus 로고
    • Supercnn: a superpixelwise convolutional neural network for salient object detection
    • He, S., et al. Supercnn: a superpixelwise convolutional neural network for salient object detection. Inter. J. Comput. Vis. 115:3 (2015), 330–344.
    • (2015) Inter. J. Comput. Vis. , vol.115 , Issue.3 , pp. 330-344
    • He, S.1
  • 253
    • 85050974682 scopus 로고    scopus 로고
    • End-to-end convolutional network for saliency prediction
    • Pan, J., Gir-i Nieto, X., End-to-end convolutional network for saliency prediction. CoRR abs/1507.01422, 2015.
    • (2015) CoRR abs/1507.01422
    • Pan, J.1    Gir-i Nieto, X.2
  • 254
    • 84902318725 scopus 로고    scopus 로고
    • A survey on still image based human action recognition
    • Guo, G., Lai, A., A survey on still image based human action recognition. Pattern Recognit. 47:10 (2014), 3343–3361.
    • (2014) Pattern Recognit. , vol.47 , Issue.10 , pp. 3343-3361
    • Guo, G.1    Lai, A.2
  • 255
    • 84958104996 scopus 로고    scopus 로고
    • 3D skeleton-based human action classification: a survey
    • Presti, L.L., La Cascia, M., 3D skeleton-based human action classification: a survey. Pattern Recognit. 53 (2016), 130–147.
    • (2016) Pattern Recognit. , vol.53 , pp. 130-147
    • Presti, L.L.1    La Cascia, M.2
  • 263
    • 85027034502 scopus 로고    scopus 로고
    • Action recognition in still images with minimum annotation efforts
    • Zhang, Y., Cheng, L., Wu, J., Cai, J., Do, M.N., Lu, J., Action recognition in still images with minimum annotation efforts. IEEE Trans. Image Process. 25:11 (2016), 5479–5490.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.11 , pp. 5479-5490
    • Zhang, Y.1    Cheng, L.2    Wu, J.3    Cai, J.4    Do, M.N.5    Lu, J.6
  • 264
    • 85017137238 scopus 로고    scopus 로고
    • Three-stream CNNs for action recognition
    • Wang, L., Ge, L., Li, R., Fang, Y., Three-stream CNNs for action recognition. Pattern Recognit. Lett. 92 (2017), 33–40.
    • (2017) Pattern Recognit. Lett. , vol.92 , pp. 33-40
    • Wang, L.1    Ge, L.2    Li, R.3    Fang, Y.4
  • 265
  • 268
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Z. Ghahramani M. Welling C. Cortes N. Lawrence K. Weinberger
    • Simonyan, K., Zisserman, A., Two-stream convolutional networks for action recognition in videos. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., (eds.) Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 568–576.
    • (2014) Proceedings of the Advances in Neural Information Processing Systems (NIPS) , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 271
    • 0018729995 scopus 로고
    • A survey on image segmentation
    • Fu, K.-S., Mui, J., A survey on image segmentation. Pattern Recognit. 13:1 (1981), 3–16.
    • (1981) Pattern Recognit. , vol.13 , Issue.1 , pp. 3-16
    • Fu, K.-S.1    Mui, J.2
  • 272
    • 84975686260 scopus 로고    scopus 로고
    • Multi-scale context for scene labeling via flexible segmentation graph
    • Zhou, Q., Zheng, B., Zhu, W., Latecki, L.J., Multi-scale context for scene labeling via flexible segmentation graph. Pattern Recognit. 59 (2016), 312–324.
    • (2016) Pattern Recognit. , vol.59 , pp. 312-324
    • Zhou, Q.1    Zheng, B.2    Zhu, W.3    Latecki, L.J.4
  • 273
    • 84931577575 scopus 로고    scopus 로고
    • CRF learning with CNN features for image segmentation
    • Liu, F., Lin, G., Shen, C., CRF learning with CNN features for image segmentation. Pattern Recognit. 48:10 (2015), 2983–2992.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 2983-2992
    • Liu, F.1    Lin, G.2    Shen, C.3
  • 274
    • 84958191683 scopus 로고    scopus 로고
    • Scene parsing using inference embedded deep networks
    • Bu, S., Han, P., Liu, Z., Han, J., Scene parsing using inference embedded deep networks. Pattern Recognit. 59 (2016), 188–198.
    • (2016) Pattern Recognit. , vol.59 , pp. 188-198
    • Bu, S.1    Han, P.2    Liu, Z.3    Han, J.4
  • 275
    • 84870239407 scopus 로고    scopus 로고
    • A survey of graph theoretical approaches to image segmentation
    • Peng, B., Zhang, L., Zhang, D., A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 46:3 (2013), 1020–1038.
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 1020-1038
    • Peng, B.1    Zhang, L.2    Zhang, D.3
  • 280
    • 84937128058 scopus 로고    scopus 로고
    • Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b)
    • B. Shuai, Z. Zuo, W. Gang, Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b) 1990–1994.
    • Shuai, B.1    Zuo, Z.2    Gang, W.3
  • 284
    • 78649328053 scopus 로고    scopus 로고
    • Survey on speech emotion recognition: features, classification schemes, and databases
    • El Ayadi, M., Kamel, M.S., Karray, F., Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognit. 44:3 (2011), 572–587.
    • (2011) Pattern Recognit. , vol.44 , Issue.3 , pp. 572-587
    • El Ayadi, M.1    Kamel, M.S.2    Karray, F.3
  • 285
    • 0026189555 scopus 로고
    • Phonemic hidden,Markov models with continuous mixture output densities for large vocabulary word recognition
    • Deng, L., Kenny, P., Lennig, M., Gupta, V., Seitz, F., Mermelstein, P., Phonemic hidden,Markov models with continuous mixture output densities for large vocabulary word recognition. IEEE Trans. Signal Process. 39:7 (1991), 1677–1681.
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.7 , pp. 1677-1681
    • Deng, L.1    Kenny, P.2    Lennig, M.3    Gupta, V.4    Seitz, F.5    Mermelstein, P.6
  • 301
    • 85026840738 scopus 로고    scopus 로고
    • Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
    • Huang, Z., Siniscalchi, S.M., Lee, C.-H., Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation. Pattern Recognit. Lett., 2017.
    • (2017) Pattern Recognit. Lett.
    • Huang, Z.1    Siniscalchi, S.M.2    Lee, C.-H.3
  • 305
    • 85050973425 scopus 로고    scopus 로고
    • Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376.
    • J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017.
    • (2017)
    • Gu, J.1    Jianfei, C.2    Wang, G.3    Chen, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.