-
1
-
-
0014266913
-
Receptive fields and functional architecture of monkey striate cortex
-
Hubel, D.H., Wiesel, T.N., Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 1968, 215–243.
-
(1968)
J. Physiol.
, pp. 215-243
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
2
-
-
27744522225
-
Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition
-
Fukushima, K., Miyake, S., Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. Competition and Cooperation in Neural Nets, 1982, 267–285.
-
(1982)
Competition and Cooperation in Neural Nets
, pp. 267-285
-
-
Fukushima, K.1
Miyake, S.2
-
3
-
-
0000494466
-
Handwritten digit recognition with a back-propagation network
-
Le Cun, B.B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., Handwritten digit recognition with a back-propagation network. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 1989, 396–404.
-
(1989)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 396-404
-
-
Le Cun, B.B.1
Denker, J.S.2
Henderson, D.3
Howard, R.E.4
Hubbard, W.5
Jackel, L.D.6
-
4
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
5
-
-
0024176270
-
Theory of the backpropagation neural network
-
Hecht-Nielsen, R., Theory of the backpropagation neural network. Neural Networks 1:Supplement-1 (1988), 445–448.
-
(1988)
Neural Networks
, vol.1
, pp. 445-448
-
-
Hecht-Nielsen, R.1
-
6
-
-
84975624046
-
Parallel distributed processing model with local space-invariant interconnections and its optical architecture
-
Zhang, W., Itoh, K., Tanida, J., Ichioka, Y., Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt. 29:32 (1990), 4790–4797.
-
(1990)
Appl. Opt.
, vol.29
, Issue.32
, pp. 4790-4797
-
-
Zhang, W.1
Itoh, K.2
Tanida, J.3
Ichioka, Y.4
-
7
-
-
83655163714
-
A novel hybrid CNN–SVM classifier for recognizing handwritten digits
-
Niu, X.-X., Suen, C.Y., A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 45:4 (2012), 1318–1325.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.4
, pp. 1318-1325
-
-
Niu, X.-X.1
Suen, C.Y.2
-
8
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. Imagenet large scale visual recognition challenge. Int. J. Conflict Violence (IJCV) 115:3 (2015), 211–252.
-
(2015)
Int. J. Conflict Violence (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
10
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1–9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84872543023
-
Efficient backprop
-
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R., Efficient backprop. Neural Networks: Tricks of the Trade - Second Edition, 2012, 9–48.
-
(2012)
Neural Networks: Tricks of the Trade - Second Edition
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
15
-
-
84874562673
-
End-to-end text recognition with convolutional neural networks
-
Wang, T., Wu, D.J., Coates, A., Ng, A.Y., End-to-end text recognition with convolutional neural networks. Proceedings of the International Conference on Pattern Recognition (ICPR), 2012, 3304–3308.
-
(2012)
Proceedings of the International Conference on Pattern Recognition (ICPR)
, pp. 3304-3308
-
-
Wang, T.1
Wu, D.J.2
Coates, A.3
Ng, A.Y.4
-
16
-
-
77956502203
-
A theoretical analysis of feature pooling in visual recognition
-
Boureau, Y., Ponce, J., LeCun, Y., A theoretical analysis of feature pooling in visual recognition. Proceedings of the International Conference on Machine Learning (ICML), 2010, 111–118.
-
(2010)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 111-118
-
-
Boureau, Y.1
Ponce, J.2
LeCun, Y.3
-
17
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors
-
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580, 2012.
-
(2012)
CoRR abs/1207.0580
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
18
-
-
85083953135
-
Network in network
-
Lin, M., Chen, Q., Yan, S., Network in network. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
20
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S., An extensive experimental comparison of methods for multi-label learning. Pattern Recognit. 45:9 (2012), 3084–3104.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.9
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Džeroski, S.4
-
22
-
-
85161967549
-
Parallelized stochastic gradient descent
-
Zinkevich, M., Weimer, M., Li, L., Smola, A.J., Parallelized stochastic gradient descent. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2010, 2595–2603.
-
(2010)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Li, L.3
Smola, A.J.4
-
23
-
-
85161972005
-
Tiled convolutional neural networks
-
Ngiam, J., Chen, Z., Chia, D., Koh, P.W., Le, Q.V., Ng, A.Y., Tiled convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2010, 1279–1287.
-
(2010)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1279-1287
-
-
Ngiam, J.1
Chen, Z.2
Chia, D.3
Koh, P.W.4
Le, Q.V.5
Ng, A.Y.6
-
25
-
-
84958543676
-
Time series classification using multi-channels deep convolutional neural networks
-
Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L., Time series classification using multi-channels deep convolutional neural networks. Proceedings of the International Conference on Web-Age Information Management (WAIM), 2014, 298–310.
-
(2014)
Proceedings of the International Conference on Web-Age Information Management (WAIM)
, pp. 298-310
-
-
Zheng, Y.1
Liu, Q.2
Chen, E.3
Ge, Y.4
Zhao, J.L.5
-
26
-
-
77956001004
-
Deconvolutional networks
-
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., Deconvolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, 2528–2535.
-
(2010)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
27
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
Zeiler, M.D., Taylor, G.W., Fergus, R., Adaptive deconvolutional networks for mid and high level feature learning. Proceedings of the International Conference on Computer Vision (ICCV), 2011, 2018–2025.
-
(2011)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2018-2025
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
-
28
-
-
85015843890
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T., Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) 39:4 (2017), 640–651.
-
(2017)
IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
, vol.39
, Issue.4
, pp. 640-651
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84996556010
-
Reseg: a recurrent neural network for object segmentation
-
Visin, F., Kastner, K., Courville, A., Bengio, Y., Matteucci, M., Cho, K., Reseg: a recurrent neural network for object segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
-
-
Visin, F.1
Kastner, K.2
Courville, A.3
Bengio, Y.4
Matteucci, M.5
Cho, K.6
-
30
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
Noh, H., Hong, S., Han, B., Learning deconvolution network for semantic segmentation. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 1520–1528.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
31
-
-
84973861662
-
Look and think twice: capturing top-down visual attention with feedback convolutional neural networks
-
Cao, C., Liu, X., Yang, Y., Yu, Y., Wang, J., Wang, Z., Huang, Y., Wang, L., Huang, C., Xu, W., et al. Look and think twice: capturing top-down visual attention with feedback convolutional neural networks. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2956–2964.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2956-2964
-
-
Cao, C.1
Liu, X.2
Yang, Y.3
Yu, Y.4
Wang, J.5
Wang, Z.6
Huang, Y.7
Wang, L.8
Huang, C.9
Xu, W.10
-
32
-
-
84990068034
-
Top-down neural attention by excitation backprop
-
Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S., Top-down neural attention by excitation backprop. Proceedings of the European Conference on Computer Vision (ECCV), 2016, 543–559.
-
(2016)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 543-559
-
-
Zhang, J.1
Lin, Z.2
Brandt, J.3
Shen, X.4
Sclaroff, S.5
-
33
-
-
84998996019
-
Augmenting supervised neural networks with unsupervised objectives for large-scale image classification
-
Zhang, Y., Lee, E.K., Lee, E.H., EDU, U., Augmenting supervised neural networks with unsupervised objectives for large-scale image classification. Proceedings of the International Conference on Machine Learning (ICML), 2016, 612–621.
-
(2016)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 612-621
-
-
Zhang, Y.1
Lee, E.K.2
Lee, E.H.3
EDU, U.4
-
34
-
-
84986247435
-
Learning deep features for discriminative localization
-
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2921–2929.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2921-2929
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
35
-
-
85072846928
-
Human attention in visual question answering: Do humans and deep networks look at the same regions?
-
Das, A., Agrawal, H., Zitnick, C.L., Parikh, D., Batra, D., Human attention in visual question answering: Do humans and deep networks look at the same regions?. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016, 932–937.
-
(2016)
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
, pp. 932-937
-
-
Das, A.1
Agrawal, H.2
Zitnick, C.L.3
Parikh, D.4
Batra, D.5
-
36
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C.C., He, K., Tang, X., Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38:2 (2016), 295–307.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
38
-
-
85021685073
-
Neural machine translation in linear time
-
Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A.v.d., Graves, A., Kavukcuoglu, K., Neural machine translation in linear time. CoRR abs/1610.10099, 2016.
-
(2016)
CoRR abs/1610.10099
-
-
Kalchbrenner, N.1
Espeholt, L.2
Simonyan, K.3
Oord, A.V.D.4
Graves, A.5
Kavukcuoglu, K.6
-
39
-
-
85017259342
-
Wavenet: a generative model for raw audio
-
Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., Wavenet: a generative model for raw audio. CoRR abs/1609.03499, 2016.
-
(2016)
CoRR abs/1609.03499
-
-
Oord, A.V.D.1
Dieleman, S.2
Zen, H.3
Simonyan, K.4
Vinyals, O.5
Graves, A.6
Kalchbrenner, N.7
Senior, A.8
Kavukcuoglu, K.9
-
41
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2818–2826.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
42
-
-
85028013193
-
Inception-v4, inception-resnet and the impact of residual connections on learning
-
Szegedy, C., Ioffe, S., Vanhoucke, V., Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 4278–4284.
-
(2017)
Proceedings of the AAAI Conference on Artificial Intelligence
, pp. 4278-4284
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
-
43
-
-
35649018818
-
Complex cell pooling and the statistics of natural images
-
Hyvärinen, A., Köster, U., Complex cell pooling and the statistics of natural images. Network 18:2 (2007), 81–100.
-
(2007)
Network
, vol.18
, Issue.2
, pp. 81-100
-
-
Hyvärinen, A.1
Köster, U.2
-
44
-
-
84919951531
-
Signal recovery from pooling representations
-
Estrach, J.B., Szlam, A., Lecun, Y., Signal recovery from pooling representations. Proceedings of the International Conference on Machine Learning (ICML), 2014, 307–315.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 307-315
-
-
Estrach, J.B.1
Szlam, A.2
Lecun, Y.3
-
45
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R., Regularization of neural networks using dropconnect. Proceedings of the International Conference on Machine Learning (ICML), 2013, 1058–1066.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
46
-
-
84908696009
-
Mixed pooling for convolutional neural networks
-
Yu, D., Wang, H., Chen, P., Wei, Z., Mixed pooling for convolutional neural networks. Proceedings of the Rough Sets and Knowledge Technology (RSKT), 2014, 364–375.
-
(2014)
Proceedings of the Rough Sets and Knowledge Technology (RSKT)
, pp. 364-375
-
-
Yu, D.1
Wang, H.2
Chen, P.3
Wei, Z.4
-
48
-
-
84965137166
-
Spectral representations for convolutional neural networks
-
Rippel, O., Snoek, J., Adams, R.P., Spectral representations for convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 2449–2457.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2449-2457
-
-
Rippel, O.1
Snoek, J.2
Adams, R.P.3
-
49
-
-
85083951901
-
Fast training of convolutional networks through FFTs
-
Mathieu, M., Henaff, M., LeCun, Y., Fast training of convolutional networks through FFTs. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Mathieu, M.1
Henaff, M.2
LeCun, Y.3
-
50
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 37:9 (2015), 1904–1916.
-
(2015)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.37
, Issue.9
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
51
-
-
84867880615
-
Unsupervised discovery of mid-level discriminative patches
-
Singh, S., Gupta, A., Efros, A., Unsupervised discovery of mid-level discriminative patches. Proceedings of the European Conference on Computer Vision (ECCV), 2012, 73–86.
-
(2012)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 73-86
-
-
Singh, S.1
Gupta, A.2
Efros, A.3
-
52
-
-
84906352772
-
Multi-scale orderless pooling of deep convolutional activation features
-
Gong, Y., Wang, L., Guo, R., Lazebnik, S., Multi-scale orderless pooling of deep convolutional activation features. Proceedings of the European Conference on Computer Vision (ECCV), 2014, 392–407.
-
(2014)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 392-407
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
53
-
-
84865584175
-
Aggregating local image descriptors into compact codes
-
Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C., Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) 34:9 (2012), 1704–1716.
-
(2012)
IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
, vol.34
, Issue.9
, pp. 1704-1716
-
-
Jégou, H.1
Perronnin, F.2
Douze, M.3
Sanchez, J.4
Perez, P.5
Schmid, C.6
-
54
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, A.L., Hannun, A.Y., Ng, A.Y., Rectifier nonlinearities improve neural network acoustic models. Proceedings of the International Conference on Machine Learning (ICML), 30, 2013.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, vol.30
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
55
-
-
84890471125
-
On rectified linear units for speech processing
-
Zeiler, M.D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q.V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., et al. On rectified linear units for speech processing. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013, 3517–3521.
-
(2013)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 3517-3521
-
-
Zeiler, M.D.1
Ranzato, M.2
Monga, R.3
Mao, M.4
Yang, K.5
Le, Q.V.6
Nguyen, P.7
Senior, A.8
Vanhoucke, V.9
Dean, J.10
-
56
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, K., Zhang, X., Ren, S., Sun, J., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 1026–1034.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
57
-
-
84960920723
-
Empirical evaluation of rectified activations in convolutional network
-
Xu, B., Wang, N., Chen, T., Li, M., Empirical evaluation of rectified activations in convolutional network. Proceedings of the International Conference on Machine Learning (ICML) Workshop, 2015.
-
(2015)
Proceedings of the International Conference on Machine Learning (ICML) Workshop
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
58
-
-
85083953568
-
Fast and accurate deep network learning by exponential linear units (elus)
-
Clevert, D.-A., Unterthiner, T., Hochreiter, S., Fast and accurate deep network learning by exponential linear units (elus). Proceedings of the International Conference on Learning Representations (ICLR), 2016.
-
(2016)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Clevert, D.-A.1
Unterthiner, T.2
Hochreiter, S.3
-
59
-
-
84897543523
-
Maxout networks
-
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y., Maxout networks. Proceedings of the International Conference on Machine Learning (ICML), 2013, 1319–1327.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
60
-
-
85032833156
-
Improving deep neural networks with probabilistic maxout units
-
Springenberg, J.T., Riedmiller, M., Improving deep neural networks with probabilistic maxout units. CoRR abs/1312.6116, 2013.
-
(2013)
CoRR abs/1312.6116
-
-
Springenberg, J.T.1
Riedmiller, M.2
-
62
-
-
85032752689
-
The mnist database of handwritten digit images for machine learning research
-
Deng, L., The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29:6 (2012), 141–142.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 141-142
-
-
Deng, L.1
-
63
-
-
85028395688
-
Large-margin softmax loss for convolutional neural networks
-
Liu, W., Wen, Y., Yu, Z., Yang, M., Large-margin softmax loss for convolutional neural networks. Proceedings of the International Conference on Machine Learning (ICML), 2016, 507–516.
-
(2016)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 507-516
-
-
Liu, W.1
Wen, Y.2
Yu, Z.3
Yang, M.4
-
64
-
-
0005594495
-
Signature verification using a siamese time delay neural network
-
Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., Shah, R., Signature verification using a siamese time delay neural network. Int. J. Pattern Recognit. Artif. Intell. (IJPRAI) 7:4 (1993), 669–688.
-
(1993)
Int. J. Pattern Recognit. Artif. Intell. (IJPRAI)
, vol.7
, Issue.4
, pp. 669-688
-
-
Bromley, J.1
Bentz, J.W.2
Bottou, L.3
Guyon, I.4
LeCun, Y.5
Moore, C.6
Säckinger, E.7
Shah, R.8
-
65
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
Chopra, S., Hadsell, R., LeCun, Y., Learning a similarity metric discriminatively, with application to face verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, 539–546.
-
(2005)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
66
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
Hadsell, R., Chopra, S., LeCun, Y., Dimensionality reduction by learning an invariant mapping. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, 1735–1742.
-
(2006)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1735-1742
-
-
Hadsell, R.1
Chopra, S.2
LeCun, Y.3
-
67
-
-
85050959081
-
Learning by coincidence: siamese networks and common variable learning
-
Shaham, U., Lederman, R.R., Learning by coincidence: siamese networks and common variable learning. Pattern Recognit., 2017.
-
(2017)
Pattern Recognit.
-
-
Shaham, U.1
Lederman, R.R.2
-
68
-
-
85021783306
-
Deephash: getting regularization, depth and fine-tuning right
-
Lin, J., Morere, O., Chandrasekhar, V., Veillard, A., Goh, H., Deephash: getting regularization, depth and fine-tuning right. Proceedings of the International Conference on Multimedia Retrieval (ICMR), 2017, 133–141.
-
(2017)
Proceedings of the International Conference on Multimedia Retrieval (ICMR)
, pp. 133-141
-
-
Lin, J.1
Morere, O.2
Chandrasekhar, V.3
Veillard, A.4
Goh, H.5
-
69
-
-
84946751287
-
Facenet: a unified embedding for face recognition and clustering
-
Schroff, F., Kalenichenko, D., Philbin, J., Facenet: a unified embedding for face recognition and clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 815–823.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
70
-
-
84986278256
-
Deep relative distance learning: tell the difference between similar vehicles
-
Liu, H., Tian, Y., Yang, Y., Pang, L., Huang, T., Deep relative distance learning: tell the difference between similar vehicles. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2167–2175.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2167-2175
-
-
Liu, H.1
Tian, Y.2
Yang, Y.3
Pang, L.4
Huang, T.5
-
71
-
-
84931572590
-
Deep feature learning with relative distance comparison for person re-identification
-
Ding, S., Lin, L., Wang, G., Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48:10 (2015), 2993–3003.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 2993-3003
-
-
Ding, S.1
Lin, L.2
Wang, G.3
Chao, H.4
-
72
-
-
84986260103
-
Deepfashion: powering robust clothes recognition and retrieval with rich annotations
-
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X., Deepfashion: powering robust clothes recognition and retrieval with rich annotations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 1096–1104.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1096-1104
-
-
Liu, Z.1
Luo, P.2
Qiu, S.3
Wang, X.4
Tang, X.5
-
74
-
-
85030465316
-
Denoising criterion for variational auto-encoding framework
-
Im, D.J., Ahn, S., Memisevic, R., Bengio, Y., Denoising criterion for variational auto-encoding framework. Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), 2017, 2059–2065.
-
(2017)
Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
, pp. 2059-2065
-
-
Im, D.J.1
Ahn, S.2
Memisevic, R.3
Bengio, Y.4
-
75
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M., Semi-supervised learning with deep generative models. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 3581–3589.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
76
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., Generative adversarial nets. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 2672–2680.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
78
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., Extracting and composing robust features with denoising autoencoders. Proceedings of the International Conference on Machine Learning (ICML), 2008, 1096–1103.
-
(2008)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
79
-
-
84994895363
-
Dual autoencoders features for imbalance classification problem
-
Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W., Dual autoencoders features for imbalance classification problem. Pattern Recognit. 60 (2016), 875–889.
-
(2016)
Pattern Recognit.
, vol.60
, pp. 875-889
-
-
Ng, W.W.1
Zeng, G.2
Zhang, J.3
Yeung, D.S.4
Pedrycz, W.5
-
80
-
-
84999015221
-
Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction
-
Mehta, J., Majumdar, A., Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit. 63 (2017), 499–510.
-
(2017)
Pattern Recognit.
, vol.63
, pp. 499-510
-
-
Mehta, J.1
Majumdar, A.2
-
81
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen, B.A., et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 1996, 607.
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607
-
-
Olshausen, B.A.1
-
82
-
-
84864036295
-
Efficient sparse coding algorithms
-
Lee, H., Battle, A., Raina, R., Ng, A.Y., Efficient sparse coding algorithms. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2006, 801–808.
-
(2006)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 801-808
-
-
Lee, H.1
Battle, A.2
Raina, R.3
Ng, A.Y.4
-
83
-
-
85018882970
-
Attend, infer, repeat: fast scene understanding with generative models
-
Eslami, S., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., Hinton, G.E., Attend, infer, repeat: fast scene understanding with generative models. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2016, 3225–3233.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 3225-3233
-
-
Eslami, S.1
Heess, N.2
Weber, T.3
Tassa, Y.4
Kavukcuoglu, K.5
Hinton, G.E.6
-
84
-
-
84965139640
-
Learning structured output representation using deep conditional generative models
-
Sohn, K., Lee, H., Yan, X., Learning structured output representation using deep conditional generative models. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 3483–3491.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 3483-3491
-
-
Sohn, K.1
Lee, H.2
Yan, X.3
-
85
-
-
84998636515
-
Generative adversarial text to image synthesis
-
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H., Generative adversarial text to image synthesis. Proceedings of the International Conference on Machine Learning (ICML), 2016, 1060–1069.
-
(2016)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1060-1069
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
86
-
-
84965143571
-
Deep generative image models using a Laplacian pyramid of adversarial networks
-
Denton, E.L., Chintala, S., Fergus, R., et al. Deep generative image models using a Laplacian pyramid of adversarial networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 1486–1494.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1486-1494
-
-
Denton, E.L.1
Chintala, S.2
Fergus, R.3
-
87
-
-
85018875486
-
Improved techniques for training GANs
-
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., Improved techniques for training GANs. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2016, 2226–2234.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
89
-
-
0000418073
-
On the stability of inverse problems
-
Tikhonov, A.N., On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39, 1943, 195–198.
-
(1943)
Dokl. Akad. Nauk SSSR
, vol.39
, pp. 195-198
-
-
Tikhonov, A.N.1
-
92
-
-
84959240338
-
Efficient object localization using convolutional networks
-
Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C., Efficient object localization using convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 648–656.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 648-656
-
-
Tompson, J.1
Goroshin, R.2
Jain, A.3
LeCun, Y.4
Bregler, C.5
-
93
-
-
84959182127
-
Mirror, mirror on the wall, tell me, is the error small?
-
Yang, H., Patras, I., Mirror, mirror on the wall, tell me, is the error small?. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 4685–4693.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 4685-4693
-
-
Yang, H.1
Patras, I.2
-
95
-
-
85015238568
-
Deep convolutional neural networks and data augmentation for environmental sound classification
-
Salamon, J., Bello, J.P., Deep convolutional neural networks and data augmentation for environmental sound classification. Signal Process. Lett. (SPL) 24:3 (2017), 279–283.
-
(2017)
Signal Process. Lett. (SPL)
, vol.24
, Issue.3
, pp. 279-283
-
-
Salamon, J.1
Bello, J.P.2
-
96
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Eigen, D., Fergus, R., Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2650–2658.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2650-2658
-
-
Eigen, D.1
Fergus, R.2
-
97
-
-
84911429110
-
Transformation pursuit for image classification
-
Paulin, M., Revaud, J., Harchaoui, Z., Perronnin, F., Schmid, C., Transformation pursuit for image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 3646–3653.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3646-3653
-
-
Paulin, M.1
Revaud, J.2
Harchaoui, Z.3
Perronnin, F.4
Schmid, C.5
-
98
-
-
85067571143
-
Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation
-
Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher III, J.W., Hansen, L.K., Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation. Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2016, 342–350.
-
(2016)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
, pp. 342-350
-
-
Hauberg, S.1
Freifeld, O.2
Larsen, A.B.L.3
Fisher III, J.W.4
Hansen, L.K.5
-
99
-
-
84959248782
-
Hyper-class augmented and regularized deep learning for fine-grained image classification
-
Xie, S., Yang, T., Wang, X., Lin, Y., Hyper-class augmented and regularized deep learning for fine-grained image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 2645–2654.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2645-2654
-
-
Xie, S.1
Yang, T.2
Wang, X.3
Lin, Y.4
-
100
-
-
84973897246
-
Augmenting strong supervision using web data for fine-grained categorization
-
Xu, Z., Huang, S., Zhang, Y., Tao, D., Augmenting strong supervision using web data for fine-grained categorization. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2524–2532.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2524-2532
-
-
Xu, Z.1
Huang, S.2
Zhang, Y.3
Tao, D.4
-
101
-
-
85007194411
-
The loss surfaces of multilayer networks
-
Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y., The loss surfaces of multilayer networks. Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2015.
-
(2015)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
-
-
Choromanska, A.1
Henaff, M.2
Mathieu, M.3
Arous, G.B.4
LeCun, Y.5
-
103
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I., Martens, J., Dahl, G., Hinton, G., On the importance of initialization and momentum in deep learning. Proceedings of the International Conference on Machine Learning (ICML), 2013, 1139–1147.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
105
-
-
85083950783
-
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
-
Saxe, A.M., McClelland, J.L., Ganguli, S., Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Saxe, A.M.1
McClelland, J.L.2
Ganguli, S.3
-
106
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
Doersch, C., Gupta, A., Efros, A.A., Unsupervised visual representation learning by context prediction. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 1422–1430.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 1422-1430
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
107
-
-
84973926501
-
Learning to see by moving
-
Agrawal, P., Carreira, J., Malik, J., Learning to see by moving. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 37–45.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 37-45
-
-
Agrawal, P.1
Carreira, J.2
Malik, J.3
-
108
-
-
0032983160
-
On the momentum term in gradient descent learning algorithms
-
Qian, N., On the momentum term in gradient descent learning algorithms. Neural Netw. 12:1 (1999), 145–151.
-
(1999)
Neural Netw.
, vol.12
, Issue.1
, pp. 145-151
-
-
Qian, N.1
-
111
-
-
84897487847
-
No more pesky learning rates
-
Schaul, T., Zhang, S., LeCun, Y., No more pesky learning rates. Proceedings of the International Conference on Machine Learning (ICML), 2013, 343–351.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 343-351
-
-
Schaul, T.1
Zhang, S.2
LeCun, Y.3
-
112
-
-
84965152276
-
Deep learning with elastic averaging SGD
-
Zhang, S., Choromanska, A.E., LeCun, Y., Deep learning with elastic averaging SGD. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 685–693.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 685-693
-
-
Zhang, S.1
Choromanska, A.E.2
LeCun, Y.3
-
113
-
-
85162467517
-
Hogwild: a lock-free approach to parallelizing stochastic gradient descent
-
Recht, B., Re, C., Wright, S., Niu, F., Hogwild: a lock-free approach to parallelizing stochastic gradient descent. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2011, 693–701.
-
(2011)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 693-701
-
-
Recht, B.1
Re, C.2
Wright, S.3
Niu, F.4
-
114
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q.V., et al. Large scale distributed deep networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2012, 1232–1240.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
115
-
-
84938823248
-
GPU asynchronous stochastic gradient descent to speed up neural network training
-
abs/1107.2490
-
Paine, T., Jin, H., Yang, J., Lin, Z., Huang, T., GPU asynchronous stochastic gradient descent to speed up neural network training. CoRR, 2011 abs/1107.2490.
-
(2011)
CoRR
-
-
Paine, T.1
Jin, H.2
Yang, J.3
Lin, Z.4
Huang, T.5
-
116
-
-
84887588556
-
A fast parallel SGD for matrix factorization in shared memory systems
-
Zhuang, Y., Chin, W.-S., Juan, Y.-C., Lin, C.-J., A fast parallel SGD for matrix factorization in shared memory systems. Proceedings of the ACM conference on Recommender systems RecSys, 2013, 249–256.
-
(2013)
Proceedings of the ACM conference on Recommender systems RecSys
, pp. 249-256
-
-
Zhuang, Y.1
Chin, W.-S.2
Juan, Y.-C.3
Lin, C.-J.4
-
117
-
-
34547435898
-
On early stopping in gradient descent learning
-
Yao, Y., Rosasco, L., Caponnetto, A., On early stopping in gradient descent learning. Constructive Approx. 26:2 (2007), 289–315.
-
(2007)
Constructive Approx.
, vol.26
, Issue.2
, pp. 289-315
-
-
Yao, Y.1
Rosasco, L.2
Caponnetto, A.3
-
119
-
-
85088231398
-
Understanding deep learning requires rethinking generalization
-
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O., Understanding deep learning requires rethinking generalization. Proceedings of the International Conference on Learning Representations (ICLR), 2017.
-
(2017)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Zhang, C.1
Bengio, S.2
Hardt, M.3
Recht, B.4
Vinyals, O.5
-
120
-
-
84969584486
-
Batch normalization: accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. J. Mach. Learn. Res. (JMLR), 2015, 448–456.
-
(2015)
J. Mach. Learn. Res. (JMLR)
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
121
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S., Schmidhuber, J., Long short-term memory. Neural Comput. 9:8 (1997), 1735–1780.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
122
-
-
84965164720
-
Training very deep networks
-
Srivastava, R.K., Greff, K., Schmidhuber, J., Training very deep networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 2377–2385.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2377-2385
-
-
Srivastava, R.K.1
Greff, K.2
Schmidhuber, J.3
-
123
-
-
84990050094
-
Identity mappings in deep residual networks
-
He, K., Zhang, X., Ren, S., Sun, J., Identity mappings in deep residual networks. Proceedings of the European Conference on Computer Vision (ECCV), 2016, 630–645.
-
(2016)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
124
-
-
85015337212
-
Weighted residuals for very deep networks
-
Shen, F., Gan, R., Zeng, G., Weighted residuals for very deep networks. Proceedings of the International Conference on Systems and Informatics (ICSAI), 2016, 936–941.
-
(2016)
Proceedings of the International Conference on Systems and Informatics (ICSAI)
, pp. 936-941
-
-
Shen, F.1
Gan, R.2
Zeng, G.3
-
126
-
-
85018925999
-
Swapout: learning an ensemble of deep architectures
-
Singh, S., Hoiem, D., Forsyth, D., Swapout: learning an ensemble of deep architectures. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2016, 28–36.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 28-36
-
-
Singh, S.1
Hoiem, D.2
Forsyth, D.3
-
127
-
-
85015283427
-
Resnet in resnet: generalizing residual architectures
-
abs/1603.08029
-
Targ, S., Almeida, D., Lyman, K., Resnet in resnet: generalizing residual architectures. CoRR, 2016 abs/1603.08029.
-
(2016)
CoRR
-
-
Targ, S.1
Almeida, D.2
Lyman, K.3
-
128
-
-
85021898937
-
Residual networks of residual networks: multilevel residual networks
-
Zhang, K., Sun, M., Han, T.X., Yuan, X., Guo, L., Liu, T., Residual networks of residual networks: multilevel residual networks. IEEE Trans. Circuits Syst. Video Technol. (TCSVT), PP(99), 2016, 1.
-
(2016)
IEEE Trans. Circuits Syst. Video Technol. (TCSVT)
, vol.PP
, Issue.99
, pp. 1
-
-
Zhang, K.1
Sun, M.2
Han, T.X.3
Yuan, X.4
Guo, L.5
Liu, T.6
-
129
-
-
85013999932
-
Densely connected convolutional networks
-
Huang, G., Liu, Z., Weinberger, K.Q., Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 4700–4708.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 4700-4708
-
-
Huang, G.1
Liu, Z.2
Weinberger, K.Q.3
-
130
-
-
85050975559
-
-
Cudnn: efficient primitives for deep learningabs/1410.0759
-
S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, Cudnn: efficient primitives for deep learningabs/1410.0759 (2014).
-
(2014)
-
-
Chetlur, S.1
Woolley, C.2
Vandermersch, P.3
Cohen, J.4
Tran, J.5
Catanzaro, B.6
Shelhamer, E.7
-
131
-
-
85083953426
-
Fast convolutional nets with fbfft: aGPU performance evaluation
-
Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y., Fast convolutional nets with fbfft: aGPU performance evaluation. Proceedings of the International Conference on Learning Representations (ICLR), 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Vasilache, N.1
Johnson, J.2
Mathieu, M.3
Chintala, S.4
Piantino, S.5
LeCun, Y.6
-
132
-
-
85083951635
-
-
Overfeat: integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks (2014).
-
(2014)
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
134
-
-
84890454527
-
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
-
Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B., Low-rank matrix factorization for deep neural network training with high-dimensional output targets. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013, 6655–6659.
-
(2013)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 6655-6659
-
-
Sainath, T.N.1
Kingsbury, B.2
Sindhwani, V.3
Arisoy, E.4
Ramabhadran, B.5
-
135
-
-
84906227589
-
Restructuring of deep neural network acoustic models with singular value decomposition
-
Xue, J., Li, J., Gong, Y., Restructuring of deep neural network acoustic models with singular value decomposition. Proceedings of the International Speech Communication Association (INTERSPEECH), 2013, 2365–2369.
-
(2013)
Proceedings of the International Speech Communication Association (INTERSPEECH)
, pp. 2365-2369
-
-
Xue, J.1
Li, J.2
Gong, Y.3
-
136
-
-
84898971588
-
Predicting parameters in deep learning
-
Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al. Predicting parameters in deep learning. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2013, 2148–2156.
-
(2013)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2148-2156
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
de Freitas, N.4
-
137
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R., Exploiting linear structure within convolutional networks for efficient evaluation. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 1269–1277.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1269-1277
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
138
-
-
85062833929
-
Speeding up convolutional neural networks with low rank expansions
-
Jaderberg, M., Vedaldi, A., Zisserman, A., Speeding up convolutional neural networks with low rank expansions. Proceedings of the British Machine Vision Conference (BMVC), 2014.
-
(2014)
Proceedings of the British Machine Vision Conference (BMVC)
-
-
Jaderberg, M.1
Vedaldi, A.2
Zisserman, A.3
-
139
-
-
84965128773
-
Tensorizing neural networks
-
Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P., Tensorizing neural networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 442–450.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 442-450
-
-
Novikov, A.1
Podoprikhin, D.2
Osokin, A.3
Vetrov, D.P.4
-
140
-
-
80053896203
-
Tensor-train decomposition
-
Oseledets, I.V., Tensor-train decomposition. SIAM J. Sci. Comput. 33:5 (2011), 2295–2317.
-
(2011)
SIAM J. Sci. Comput.
, vol.33
, Issue.5
, pp. 2295-2317
-
-
Oseledets, I.V.1
-
141
-
-
84897549944
-
Fastfood-approximating kernel expansions in loglinear time
-
Le, Q., Sarlós, T., Smola, A., Fastfood-approximating kernel expansions in loglinear time. Proceedings of the International Conference on Machine Learning (ICML), 85, 2013.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, vol.85
-
-
Le, Q.1
Sarlós, T.2
Smola, A.3
-
142
-
-
80052688924
-
Fast locality-sensitive hashing
-
Dasgupta, A., Kumar, R., Sarlós, T., Fast locality-sensitive hashing. Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2011, 1073–1081.
-
(2011)
Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD)
, pp. 1073-1081
-
-
Dasgupta, A.1
Kumar, R.2
Sarlós, T.3
-
143
-
-
84919935606
-
Circulant binary embedding
-
Yu, F.X., Kumar, S., Gong, Y., Chang, S.-F., Circulant binary embedding. Proceedings of the International Conference on Machine Learning (ICML), 2014, 946–954.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 946-954
-
-
Yu, F.X.1
Kumar, S.2
Gong, Y.3
Chang, S.-F.4
-
144
-
-
84973890879
-
An exploration of parameter redundancy in deep networks with circulant projections
-
Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.-F., An exploration of parameter redundancy in deep networks with circulant projections. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2857–2865.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2857-2865
-
-
Cheng, Y.1
Yu, F.X.2
Feris, R.S.3
Kumar, S.4
Choudhary, A.5
Chang, S.-F.6
-
145
-
-
85083954207
-
Acdc: a structured efficient linear layer
-
Moczulski, M., Denil, M., Appleyard, J., de Freitas, N., Acdc: a structured efficient linear layer. Proceedings of the International Conference on Learning Representations (ICLR), 2016.
-
(2016)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Moczulski, M.1
Denil, M.2
Appleyard, J.3
de Freitas, N.4
-
146
-
-
85083950579
-
Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding
-
Han, S., Mao, H., Dally, W.J., Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding. Proceedings of the International Conference on Learning Representations (ICLR), 2016.
-
(2016)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
148
-
-
84990055874
-
Xnor-net: imagenet classification using binary convolutional neural networks
-
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A., Xnor-net: imagenet classification using binary convolutional neural networks. Proceedings of the European Conference on Computer Vision (ECCV), 2016, 525–542.
-
(2016)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 525-542
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
149
-
-
85016066495
-
Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients
-
abs/1606.06160
-
Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y., Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, 2016 abs/1606.06160.
-
(2016)
CoRR
-
-
Zhou, S.1
Wu, Y.2
Ni, Z.3
Zhou, X.4
Wen, H.5
Zou, Y.6
-
151
-
-
0030242609
-
Efficient scalar quantization of exponential and Laplacian random variables
-
Sullivan, G.J., Efficient scalar quantization of exponential and Laplacian random variables. IEEE Trans. Inf. Theory 42:5 (1996), 1365–1374.
-
(1996)
IEEE Trans. Inf. Theory
, vol.42
, Issue.5
, pp. 1365-1374
-
-
Sullivan, G.J.1
-
152
-
-
84940682866
-
Compressing deep convolutional networks using vector quantization
-
arXiv preprint, volume abs/1412.6115.
-
Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint arXiv:1412.6115, volume abs/1412.6115, 2014.
-
(2014)
-
-
Gong, Y.1
Liu, L.2
Yang, M.3
Bourdev, L.4
-
153
-
-
78650259835
-
Approximate nearest neighbor search by residual vector quantization
-
Chen, Y., Guan, T., Wang, C., Approximate nearest neighbor search by residual vector quantization. Sensors 10:12 (2010), 11259–11273.
-
(2010)
Sensors
, vol.10
, Issue.12
, pp. 11259-11273
-
-
Chen, Y.1
Guan, T.2
Wang, C.3
-
154
-
-
84871384422
-
Scalar quantization for large scale image search
-
Zhou, W., Lu, Y., Li, H., Tian, Q., Scalar quantization for large scale image search. Proceedings of the 20th ACM International Conference on Multimedia, 2012, 169–178.
-
(2012)
Proceedings of the 20th ACM International Conference on Multimedia
, pp. 169-178
-
-
Zhou, W.1
Lu, Y.2
Li, H.3
Tian, Q.4
-
156
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
Han, S., Pool, J., Tran, J., Dally, W., Learning both weights and connections for efficient neural network. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015, 1135–1143.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1135-1143
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
157
-
-
85018895765
-
Dynamic network surgery for efficient DNNs
-
Guo, Y., Yao, A., Chen, Y., Dynamic network surgery for efficient DNNs. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2016, 1379–1387.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1379-1387
-
-
Guo, Y.1
Yao, A.2
Chen, Y.3
-
158
-
-
85050987846
-
Designing energy-efficient convolutional neural networks using energy-aware pruning
-
Yang, T.-J., Chen, Y.-H., Sze, V., Designing energy-efficient convolutional neural networks using energy-aware pruning. CoRR abs/1611.05128, 2016.
-
(2016)
CoRR abs/1611.05128
-
-
Yang, T.-J.1
Chen, Y.-H.2
Sze, V.3
-
159
-
-
85050992412
-
-
Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250.
-
H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016.
-
(2016)
-
-
Hu, H.1
Peng, R.2
Tai, Y.-W.3
Tang, C.-K.4
-
162
-
-
84969930652
-
Compressing neural networks with the hashing trick
-
Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y., Compressing neural networks with the hashing trick. Proceedings of the International Conference on Machine Learning (ICML), 2015, 2285–2294.
-
(2015)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 2285-2294
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
163
-
-
73549107233
-
Hash kernels for structured data
-
Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., Vishwanathan, S., Hash kernels for structured data. J. Mach. Learn. Res. (JMLR) 10 (2009), 2615–2637.
-
(2009)
J. Mach. Learn. Res. (JMLR)
, vol.10
, pp. 2615-2637
-
-
Shi, Q.1
Petterson, J.2
Dror, G.3
Langford, J.4
Smola, A.5
Vishwanathan, S.6
-
164
-
-
70049083823
-
Feature hashing for large scale multitask learning
-
Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J., Feature hashing for large scale multitask learning. Proceedings of the International Conference on Machine Learning (ICML), 2009, 1113–1120.
-
(2009)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
165
-
-
84959241183
-
Sparse convolutional neural networks
-
Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M., Sparse convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 806–814.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 806-814
-
-
Liu, B.1
Wang, M.2
Foroosh, H.3
Tappen, M.4
Pensky, M.5
-
166
-
-
85015334059
-
Learning structured sparsity in deep neural networks
-
Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H., Learning structured sparsity in deep neural networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2016, 2074–2082.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 2074-2082
-
-
Wen, W.1
Wu, C.2
Wang, Y.3
Chen, Y.4
Li, H.5
-
167
-
-
85040458958
-
Lcnn: Lookup-based convolutional neural network
-
Bagherinezhad, H., Rastegari, M., Farhadi, A., Lcnn: Lookup-based convolutional neural network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Bagherinezhad, H.1
Rastegari, M.2
Farhadi, A.3
-
168
-
-
0036779091
-
Image processing with neural networksa review
-
Egmont-Petersen, M., de Ridder, D., Handels, H., Image processing with neural networksa review. Pattern Recognit. 35:10 (2002), 2279–2301.
-
(2002)
Pattern Recognit.
, vol.35
, Issue.10
, pp. 2279-2301
-
-
Egmont-Petersen, M.1
de Ridder, D.2
Handels, H.3
-
169
-
-
84979775123
-
Towards better exploiting convolutional neural networks for remote sensing scene classification
-
Nogueira, K., Penatti, O.A., dos Santos, J.A., Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 61 (2017), 539–556.
-
(2017)
Pattern Recognit.
, vol.61
, pp. 539-556
-
-
Nogueira, K.1
Penatti, O.A.2
dos Santos, J.A.3
-
170
-
-
84931564462
-
Exemplar based deep discriminative and shareable feature learning for scene image classification
-
Zuo, Z., Wang, G., Shuai, B., Zhao, L., Yang, Q., Exemplar based deep discriminative and shareable feature learning for scene image classification. Pattern Recognit. 48:10 (2015), 3004–3015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 3004-3015
-
-
Zuo, Z.1
Wang, G.2
Shuai, B.3
Zhao, L.4
Yang, Q.5
-
171
-
-
84991821737
-
Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
-
Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T., Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61 (2017), 610–628.
-
(2017)
Pattern Recognit.
, vol.61
, pp. 610-628
-
-
Lopes, A.T.1
de Aguiar, E.2
De Souza, A.F.3
Oliveira-Santos, T.4
-
172
-
-
84921069139
-
The pascal visual object classes challenge: a retrospective
-
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A., The pascal visual object classes challenge: a retrospective. Int. J. Conflict Violence (IJCV) 111:1 (2015), 98–136.
-
(2015)
Int. J. Conflict Violence (IJCV)
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.A.2
Van Gool, L.3
Williams, C.K.4
Winn, J.5
Zisserman, A.6
-
173
-
-
80052769306
-
Semantic hierarchies for image annotation: a survey
-
Tousch, A.-M., Herbin, S., Audibert, J.-Y., Semantic hierarchies for image annotation: a survey. Pattern Recognit. 45:1 (2012), 333–345.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.1
, pp. 333-345
-
-
Tousch, A.-M.1
Herbin, S.2
Audibert, J.-Y.3
-
175
-
-
85016550549
-
Learning fine-grained features via a CNN tree for large-scale classification
-
Wang, Z., Wang, X., Wang, G., Learning fine-grained features via a CNN tree for large-scale classification. CoRR abs/1511.04534, 2015.
-
(2015)
CoRR abs/1511.04534
-
-
Wang, Z.1
Wang, X.2
Wang, G.3
-
176
-
-
84913546601
-
Error-driven incremental learning in deep convolutional neural network for large-scale image classification
-
Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z., Error-driven incremental learning in deep convolutional neural network for large-scale image classification. Proceedings of the ACM Multimedia Conference, 2014, 177–186.
-
(2014)
Proceedings of the ACM Multimedia Conference
, pp. 177-186
-
-
Xiao, T.1
Zhang, J.2
Yang, K.3
Peng, Y.4
Zhang, Z.5
-
177
-
-
84986253708
-
Hd-cnn: hierarchical deep convolutional neural network for image classification
-
Proceedings of the International Conference on Computer Vision (ICCV)
-
Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748.
-
-
-
Yan, Z.1
Jagadeesh, V.2
DeCoste, D.3
Di, W.4
Piramuthu, R.5
-
178
-
-
84911399752
-
Birdsnap: large-scale fine-grained visual categorization of birds
-
Berg, T., Liu, J., Lee, S.W., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N., Birdsnap: large-scale fine-grained visual categorization of birds. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 2019–2026.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2019-2026
-
-
Berg, T.1
Liu, J.2
Lee, S.W.3
Alexander, M.L.4
Jacobs, D.W.5
Belhumeur, P.N.6
-
179
-
-
84866702548
-
Novel dataset for fine-grained image categorization: stanford dogs
-
Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.-F., Novel dataset for fine-grained image categorization: stanford dogs. Proceedings of the IEEE International Conference on Computer Vision (CVPR Workshops, 2, 2011, 1.
-
(2011)
Proceedings of the IEEE International Conference on Computer Vision (CVPR Workshops
, vol.2
, pp. 1
-
-
Khosla, A.1
Jayadevaprakash, N.2
Yao, B.3
Li, F.-F.4
-
180
-
-
84959184327
-
A large-scale car dataset for fine-grained categorization and verification
-
Yang, L., Luo, P., Loy, C.C., Tang, X., A large-scale car dataset for fine-grained categorization and verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 3973–3981.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3973-3981
-
-
Yang, L.1
Luo, P.2
Loy, C.C.3
Tang, X.4
-
181
-
-
84949645888
-
Finely-grained annotated datasets for image-based plant phenotyping
-
Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A., Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognit. Lett. 81 (2016), 80–89.
-
(2016)
Pattern Recognit. Lett.
, vol.81
, pp. 80-89
-
-
Minervini, M.1
Fischbach, A.2
Scharr, H.3
Tsaftaris, S.A.4
-
182
-
-
85023175472
-
Lg-cnn: from local parts to global discrimination for fine-grained recognition
-
Xie, G.-S., Zhang, X.-Y., Yang, W., Xu, M.-L., Yan, S., Liu, C.-L., Lg-cnn: from local parts to global discrimination for fine-grained recognition. Pattern Recognit. 71 (2017), 118–131.
-
(2017)
Pattern Recognit.
, vol.71
, pp. 118-131
-
-
Xie, G.-S.1
Zhang, X.-Y.2
Yang, W.3
Xu, M.-L.4
Yan, S.5
Liu, C.-L.6
-
183
-
-
84919741208
-
Improved bird species recognition using pose normalized deep convolutional nets
-
Branson, S., Van Horn, G., Perona, P., Belongie, S., Improved bird species recognition using pose normalized deep convolutional nets. Proceedings of the British Machine Vision Conference (BMVC), 2014.
-
(2014)
Proceedings of the British Machine Vision Conference (BMVC)
-
-
Branson, S.1
Van Horn, G.2
Perona, P.3
Belongie, S.4
-
184
-
-
84906514027
-
Part-based r-cnns for fine-grained category detection
-
Zhang, N., Donahue, J., Girshick, R., Darrell, T., Part-based r-cnns for fine-grained category detection. Proceedings of the European Conference on Computer Vision (ECCV), 2014, 834–849.
-
(2014)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 834-849
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.3
Darrell, T.4
-
185
-
-
84881160857
-
Selective search for object recognition
-
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W., Selective search for object recognition. Int. J. Conflict Violence (IJCV) 104:2 (2013), 154–171.
-
(2013)
Int. J. Conflict Violence (IJCV)
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.1
van de Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
186
-
-
84959188579
-
Deep lac: deep localization, alignment and classification for fine-grained recognition
-
Lin, D., Shen, X., Lu, C., Jia, J., Deep lac: deep localization, alignment and classification for fine-grained recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1666–1674.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1666-1674
-
-
Lin, D.1
Shen, X.2
Lu, C.3
Jia, J.4
-
187
-
-
0043028206
-
Mutual-information-based registration of medical images: a survey
-
Pluim, J.P., Maintz, J.A., Viergever, M., et al. Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22:8 (2003), 986–1004.
-
(2003)
IEEE Trans. Med. Imaging
, vol.22
, Issue.8
, pp. 986-1004
-
-
Pluim, J.P.1
Maintz, J.A.2
Viergever, M.3
-
188
-
-
84919933137
-
Learning features and parts for fine-grained recognition
-
Krause, J., Gebru, T., Deng, J., Li, L.-J., Fei-Fei, L., Learning features and parts for fine-grained recognition. Proceedings of the International Conference on Pattern Recognition (ICPR), 2014, 26–33.
-
(2014)
Proceedings of the International Conference on Pattern Recognition (ICPR)
, pp. 26-33
-
-
Krause, J.1
Gebru, T.2
Deng, J.3
Li, L.-J.4
Fei-Fei, L.5
-
189
-
-
84959232423
-
Fine-grained recognition without part annotations
-
Krause, J., Jin, H., Yang, J., Fei-Fei, L., Fine-grained recognition without part annotations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 5546–5555.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5546-5555
-
-
Krause, J.1
Jin, H.2
Yang, J.3
Fei-Fei, L.4
-
190
-
-
84964246694
-
Weakly supervised fine-grained categorization with part-based image representation
-
Zhang, Y., Wei, X.-S., Wu, J., Cai, J., Lu, J., Nguyen, V.-A., Do, M.N., Weakly supervised fine-grained categorization with part-based image representation. IEEE Trans. Image Process. 25:4 (2016), 1713–1725.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.4
, pp. 1713-1725
-
-
Zhang, Y.1
Wei, X.-S.2
Wu, J.3
Cai, J.4
Lu, J.5
Nguyen, V.-A.6
Do, M.N.7
-
191
-
-
84959255406
-
The application of two-level attention models in deep convolutional neural network for fine-grained image classification
-
Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z., The application of two-level attention models in deep convolutional neural network for fine-grained image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 842–850.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 842-850
-
-
Xiao, T.1
Xu, Y.2
Yang, K.3
Zhang, J.4
Peng, Y.5
Zhang, Z.6
-
192
-
-
84973863234
-
Bilinear CNN models for fine-grained visual recognition
-
Lin, T.-Y., RoyChowdhury, A., Maji, S., Bilinear CNN models for fine-grained visual recognition. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 1449–1457.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 1449-1457
-
-
Lin, T.-Y.1
RoyChowdhury, A.2
Maji, S.3
-
193
-
-
84955600326
-
Human detection from images and videos: a survey
-
Nguyen, D.T., Li, W., Ogunbona, P.O., Human detection from images and videos: a survey. Pattern Recognit. 51 (2016), 148–175.
-
(2016)
Pattern Recognit.
, vol.51
, pp. 148-175
-
-
Nguyen, D.T.1
Li, W.2
Ogunbona, P.O.3
-
194
-
-
84937811514
-
Feature representation for statistical-learning-based object detection: a review
-
Li, Y., Wang, S., Tian, Q., Ding, X., Feature representation for statistical-learning-based object detection: a review. Pattern Recognit. 48:11 (2015), 3542–3559.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.11
, pp. 3542-3559
-
-
Li, Y.1
Wang, S.2
Tian, Q.3
Ding, X.4
-
195
-
-
84921810743
-
A coarse-to-fine approach for fast deformable object detection
-
Pedersoli, M., Vedaldi, A., Gonzalez, J., Roca, X., A coarse-to-fine approach for fast deformable object detection. Pattern Recognit. 48:5 (2015), 1844–1853.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1844-1853
-
-
Pedersoli, M.1
Vedaldi, A.2
Gonzalez, J.3
Roca, X.4
-
197
-
-
84959195179
-
Deformable part models are convolutional neural networks
-
Girshick, R., Iandola, F., Darrell, T., Malik, J., Deformable part models are convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 437–446.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 437-446
-
-
Girshick, R.1
Iandola, F.2
Darrell, T.3
Malik, J.4
-
198
-
-
0028481440
-
Original approach for the localisation of objects in images
-
Vaillant, R., Monrocq, C., Le Cun, Y., Original approach for the localisation of objects in images. IEE Proc.-Vis. Image Signal Process. 141:4 (1994), 245–250.
-
(1994)
IEE Proc.-Vis. Image Signal Process.
, vol.141
, Issue.4
, pp. 245-250
-
-
Vaillant, R.1
Monrocq, C.2
Le Cun, Y.3
-
199
-
-
84906493406
-
Microsoft Coco: Common Objects in Context
-
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., Microsoft Coco: Common Objects in Context. Proceedings of the European Conference on Computer Vision (ECCV), 2014, 740–755.
-
(2014)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
200
-
-
84891598441
-
Category independent object proposals
-
Endres, I., Hoiem, D., Category independent object proposals. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 36:2 (2014), 222–234.
-
(2014)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.36
, Issue.2
, pp. 222-234
-
-
Endres, I.1
Hoiem, D.2
-
201
-
-
85019970310
-
Textproposals: a text-specific selective search algorithm for word spotting in the wild
-
Gómez, L., Karatzas, D., Textproposals: a text-specific selective search algorithm for word spotting in the wild. Pattern Recognit. 70 (2017), 60–74.
-
(2017)
Pattern Recognit.
, vol.70
, pp. 60-74
-
-
Gómez, L.1
Karatzas, D.2
-
202
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R., Donahue, J., Darrell, T., Malik, J., Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 580–587.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
203
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 37:9 (2015), 1904–1916.
-
(2015)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.37
, Issue.9
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
204
-
-
85019258369
-
Faster r-CNN: towards real-time object detection with region proposal networks
-
Ren, S., He, K., Girshick, R., Sun, J., Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 39:6 (2017), 1137–1149.
-
(2017)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.39
, Issue.6
, pp. 1137-1149
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
206
-
-
84973889564
-
Attentionnet: Aggregating weak directions for accurate object detection
-
Yoo, D., Park, S., Lee, J.-Y., Paek, A.S., So Kweon, I., Attentionnet: Aggregating weak directions for accurate object detection. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2659–2667.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2659-2667
-
-
Yoo, D.1
Park, S.2
Lee, J.-Y.3
Paek, A.S.4
So Kweon, I.5
-
207
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D., Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 32:9 (2010), 1627–1645.
-
(2010)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
208
-
-
84938235221
-
Fracking deep convolutional image descriptors
-
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F., Fracking deep convolutional image descriptors. CoRR abs/1412.6537, 2014.
-
(2014)
CoRR abs/1412.6537
-
-
Simo-Serra, E.1
Trulls, E.2
Ferraz, L.3
Kokkinos, I.4
Moreno-Noguer, F.5
-
209
-
-
84986317469
-
Training region-based object detectors with online hard example mining
-
Shrivastava, A., Gupta, A., Girshick, R., Training region-based object detectors with online hard example mining. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 761–769.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 761-769
-
-
Shrivastava, A.1
Gupta, A.2
Girshick, R.3
-
210
-
-
84986308404
-
You only look once: unified, real-time object detection
-
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., You only look once: unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 779–788.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 779-788
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
211
-
-
84990068627
-
SSD: single shot multibox detector
-
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., SSD: single shot multibox detector. Proceedings of the European Conference on Computer Vision (ECCV), 2016, 21–37.
-
(2016)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 21-37
-
-
Liu, W.1
Anguelov, D.2
Erhan, D.3
Szegedy, C.4
Reed, S.5
-
212
-
-
84986249779
-
Adaptive object detection using adjacency and zoom prediction
-
Lu, Y., Javidi, T., Lazebnik, S., Adaptive object detection using adjacency and zoom prediction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2351–2359.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2351-2359
-
-
Lu, Y.1
Javidi, T.2
Lazebnik, S.3
-
213
-
-
84866051181
-
Real-time visual tracking via online weighted multiple instance learning
-
Zhang, K., Song, H., Real-time visual tracking via online weighted multiple instance learning. Pattern Recognit. 46:1 (2013), 397–411.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 397-411
-
-
Zhang, K.1
Song, H.2
-
214
-
-
84875236224
-
Sparse coding based visual tracking: review and experimental comparison
-
Zhang, S., Yao, H., Sun, X., Lu, X., Sparse coding based visual tracking: review and experimental comparison. Pattern Recognit. 46:7 (2013), 1772–1788.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.7
, pp. 1772-1788
-
-
Zhang, S.1
Yao, H.2
Sun, X.3
Lu, X.4
-
215
-
-
84910109487
-
Multi-target tracking by learning local-to-global trajectory models
-
Zhang, S., Wang, J., Wang, Z., Gong, Y., Liu, Y., Multi-target tracking by learning local-to-global trajectory models. Pattern Recognit. 48:2 (2015), 580–590.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.2
, pp. 580-590
-
-
Zhang, S.1
Wang, J.2
Wang, Z.3
Gong, Y.4
Liu, Y.5
-
216
-
-
77957774108
-
Human tracking using convolutional neural networks
-
Fan, J., Xu, W., Wu, Y., Gong, Y., Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. (TNN) 21:10 (2010), 1610–1623.
-
(2010)
IEEE Trans. Neural Netw. (TNN)
, vol.21
, Issue.10
, pp. 1610-1623
-
-
Fan, J.1
Xu, W.2
Wu, Y.3
Gong, Y.4
-
217
-
-
85088746113
-
Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking
-
Li, H., Li, Y., Porikli, F., Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking. Proceedings of the British Machine Vision Conference (BMVC), 2014.
-
(2014)
Proceedings of the British Machine Vision Conference (BMVC)
-
-
Li, H.1
Li, Y.2
Porikli, F.3
-
218
-
-
84950121900
-
Cnntracker: online discriminative object tracking via deep convolutional neural network
-
Chen, Y., Yang, X., Zhong, B., Pan, S., Chen, D., Zhang, H., Cnntracker: online discriminative object tracking via deep convolutional neural network. Appl. Soft Comput. 38 (2016), 1088–1098.
-
(2016)
Appl. Soft Comput.
, vol.38
, pp. 1088-1098
-
-
Chen, Y.1
Yang, X.2
Zhong, B.3
Pan, S.4
Chen, D.5
Zhang, H.6
-
219
-
-
84969506912
-
Online tracking by learning discriminative saliency map with convolutional neural network
-
Hong, S., You, T., Kwak, S., Han, B., Online tracking by learning discriminative saliency map with convolutional neural network. Proceedings of the International Conference on Machine Learning (ICML), 2015, 597–606.
-
(2015)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 597-606
-
-
Hong, S.1
You, T.2
Kwak, S.3
Han, B.4
-
220
-
-
85023196509
-
Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods
-
Patacchiola, M., Cangelosi, A., Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods. Pattern Recognit. 71 (2017), 132–143.
-
(2017)
Pattern Recognit.
, vol.71
, pp. 132-143
-
-
Patacchiola, M.1
Cangelosi, A.2
-
221
-
-
85020431075
-
Generation of human depth images with body part labels for complex human pose recognition
-
Nishi, K., Miura, J., Generation of human depth images with body part labels for complex human pose recognition. Pattern Recognit., 2017.
-
(2017)
Pattern Recognit.
-
-
Nishi, K.1
Miura, J.2
-
223
-
-
85083953149
-
Learning human pose estimation features with convolutional networks
-
Jain, A., Tompson, J., Andriluka, M., Taylor, G.W., Bregler, C., Learning human pose estimation features with convolutional networks. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Jain, A.1
Tompson, J.2
Andriluka, M.3
Taylor, G.W.4
Bregler, C.5
-
224
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson, J.J., Jain, A., LeCun, Y., Bregler, C., Joint training of a convolutional network and a graphical model for human pose estimation. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 1799–1807.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 1799-1807
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
225
-
-
84937873698
-
Articulated pose estimation by a graphical model with image dependent pairwise relations
-
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
-
X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744.
-
(2014)
, pp. 1736-1744
-
-
Chen, X.1
Yuille, A.L.2
-
227
-
-
84959205097
-
Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation
-
Fan, X., Zheng, K., Lin, Y., Wang, S., Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1347–1355.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1347-1355
-
-
Fan, X.1
Zheng, K.2
Lin, Y.3
Wang, S.4
-
228
-
-
84945972584
-
Modeep: A deep learning framework using motion features for human pose estimation
-
Jain, A., Tompson, J., LeCun, Y., Bregler, C., Modeep: A deep learning framework using motion features for human pose estimation. Proceedings of the Asian Conference on Computer Vision (ACCV), 2014, 302–315.
-
(2014)
Proceedings of the Asian Conference on Computer Vision (ACCV)
, pp. 302-315
-
-
Jain, A.1
Tompson, J.2
LeCun, Y.3
Bregler, C.4
-
229
-
-
0030384386
-
Automatic document processing: a survey
-
Tang, Y.Y., Lee, S.-W., Suen, C.Y., Automatic document processing: a survey. Pattern Recognit. 29:12 (1996), 1931–1952.
-
(1996)
Pattern Recognit.
, vol.29
, Issue.12
, pp. 1931-1952
-
-
Tang, Y.Y.1
Lee, S.-W.2
Suen, C.Y.3
-
230
-
-
0036643342
-
A survey on off-line cursive word recognition
-
Vinciarelli, A., A survey on off-line cursive word recognition. Pattern Recognit. 35:7 (2002), 1433–1446.
-
(2002)
Pattern Recognit.
, vol.35
, Issue.7
, pp. 1433-1446
-
-
Vinciarelli, A.1
-
231
-
-
1842712330
-
Text information extraction in images and video: a survey
-
Jung, K., Kim, K.I., Jain, A.K., Text information extraction in images and video: a survey. Pattern Recognit. 37:5 (2004), 977–997.
-
(2004)
Pattern Recognit.
, vol.37
, Issue.5
, pp. 977-997
-
-
Jung, K.1
Kim, K.I.2
Jain, A.K.3
-
232
-
-
85007152020
-
A comprehensive survey of mostly textual document segmentation algorithms since 2008
-
Eskenazi, S., Gomez-Krämer, P., Ogier, J.-M., A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recognit. 64 (2017), 1–14.
-
(2017)
Pattern Recognit.
, vol.64
, pp. 1-14
-
-
Eskenazi, S.1
Gomez-Krämer, P.2
Ogier, J.-M.3
-
233
-
-
85011582891
-
Text/non-text image classification in the wild with convolutional neural networks
-
Bai, X., Shi, B., Zhang, C., Cai, X., Qi, L., Text/non-text image classification in the wild with convolutional neural networks. Pattern Recognit. 66 (2017), 437–446.
-
(2017)
Pattern Recognit.
, vol.66
, pp. 437-446
-
-
Bai, X.1
Shi, B.2
Zhang, C.3
Cai, X.4
Qi, L.5
-
234
-
-
85015987251
-
Improving patch-based scene text script identification with ensembles of conjoined networks
-
Gomez, L., Nicolaou, A., Karatzas, D., Improving patch-based scene text script identification with ensembles of conjoined networks. Pattern Recognit. 67 (2017), 85–96.
-
(2017)
Pattern Recognit.
, vol.67
, pp. 85-96
-
-
Gomez, L.1
Nicolaou, A.2
Karatzas, D.3
-
237
-
-
84906502933
-
Robust scene text detection with convolution neural network induced mser trees
-
Huang, W., Qiao, Y., Tang, X., Robust scene text detection with convolution neural network induced mser trees. Proceedings of the European Conference on Computer Vision (ECCV), 2014, 497–511.
-
(2014)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 497-511
-
-
Huang, W.1
Qiao, Y.2
Tang, X.3
-
238
-
-
84962483177
-
Automatic discrimination of text and non-text natural images
-
Zhang, C., Yao, C., Shi, B., Bai, X., Automatic discrimination of text and non-text natural images. Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), 2015, 886–890.
-
(2015)
Proceedings of the International Conference on Document Analysis and Recognition (ICDAR)
, pp. 886-890
-
-
Zhang, C.1
Yao, C.2
Shi, B.3
Bai, X.4
-
239
-
-
85083953281
-
Multi-digit number recognition from street view imagery using deep convolutional neural networks
-
Goodfellow, I.J., Ibarz, J., Arnoud, S., Shet, V., Multi-digit number recognition from street view imagery using deep convolutional neural networks. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Goodfellow, I.J.1
Ibarz, J.2
Arnoud, S.3
Shet, V.4
-
240
-
-
85083954541
-
Deep structured output learning for unconstrained text recognition
-
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A., Deep structured output learning for unconstrained text recognition. Proceedings of the International Conference on Learning Representations (ICLR), 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Jaderberg, M.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
241
-
-
85007271139
-
Reading scene text in deep convolutional sequences
-
He, P., Huang, W., Qiao, Y., Loy, C.C., Tang, X., Reading scene text in deep convolutional sequences. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 3501–3508.
-
(2016)
Proceedings of the AAAI Conference on Artificial Intelligence
, pp. 3501-3508
-
-
He, P.1
Huang, W.2
Qiao, Y.3
Loy, C.C.4
Tang, X.5
-
242
-
-
0034293152
-
Learning to forget: continual prediction with lstm
-
Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: continual prediction with lstm. Neural Comput. 12:10 (2000), 2451–2471.
-
(2000)
Neural Comput.
, vol.12
, Issue.10
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
243
-
-
84986282482
-
An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
-
Shi, B., Bai, X., Yao, C., An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. CoRR abs/1507.05717, 2015.
-
(2015)
CoRR abs/1507.05717
-
-
Shi, B.1
Bai, X.2
Yao, C.3
-
244
-
-
84906517083
-
Deep features for text spotting
-
Jaderberg, M., Vedaldi, A., Zisserman, A., Deep features for text spotting. Proceedings of the European Conference on Computer Vision (ECCV), 2014, 512–528.
-
(2014)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 512-528
-
-
Jaderberg, M.1
Vedaldi, A.2
Zisserman, A.3
-
245
-
-
84943153743
-
-
Reading text in the wild with convolutional neural networks
-
M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20.
-
(2016)
, vol.116
, pp. 1-20
-
-
Jaderberg, M.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
246
-
-
84959227715
-
Deep networks for saliency detection via local estimation and global search
-
Wang, L., Lu, H., Ruan, X., Yang, M.-H., Deep networks for saliency detection via local estimation and global search. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 3183–3192.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3183-3192
-
-
Wang, L.1
Lu, H.2
Ruan, X.3
Yang, M.-H.4
-
247
-
-
84959212183
-
Saliency detection by multi-context deep learning
-
Zhao, R., Ouyang, W., Li, H., Wang, X., Saliency detection by multi-context deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1265–1274.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1265-1274
-
-
Zhao, R.1
Ouyang, W.2
Li, H.3
Wang, X.4
-
249
-
-
84946554818
-
Predicting eye fixations using convolutional neural networks
-
Liu, N., Han, J., Zhang, D., Wen, S., Liu, T., Predicting eye fixations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 362–370.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 362-370
-
-
Liu, N.1
Han, J.2
Zhang, D.3
Wen, S.4
Liu, T.5
-
250
-
-
84947025839
-
Supercnn: a superpixelwise convolutional neural network for salient object detection
-
He, S., et al. Supercnn: a superpixelwise convolutional neural network for salient object detection. Inter. J. Comput. Vis. 115:3 (2015), 330–344.
-
(2015)
Inter. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 330-344
-
-
He, S.1
-
251
-
-
84911369162
-
Large-scale optimization of hierarchical features for saliency prediction in natural images
-
Vig, E., Dorr, M., Cox, D., Large-scale optimization of hierarchical features for saliency prediction in natural images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 2798–2805.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2798-2805
-
-
Vig, E.1
Dorr, M.2
Cox, D.3
-
252
-
-
85083953536
-
Deep gaze i: boosting saliency prediction with feature maps trained on imagenet
-
Kümmerer, M., Theis, L., Bethge, M., Deep gaze i: boosting saliency prediction with feature maps trained on imagenet. Proceedings of the International Conference on Learning Representations (ICLR) Workshops, 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations (ICLR) Workshops
-
-
Kümmerer, M.1
Theis, L.2
Bethge, M.3
-
253
-
-
85050974682
-
End-to-end convolutional network for saliency prediction
-
Pan, J., Gir-i Nieto, X., End-to-end convolutional network for saliency prediction. CoRR abs/1507.01422, 2015.
-
(2015)
CoRR abs/1507.01422
-
-
Pan, J.1
Gir-i Nieto, X.2
-
254
-
-
84902318725
-
A survey on still image based human action recognition
-
Guo, G., Lai, A., A survey on still image based human action recognition. Pattern Recognit. 47:10 (2014), 3343–3361.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.10
, pp. 3343-3361
-
-
Guo, G.1
Lai, A.2
-
255
-
-
84958104996
-
3D skeleton-based human action classification: a survey
-
Presti, L.L., La Cascia, M., 3D skeleton-based human action classification: a survey. Pattern Recognit. 53 (2016), 130–147.
-
(2016)
Pattern Recognit.
, vol.53
, pp. 130-147
-
-
Presti, L.L.1
La Cascia, M.2
-
256
-
-
84994894914
-
Rgb-d-based action recognition datasets: a survey
-
Zhang, J., Li, W., Ogunbona, P.O., Wang, P., Tang, C., Rgb-d-based action recognition datasets: a survey. Pattern Recognit. 60 (2016), 86–105.
-
(2016)
Pattern Recognit.
, vol.60
, pp. 86-105
-
-
Zhang, J.1
Li, W.2
Ogunbona, P.O.3
Wang, P.4
Tang, C.5
-
257
-
-
85050959091
-
-
Decaf: a deep convolutional activation feature for generic visual recognition.
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, 2014.
-
(2014)
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
258
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
Oquab, M., Bottou, L., Laptev, I., Sivic, J., Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1717–1724.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
259
-
-
84973883539
-
Actions and attributes from wholes and parts
-
Gkioxari, G., Girshick, R., Malik, J., Actions and attributes from wholes and parts. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 2470–2478.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 2470-2478
-
-
Gkioxari, G.1
Girshick, R.2
Malik, J.3
-
260
-
-
84887351384
-
Poselet conditioned pictorial structures
-
Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B., Poselet conditioned pictorial structures. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 588–595.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 588-595
-
-
Pishchulin, L.1
Andriluka, M.2
Gehler, P.3
Schiele, B.4
-
261
-
-
84973872492
-
Contextual action recognition with r*CNN
-
Gkioxari, G., Girshick, R.B., Malik, J., Contextual action recognition with r*CNN. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 1080–1088.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 1080-1088
-
-
Gkioxari, G.1
Girshick, R.B.2
Malik, J.3
-
262
-
-
84973883539
-
Actions and attributes from wholes and parts
-
Gkioxari, G., Girshick, R., Malik, J., Actions and attributes from wholes and parts. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, 2470–2478.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
, pp. 2470-2478
-
-
Gkioxari, G.1
Girshick, R.2
Malik, J.3
-
263
-
-
85027034502
-
Action recognition in still images with minimum annotation efforts
-
Zhang, Y., Cheng, L., Wu, J., Cai, J., Do, M.N., Lu, J., Action recognition in still images with minimum annotation efforts. IEEE Trans. Image Process. 25:11 (2016), 5479–5490.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.11
, pp. 5479-5490
-
-
Zhang, Y.1
Cheng, L.2
Wu, J.3
Cai, J.4
Do, M.N.5
Lu, J.6
-
264
-
-
85017137238
-
Three-stream CNNs for action recognition
-
Wang, L., Ge, L., Li, R., Fang, Y., Three-stream CNNs for action recognition. Pattern Recognit. Lett. 92 (2017), 33–40.
-
(2017)
Pattern Recognit. Lett.
, vol.92
, pp. 33-40
-
-
Wang, L.1
Ge, L.2
Li, R.3
Fang, Y.4
-
265
-
-
84870183903
-
3D convolutional neural networks for human action recognition
-
Ji, S., Xu, W., Yang, M., Yu, K., 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 35:1 (2013), 221–231.
-
(2013)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
266
-
-
84973865953
-
Learning spatiotemporal features with 3d convolutional networks
-
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M., Learning spatiotemporal features with 3d convolutional networks. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 4489–4497.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 4489-4497
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
267
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L., Large-scale video classification with convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 1725–1732.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
268
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
Z. Ghahramani M. Welling C. Cortes N. Lawrence K. Weinberger
-
Simonyan, K., Zisserman, A., Two-stream convolutional networks for action recognition in videos. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., (eds.) Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, 568–576.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
, pp. 568-576
-
-
Simonyan, K.1
Zisserman, A.2
-
269
-
-
84973879622
-
P-CNN: pose-based CNN features for action recognition
-
Chéron, G., Laptev, I., Schmid, C., P-CNN: pose-based CNN features for action recognition. Proceedings of the International Conference on Computer Vision (ICCV), 2015, 3218–3226.
-
(2015)
Proceedings of the International Conference on Computer Vision (ICCV)
, pp. 3218-3226
-
-
Chéron, G.1
Laptev, I.2
Schmid, C.3
-
270
-
-
85020685307
-
Long-term recurrent convolutional networks for visual recognition and description
-
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T., Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) 39:4 (2017), 677–691.
-
(2017)
IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
, vol.39
, Issue.4
, pp. 677-691
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
271
-
-
0018729995
-
A survey on image segmentation
-
Fu, K.-S., Mui, J., A survey on image segmentation. Pattern Recognit. 13:1 (1981), 3–16.
-
(1981)
Pattern Recognit.
, vol.13
, Issue.1
, pp. 3-16
-
-
Fu, K.-S.1
Mui, J.2
-
272
-
-
84975686260
-
Multi-scale context for scene labeling via flexible segmentation graph
-
Zhou, Q., Zheng, B., Zhu, W., Latecki, L.J., Multi-scale context for scene labeling via flexible segmentation graph. Pattern Recognit. 59 (2016), 312–324.
-
(2016)
Pattern Recognit.
, vol.59
, pp. 312-324
-
-
Zhou, Q.1
Zheng, B.2
Zhu, W.3
Latecki, L.J.4
-
273
-
-
84931577575
-
CRF learning with CNN features for image segmentation
-
Liu, F., Lin, G., Shen, C., CRF learning with CNN features for image segmentation. Pattern Recognit. 48:10 (2015), 2983–2992.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 2983-2992
-
-
Liu, F.1
Lin, G.2
Shen, C.3
-
274
-
-
84958191683
-
Scene parsing using inference embedded deep networks
-
Bu, S., Han, P., Liu, Z., Han, J., Scene parsing using inference embedded deep networks. Pattern Recognit. 59 (2016), 188–198.
-
(2016)
Pattern Recognit.
, vol.59
, pp. 188-198
-
-
Bu, S.1
Han, P.2
Liu, Z.3
Han, J.4
-
275
-
-
84870239407
-
A survey of graph theoretical approaches to image segmentation
-
Peng, B., Zhang, L., Zhang, D., A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 46:3 (2013), 1020–1038.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.3
, pp. 1020-1038
-
-
Peng, B.1
Zhang, L.2
Zhang, D.3
-
276
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) 35:8 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
277
-
-
85083953146
-
Indoor semantic segmentation using depth information
-
Couprie, C., Farabet, C., Najman, L., LeCun, Y., Indoor semantic segmentation using depth information. Proceedings of the International Conference on Learning Representations (ICLR), 2013.
-
(2013)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Couprie, C.1
Farabet, C.2
Najman, L.3
LeCun, Y.4
-
279
-
-
84937133497
-
Integrating parametric and non-parametric models for scene labeling
-
Shuai, B., Wang, G., Zuo, Z., Wang, B., Zhao, L., Integrating parametric and non-parametric models for scene labeling. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 4249–4258.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 4249-4258
-
-
Shuai, B.1
Wang, G.2
Zuo, Z.3
Wang, B.4
Zhao, L.5
-
280
-
-
84937128058
-
-
Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b)
-
B. Shuai, Z. Zuo, W. Gang, Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b) 1990–1994.
-
-
-
Shuai, B.1
Zuo, Z.2
Gang, W.3
-
281
-
-
84986251704
-
Dag-recurrent neural networks for scene labeling
-
Shuai, B., Zuo, Z., Wang, G., Wang, B., Dag-recurrent neural networks for scene labeling. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 3620–3629.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3620-3629
-
-
Shuai, B.1
Zuo, Z.2
Wang, G.3
Wang, B.4
-
282
-
-
84959207702
-
Feedforward semantic segmentation with zoom-out features
-
Mostajabi, M., Yadollahpour, P., Shakhnarovich, G., Feedforward semantic segmentation with zoom-out features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 3376–3385.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3376-3385
-
-
Mostajabi, M.1
Yadollahpour, P.2
Shakhnarovich, G.3
-
283
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., Semantic image segmentation with deep convolutional nets and fully connected crfs. Proceedings of the International Conference on Learning Representations (ICLR), 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
284
-
-
78649328053
-
Survey on speech emotion recognition: features, classification schemes, and databases
-
El Ayadi, M., Kamel, M.S., Karray, F., Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognit. 44:3 (2011), 572–587.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.3
, pp. 572-587
-
-
El Ayadi, M.1
Kamel, M.S.2
Karray, F.3
-
285
-
-
0026189555
-
Phonemic hidden,Markov models with continuous mixture output densities for large vocabulary word recognition
-
Deng, L., Kenny, P., Lennig, M., Gupta, V., Seitz, F., Mermelstein, P., Phonemic hidden,Markov models with continuous mixture output densities for large vocabulary word recognition. IEEE Trans. Signal Process. 39:7 (1991), 1677–1681.
-
(1991)
IEEE Trans. Signal Process.
, vol.39
, Issue.7
, pp. 1677-1681
-
-
Deng, L.1
Kenny, P.2
Lennig, M.3
Gupta, V.4
Seitz, F.5
Mermelstein, P.6
-
286
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29:6 (2012), 82–97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
287
-
-
84890491198
-
Recent advances in deep learning for speech research at Microsoft
-
Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., et al. Recent advances in deep learning for speech research at Microsoft. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013, 8604–8608.
-
(2013)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 8604-8608
-
-
Deng, L.1
Li, J.2
Huang, J.-T.3
Yao, K.4
Yu, D.5
Seide, F.6
Seltzer, M.7
Zweig, G.8
He, X.9
Williams, J.10
-
288
-
-
84874226579
-
Adaptation of context-dependent deep neural networks for automatic speech recognition
-
Yao, K., Yu, D., Seide, F., Su, H., Deng, L., Gong, Y., Adaptation of context-dependent deep neural networks for automatic speech recognition. Proceedings of the Spoken Language Technology (SLT), 2012, 366–369.
-
(2012)
Proceedings of the Spoken Language Technology (SLT)
, pp. 366-369
-
-
Yao, K.1
Yu, D.2
Seide, F.3
Su, H.4
Deng, L.5
Gong, Y.6
-
289
-
-
84867605836
-
Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition
-
Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Penn, G., Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, 4277–4280.
-
(2012)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 4277-4280
-
-
Abdel-Hamid, O.1
Mohamed, A.-R.2
Jiang, H.3
Penn, G.4
-
290
-
-
85050986153
-
Convolutional neural networks for speech recognition
-
Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D., Convolutional neural networks for speech recognition. Proceedings of the International Conference on Learning Representations (ICLR), 2014.
-
(2014)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Abdel-Hamid, O.1
Mohamed, A.-R.2
Jiang, H.3
Deng, L.4
Penn, G.5
Yu, D.6
-
291
-
-
84906273908
-
Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks
-
Palaz, D., Collobert, R., Doss, M.M., Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks. Proceedings of the International Speech Communication Association (INTERSPEECH), 2013, 1766–1770.
-
(2013)
Proceedings of the International Speech Communication Association (INTERSPEECH)
, pp. 1766-1770
-
-
Palaz, D.1
Collobert, R.2
Doss, M.M.3
-
292
-
-
84946030537
-
Speech acoustic modeling from raw multichannel waveforms
-
Hoshen, Y., Weiss, R.J., Wilson, K.W., Speech acoustic modeling from raw multichannel waveforms. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015, 4624–4628.
-
(2015)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 4624-4628
-
-
Hoshen, Y.1
Weiss, R.J.2
Wilson, K.W.3
-
293
-
-
85050967840
-
-
Deep speech 2: End-to-end speech recognition in english and mandarin
-
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., Deep speech 2: End-to-end speech recognition in english and mandarin, 2016, pp. 173–182.
-
(2016)
, pp. 173-182
-
-
Amodei, D.1
Anubhai, R.2
Battenberg, E.3
Case, C.4
Casper, J.5
Catanzaro, B.6
Chen, J.7
Chrzanowski, M.8
Coates, A.9
Diamos, G.10
-
296
-
-
84893654379
-
Improvements to deep convolutional neural networks for LVCSR
-
Sainath, T.N., Kingsbury, B., Mohamed, A., Dahl, G.E., Saon, G., Soltau, H., Beran, T., Aravkin, A.Y., Ramabhadran, B., Improvements to deep convolutional neural networks for LVCSR. Proceedings of the Automatic Speech Recognition and Understanding (ASRU) Workshops, 2013, 315–320.
-
(2013)
Proceedings of the Automatic Speech Recognition and Understanding (ASRU) Workshops
, pp. 315-320
-
-
Sainath, T.N.1
Kingsbury, B.2
Mohamed, A.3
Dahl, G.E.4
Saon, G.5
Soltau, H.6
Beran, T.7
Aravkin, A.Y.8
Ramabhadran, B.9
-
297
-
-
84994337449
-
Deep convolutional neural networks with layer-wise context expansion and attention
-
Yu, D., Xiong, W., Droppo, J., Stolcke, A., Ye, G., Li, J., Zweig, G., Deep convolutional neural networks with layer-wise context expansion and attention. Proceedings of the International Speech Communication Association (INTERSPEECH), 2016, 17–21.
-
(2016)
Proceedings of the International Speech Communication Association (INTERSPEECH)
, pp. 17-21
-
-
Yu, D.1
Xiong, W.2
Droppo, J.3
Stolcke, A.4
Ye, G.5
Li, J.6
Zweig, G.7
-
298
-
-
0024634603
-
Phoneme recognition using time-delay neural networks
-
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J., Phoneme recognition using time-delay neural networks. IEEE Trans. Acoustics, Speech, Signal Process. 37:3 (1989), 328–339.
-
(1989)
IEEE Trans. Acoustics, Speech, Signal Process.
, vol.37
, Issue.3
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.J.5
-
299
-
-
84910100893
-
Dnn-based stochastic postfilter for hmm-based speech synthesis.
-
Chen, L.-H., Raitio, T., Valentini-Botinhao, C., Yamagishi, J., Ling, Z.-H., Dnn-based stochastic postfilter for hmm-based speech synthesis. Proceedings of the International Speech Communication Association (INTERSPEECH), 2014, 1954–1958.
-
(2014)
Proceedings of the International Speech Communication Association (INTERSPEECH)
, pp. 1954-1958
-
-
Chen, L.-H.1
Raitio, T.2
Valentini-Botinhao, C.3
Yamagishi, J.4
Ling, Z.-H.5
-
300
-
-
84946036894
-
Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade
-
Uria, B., Murray, I., Renals, S., Valentini-Botinhao, C., Bridle, J., Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015, 4465–4469.
-
(2015)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 4465-4469
-
-
Uria, B.1
Murray, I.2
Renals, S.3
Valentini-Botinhao, C.4
Bridle, J.5
-
301
-
-
85026840738
-
Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
-
Huang, Z., Siniscalchi, S.M., Lee, C.-H., Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation. Pattern Recognit. Lett., 2017.
-
(2017)
Pattern Recognit. Lett.
-
-
Huang, Z.1
Siniscalchi, S.M.2
Lee, C.-H.3
-
302
-
-
84999048365
-
Pixel recurrent neural networks
-
van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K., Pixel recurrent neural networks. Proceedings of the International Conference on Machine Learning (ICML), 2016, 1747–1756.
-
(2016)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1747-1756
-
-
van den Oord, A.1
Kalchbrenner, N.2
Kavukcuoglu, K.3
-
303
-
-
84978840213
-
Exploring the limits of language modeling
-
Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y., Exploring the limits of language modeling. Proceedings of the International Conference on Learning Representations (ICLR), 2016.
-
(2016)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Jozefowicz, R.1
Vinyals, O.2
Schuster, M.3
Shazeer, N.4
Wu, Y.5
-
304
-
-
84996482260
-
Character-aware neural language models
-
Kim, Y., Jernite, Y., Sontag, D., Rush, A.M., Character-aware neural language models. Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), 2016, 2741–2749.
-
(2016)
Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
, pp. 2741-2749
-
-
Kim, Y.1
Jernite, Y.2
Sontag, D.3
Rush, A.M.4
-
305
-
-
85050973425
-
-
Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376.
-
J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017.
-
(2017)
-
-
Gu, J.1
Jianfei, C.2
Wang, G.3
Chen, T.4
-
306
-
-
84943749298
-
gen cnn: a convolutional architecture for word sequence prediction
-
Wang, M., Lu, Z., Li, H., Jiang, W., Liu, Q., gen cnn: a convolutional architecture for word sequence prediction. Proceedings of the Association for Computational Linguistics (ACL), 2015, 1567–1576.
-
(2015)
Proceedings of the Association for Computational Linguistics (ACL)
, pp. 1567-1576
-
-
Wang, M.1
Lu, Z.2
Li, H.3
Jiang, W.4
Liu, Q.5
-
307
-
-
85041916603
-
An empirical study of language CNN for image captioning
-
Gu, J., Wang, G., Jianfei, C., Chen, T., An empirical study of language CNN for image captioning. Proceedings of the International Conference on Computer Vision (ICCV), 2017.
-
(2017)
Proceedings of the International Conference on Computer Vision (ICCV)
-
-
Gu, J.1
Wang, G.2
Jianfei, C.3
Chen, T.4
-
310
-
-
84943796990
-
Deep learning for answer sentence selection
-
Yu, L., Hermann, K.M., Blunsom, P., Pulman, S., Deep learning for answer sentence selection. Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshop, 2014.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshop
-
-
Yu, L.1
Hermann, K.M.2
Blunsom, P.3
Pulman, S.4
-
311
-
-
84906922163
-
A convolutional neural network for modelling sentences
-
Kalchbrenner, N., Grefenstette, E., Blunsom, P., A convolutional neural network for modelling sentences. Proceedings of the Association for Computational Linguistics (ACL), 2014, 655–665.
-
(2014)
Proceedings of the Association for Computational Linguistics (ACL)
, pp. 655-665
-
-
Kalchbrenner, N.1
Grefenstette, E.2
Blunsom, P.3
-
314
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR) 12 (2011), 2493–2537.
-
(2011)
J. Mach. Learn. Res. (JMLR)
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
315
-
-
85029386732
-
Very deep convolutional networks for natural language processing
-
Conneau, A., Schwenk, H., Barrault, L., Lecun, Y., Very deep convolutional networks for natural language processing. CoRR abs/1606.01781, 2016.
-
(2016)
CoRR abs/1606.01781
-
-
Conneau, A.1
Schwenk, H.2
Barrault, L.3
Lecun, Y.4
-
316
-
-
84990052802
-
Deep networks with stochastic depth
-
Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K., Deep networks with stochastic depth. Proceedings of the European Conference on Computer Vision (ECCV), 2016, 646–661.
-
(2016)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 646-661
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
|