-
1
-
-
85083951423
-
Multiple object recognition with visual attention
-
Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple Object Recognition with Visual Attention. In ICLR, 2015.
-
(2015)
ICLR
-
-
Ba, J.1
Mnih, V.2
Kavukcuoglu, K.3
-
2
-
-
85019202302
-
Adaptive computation time for recurrent neural networks
-
Alex Graves. Adaptive computation time for recurrent neural networks. abs/1603.08983, 2016.
-
(2016)
Abs/1603.08983
-
-
Graves, A.1
-
3
-
-
84983208884
-
DRAW: A recurrent neural network for image generation
-
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: A Recurrent Neural Network For Image Generation. In ICML, 2015.
-
(2015)
ICML
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.4
Wierstra, D.5
-
5
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Randford M. Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214), 1995.
-
(1995)
Science
, vol.268
, Issue.5214
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
7
-
-
84953881854
-
The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models
-
Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V. Gehler. The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models. CVIU, 2015.
-
(2015)
CVIU
-
-
Jampani, V.1
Nowozin, S.2
Loper, M.3
Gehler, P.V.4
-
8
-
-
84973912724
-
PoseNet: A convolutional network for real-time 6-DOF camera relocalization
-
Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In ICCV, 2015.
-
(2015)
ICCV
-
-
Kendall, A.1
Grimes, M.2
Cipolla, R.3
-
10
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS 25, 2012.
-
(2012)
NIPS
, vol.25
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84959185016
-
Picture: A probabilistic programming language for scene perception
-
Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mansinghka. Picture: A probabilistic programming language for scene perception. In CVPR, 2015.
-
(2015)
CVPR
-
-
Kulkarni, T.D.1
Kohli, P.2
Tenenbaum, J.B.3
Mansinghka, V.K.4
-
13
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266), 2015.
-
(2015)
Science
, vol.350
, Issue.6266
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
14
-
-
85162384490
-
Learning to count objects in images
-
Victor Lempitsky and Andrew Zisserman. Learning To Count Objects in Images. In NIPS 23. 2010.
-
(2010)
NIPS
, vol.23
-
-
Lempitsky, V.1
Zisserman, A.2
-
15
-
-
84906345204
-
OpenDR: An approximate differentiable renderer
-
Matthew M. Loper and Michael J. Black. OpenDR: An Approximate Differentiable Renderer. In ECCV, Volume 8695, 2014.
-
(2014)
ECCV
, vol.8695
-
-
Loper, M.M.1
Black, M.J.2
-
16
-
-
84898942632
-
Approximate Bayesian image interpretation using generative probabilistic graphics programs
-
Vikash Mansinghka, Tejas Kulkarni, Yura Perov, and Josh Tenenbaum. Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs. In NIPS 26. 2013.
-
(2013)
NIPS
, vol.26
-
-
Mansinghka, V.1
Kulkarni, T.2
Perov, Y.3
Tenenbaum, J.4
-
17
-
-
84880739933
-
BLOG: Probabilistic models with unknown objects
-
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG: Probabilistic Models with Unknown Objects. In International Joint Conference on Artificial Intelligence, pages 1352-1359, 2005.
-
(2005)
International Joint Conference on Artificial Intelligence
, pp. 1352-1359
-
-
Milch, B.1
Marthi, B.2
Russell, S.3
Sontag, D.4
Ong, D.L.5
Kolobov, A.6
-
18
-
-
84937852305
-
Neural variational inference and learning
-
Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
20
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518, 2015.
-
(2015)
Nature
, pp. 518
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
Petersen, S.11
Beattie, C.12
Sadik, A.13
Antonoglou, I.14
King, H.15
Kumaran, D.16
Wierstra, D.17
Legg, S.18
Hassabis, D.19
-
21
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
23
-
-
84965157716
-
Gradient estimation using stochastic computation graphs
-
John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient Estimation Using Stochastic Computation Graphs. In NIPS 28. 2015.
-
(2015)
NIPS
, vol.28
-
-
Schulman, J.1
Heess, N.2
Weber, T.3
Abbeel, P.4
-
25
-
-
84937843152
-
Learning generative models with visual attention
-
Yichuan Tang, Nitish Srivastava, and Ruslan Salakhutdinov. Learning Generative Models With Visual Attention. In NIPS 27, 2014.
-
(2014)
NIPS
, vol.27
-
-
Tang, Y.1
Srivastava, N.2
Salakhutdinov, R.3
-
26
-
-
84872292044
-
MuJoCo: A physics engine for model-based control
-
Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In ICIRS, 2012.
-
(2012)
ICIRS
-
-
Todorov, E.1
Erez, T.2
Tassa, Y.3
-
27
-
-
84959205754
-
Salient object subitizing
-
Jianming Zhang, Shuga Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke, Zhe Lin, Xiaohui Shen, Brian Price, and Radomír Měch. Salient Object Subitizing. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, J.1
Ma, S.2
Sameki, M.3
Sclaroff, S.4
Betke, M.5
Lin, Z.6
Shen, X.7
Price, B.8
Měch, R.9
|