메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3233-3241

Attend, infer, repeat: Fast scene understanding with generative models

Author keywords

[No Author keywords available]

Indexed keywords

3-D IMAGE; ACCURATE INFERENCE; AUTO ENCODERS; GENERATIVE MODEL; MULTIPLE OBJECTS; PROBABILISTIC INFERENCE; SCENE UNDERSTANDING; STRUCTURED IMAGES;

EID: 85018882970     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (519)

References (28)
  • 1
    • 85083951423 scopus 로고    scopus 로고
    • Multiple object recognition with visual attention
    • Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple Object Recognition with Visual Attention. In ICLR, 2015.
    • (2015) ICLR
    • Ba, J.1    Mnih, V.2    Kavukcuoglu, K.3
  • 2
    • 85019202302 scopus 로고    scopus 로고
    • Adaptive computation time for recurrent neural networks
    • Alex Graves. Adaptive computation time for recurrent neural networks. abs/1603.08983, 2016.
    • (2016) Abs/1603.08983
    • Graves, A.1
  • 5
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Randford M. Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214), 1995.
    • (1995) Science , vol.268 , Issue.5214
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 7
    • 84953881854 scopus 로고    scopus 로고
    • The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models
    • Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V. Gehler. The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models. CVIU, 2015.
    • (2015) CVIU
    • Jampani, V.1    Nowozin, S.2    Loper, M.3    Gehler, P.V.4
  • 8
    • 84973912724 scopus 로고    scopus 로고
    • PoseNet: A convolutional network for real-time 6-DOF camera relocalization
    • Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In ICCV, 2015.
    • (2015) ICCV
    • Kendall, A.1    Grimes, M.2    Cipolla, R.3
  • 10
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS 25, 2012.
    • (2012) NIPS , vol.25
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 11
    • 84959185016 scopus 로고    scopus 로고
    • Picture: A probabilistic programming language for scene perception
    • Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mansinghka. Picture: A probabilistic programming language for scene perception. In CVPR, 2015.
    • (2015) CVPR
    • Kulkarni, T.D.1    Kohli, P.2    Tenenbaum, J.B.3    Mansinghka, V.K.4
  • 12
  • 13
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266), 2015.
    • (2015) Science , vol.350 , Issue.6266
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 14
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • Victor Lempitsky and Andrew Zisserman. Learning To Count Objects in Images. In NIPS 23. 2010.
    • (2010) NIPS , vol.23
    • Lempitsky, V.1    Zisserman, A.2
  • 15
    • 84906345204 scopus 로고    scopus 로고
    • OpenDR: An approximate differentiable renderer
    • Matthew M. Loper and Michael J. Black. OpenDR: An Approximate Differentiable Renderer. In ECCV, Volume 8695, 2014.
    • (2014) ECCV , vol.8695
    • Loper, M.M.1    Black, M.J.2
  • 16
    • 84898942632 scopus 로고    scopus 로고
    • Approximate Bayesian image interpretation using generative probabilistic graphics programs
    • Vikash Mansinghka, Tejas Kulkarni, Yura Perov, and Josh Tenenbaum. Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs. In NIPS 26. 2013.
    • (2013) NIPS , vol.26
    • Mansinghka, V.1    Kulkarni, T.2    Perov, Y.3    Tenenbaum, J.4
  • 18
    • 84937852305 scopus 로고    scopus 로고
    • Neural variational inference and learning
    • Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 19
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent Models of Visual Attention. In NIPS 27, 2014.
    • (2014) NIPS , vol.27
    • Mnih, V.1    Heess, N.2    Graves, A.3    Kavukcuoglu, K.4
  • 21
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 23
    • 84965157716 scopus 로고    scopus 로고
    • Gradient estimation using stochastic computation graphs
    • John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient Estimation Using Stochastic Computation Graphs. In NIPS 28. 2015.
    • (2015) NIPS , vol.28
    • Schulman, J.1    Heess, N.2    Weber, T.3    Abbeel, P.4
  • 25
    • 84937843152 scopus 로고    scopus 로고
    • Learning generative models with visual attention
    • Yichuan Tang, Nitish Srivastava, and Ruslan Salakhutdinov. Learning Generative Models With Visual Attention. In NIPS 27, 2014.
    • (2014) NIPS , vol.27
    • Tang, Y.1    Srivastava, N.2    Salakhutdinov, R.3
  • 26
    • 84872292044 scopus 로고    scopus 로고
    • MuJoCo: A physics engine for model-based control
    • Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In ICIRS, 2012.
    • (2012) ICIRS
    • Todorov, E.1    Erez, T.2    Tassa, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.