-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. Advances in neural information processing systems, 19:153, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
0001740650
-
Training with noise is equivalent to tikhonov regularization
-
C.M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1):108-116, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
4
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
A. Coates and A.Y. Ng. The importance of encoding versus training with sparse coding and vector quantization. In International Conference on Machine Learning, volume 8, page 10, 2011.
-
(2011)
International Conference on Machine Learning
, vol.8
, pp. 10
-
-
Coates, A.1
Ng, A.Y.2
-
6
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
7
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
8
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
9
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Kevin Jarrett, Koray Kavukcuoglu, MarcAurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pages 2146-2153. IEEE, 2009.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
Lecun, Y.4
-
11
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
IEEE
-
Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II-97. IEEE, 2004.
-
(2004)
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on
, vol.2
-
-
Lecun, Y.1
Jie Huang, F.2
Bottou, L.3
-
13
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
Omnipress Madison, WI
-
V. Nair and G.E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. 27th International Conference on Machine Learning, pages 807-814. Omnipress Madison, WI, 2010.
-
(2010)
Proc. 27th International Conference on Machine Learning
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
14
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the Twenty-eight International Conference on Machine Learning (ICML11), 2011.
-
(2011)
Proceedings of the Twenty-eight International Conference on Machine Learning (ICML11)
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
16
-
-
0026017007
-
Creating artificial neural networks that generalize
-
J. Sietsma and R.J.F. Dow. Creating artificial neural networks that generalize. Neural Networks, 4(1):67-79, 1991.
-
(1991)
Neural Networks
, vol.4
, Issue.1
, pp. 67-79
-
-
Sietsma, J.1
Dow, R.J.F.2
-
17
-
-
84869179179
-
Nonparametric guidance of autoencoder representations using label information
-
Jasper Snoek, Ryan P Adams, and Hugo Larochelle. Nonparametric guidance of autoencoder representations using label information. Journal of Machine Learning Research, 13:2567- 2588, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 2567-2588
-
-
Snoek, J.1
Ryan, P.A.2
Larochelle, H.3
-
21
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11:3371-3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
|