-
1
-
-
67349133754
-
Top-down and bottom-up mechanisms in biasing competition in the human brain
-
D. M. Beck and S. Kastner. Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision research, 49 (10): 1154-1165, 2009.
-
(2009)
Vision Research
, vol.49
, Issue.10
, pp. 1154-1165
-
-
Beck, D.M.1
Kastner, S.2
-
2
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35 (8): 1798-1828, 2013.
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
3
-
-
84896732667
-
Resolving human object recognition in space and time
-
Jan
-
R. M. Cichy, D. Pantazis, and A. Oliva. Resolving human object recognition in space and time. Nature Publishing Group, 17 (3): 455-462, Jan. 2014.
-
(2014)
Nature Publishing Group
, vol.17
, Issue.3
, pp. 455-462
-
-
Cichy, R.M.1
Pantazis, D.2
Oliva, A.3
-
4
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
0028951934
-
Neural mechanisms of selective visual attention
-
R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annual review of neuroscience, 18 (1): 193-222, 1995.
-
(1995)
Annual Review of Neuroscience
, vol.18
, Issue.1
, pp. 193-222
-
-
Desimone, R.1
Duncan, J.2
-
7
-
-
84911443425
-
Scalable object detection using deep neural networks
-
IEEE
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2155-2162. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 2155-2162
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
8
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part-Based Models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32 (9): 1627-1645, 2010.
-
(2010)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
9
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
IEEE
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580-587. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
14
-
-
84913555165
-
-
arXiv preprint arXiv 1408 5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv: 1408. 5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
16
-
-
84879847917
-
-
N. Kruger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A. J. Rodriguez-Sanchez, and L. Wiskott. Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision? 35 (8): 1847-1871.
-
Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?
, vol.35
, Issue.8
, pp. 1847-1871
-
-
Kruger, N.1
Janssen, P.2
Kalkan, S.3
Lappe, M.4
Leonardis, A.5
Piater, J.6
Rodriguez-Sanchez, A.J.7
Wiskott, L.8
-
18
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
0042565834
-
Hierarchical Bayesian inference in the visual cortex
-
T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. JOSA A, 20 (7): 1434-1448, 2003.
-
(2003)
JOSA A
, vol.20
, Issue.7
, pp. 1434-1448
-
-
Lee, T.S.1
Mumford, D.2
-
22
-
-
77957368767
-
Selectivity and tolerance ("invariance") both increase as visual information propagates from cortical area v4 to it
-
Sept
-
N. C. Rust and J. J. DiCarlo. Selectivity and Tolerance ("Invariance") Both Increase as Visual Information Propagates from Cortical Area V4 to IT. Journal of Neuroscience, 30 (39): 12978-12995, Sept. 2010.
-
(2010)
Journal of Neuroscience
, vol.30
, Issue.39
, pp. 12978-12995
-
-
Rust, N.C.1
DiCarlo, J.J.2
-
26
-
-
84897565124
-
Learning and selecting features jointly with point-wise gated {B} oltzmann machines
-
K. Sohn, G. Zhou, C. Lee, and H. Lee. Learning and selecting features jointly with point-wise gated {B} oltzmann machines. In Proceedings of The 30th International Conference on Machine Learning, pages 217-225, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 217-225
-
-
Sohn, K.1
Zhou, G.2
Lee, C.3
Lee, H.4
-
27
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15 (1): 1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
84964983441
-
-
arXiv. org, Sept
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper with Convolutions. arXiv. org, Sept. 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
30
-
-
84881160857
-
Selective search for object recognition
-
J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. International journal of computer vision, 104 (2): 154-171, 2013.
-
(2013)
International Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.1
Van De Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
31
-
-
84937891876
-
Attentional neural network: Feature selection using cognitive feedback
-
Q. Wang, J. Zhang, S. Song, and Z. Zhang. Attentional neural network: Feature selection using cognitive feedback. In Advances in Neural Information Processing Systems, pages 2033-2041, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2033-2041
-
-
Wang, Q.1
Zhang, J.2
Song, S.3
Zhang, Z.4
-
33
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision-ECCV 2014, pages 818-833. Springer, 2014.
-
(2014)
Computer Vision-ECCV 2014
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
34
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. Computer Vision (ICCV., pages 2018-2025, 2011.
-
(2011)
Computer Vision (ICCV)
, pp. 2018-2025
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
|