-
2
-
-
72449136144
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009. IEEE, pp. 248-255 (2009)
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009. IEEE
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
3
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105 (2012)
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
4
-
-
84906347546
-
-
arXiv preprint arXiv:1312.6229
-
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Lecun, Y.6
-
6
-
-
84962006941
-
-
arXiv preprint arXiv:1412.6806
-
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)
-
(2014)
Striving for Simplicity: The All Convolutional Net
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
7
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9 (2015)
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
8
-
-
84990034818
-
-
arXiv preprint arXiv:1512.03385
-
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
0001295178
-
On the power of small-depth threshold circuits
-
Hastad, J., Goldmann, M.: On the power of small-depth threshold circuits. Comput. Complex. 1(2), 113-129 (1991)
-
(1991)
Comput. Complex
, vol.1
, Issue.2
, pp. 113-129
-
-
Hastad, J.1
Goldmann, M.2
-
11
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157-166 (1994)
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
13
-
-
84943645147
-
-
arXiv preprint arXiv:1409.5185
-
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. arXiv preprint arXiv:1409.5185 (2014)
-
(2014)
Deeply-Supervised Nets
-
-
Lee, C.Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
16
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929-1958 (2014)
-
(2014)
J. Mach. Learn. Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
18
-
-
77949522811
-
Why does unsupervised pre-training help deep learning
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625-660 (2010)
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
20
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Dasgupta, S., Mcallester, D. (eds.), May
-
Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Dasgupta, S., Mcallester, D. (eds.): Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings, vol. 28, pp. 1058-1066, May 2013
-
(2013)
Proceedings of the 30Th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings
, vol.28
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
21
-
-
84892421248
-
-
arXiv preprint arXiv:1302.4389
-
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)
-
(2013)
Maxout Networks
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
22
-
-
84986328536
-
Gradual dropin of layers to train very deep neural networks
-
Smith, L.N., Hand, E.M., Doster, T.: Gradual dropin of layers to train very deep neural networks. In: CVPR (2016)
-
(2016)
CVPR
-
-
Smith, L.N.1
Hand, E.M.2
Doster, T.3
-
26
-
-
84964687855
-
-
arXiv preprint arXiv:1412.6830
-
Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)
-
(2014)
Learning Activation Functions to Improve Deep Neural Networks
-
-
Agostinelli, F.1
Hoffman, M.2
Sadowski, P.3
Baldi, P.4
-
28
-
-
84938920775
-
-
arXiv preprint arXiv:1502.05700
-
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Ali, M., Adams, R.P., et al.: Scalable bayesian optimization using deep neural networks. arXiv preprint arXiv:1502.05700 (2015)
-
(2015)
Scalable Bayesian Optimization Using Deep Neural Networks
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Patwary, M.7
Ali, M.8
Adams, R.P.9
-
29
-
-
84965164720
-
Training very deep networks
-
Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2368-2376 (2015)
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2368-2376
-
-
Srivastava, R.K.1
Greff, K.2
Schmidhuber, J.3
-
30
-
-
84990058786
-
-
arXiv preprint arXiv:1509.08985
-
Lee, C.Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree. arXiv preprint arXiv:1509.08985 (2015)
-
(2015)
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
-
-
Lee, C.Y.1
Gallagher, P.W.2
Tu, Z.3
-
31
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Granada, Spain
-
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, vol. 2011, p. 4 (2011)
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
, pp. 4
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
32
-
-
84888340666
-
Torch7: A matlab-like environment for machine learning
-
Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS Workshop (2011)
-
(2011)
Biglearn, NIPS Workshop
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
33
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 1139-1147 (2013)
-
(2013)
Proceedings of the 30Th International Conference on Machine Learning (ICML-13)
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
35
-
-
84990068011
-
-
arXiv preprint arXiv:1603.05027
-
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)
-
(2016)
Identity Mappings in Deep Residual Networks
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
|