-
2
-
-
71149116544
-
Curriculum learning
-
ACM
-
Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41-48. ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 41-48
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
-
3
-
-
78149302207
-
What does classifying more than 10, 000 image categories tell us?
-
Springer
-
J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10, 000 image categories tell us? In Computer Vision-ECCV 2010, pages 71-84. Springer, 2010.
-
(2010)
Computer Vision-ECCV 2010
, pp. 71-84
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
4
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference On
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
80053634784
-
Incremental learning of concept drift in nonstationary environments
-
R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. Neural Networks, IEEE Transactions on, 22(10):1517-1531, 2011.
-
(2011)
Neural Networks, IEEE Transactions On
, vol.22
, Issue.10
, pp. 1517-1531
-
-
Elwell, R.1
Polikar, R.2
-
6
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
June
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303-338, June 2010.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
7
-
-
0344983284
-
A bayesian approach to unsupervised one-shot learning of object categories
-
IEEE
-
L. Fe-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised one-shot learning of object categories. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1134-1141. IEEE, 2003.
-
(2003)
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference On
, pp. 1134-1141
-
-
Fe-Fei, L.1
Fergus, R.2
Perona, P.3
-
8
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(4):594-611, 2006.
-
(2006)
Pattern Analysis and Machine Intelligence, IEEE Transactions On
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
9
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
10
-
-
84908477926
-
-
arXiv preprint arXiv:1312.6211
-
I. J. Goodfellow, M. Mirza, X. Da, A. Courville, and Y. Bengio. An empirical investigation of catastrophic forgeting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.
-
(2013)
An Empirical Investigation of Catastrophic Forgeting in Gradient-based Neural Networks
-
-
Goodfellow, I.J.1
Mirza, M.2
Da, X.3
Courville, A.4
Bengio, Y.5
-
13
-
-
84913598037
-
-
arXiv preprint arXiv:1312.6204
-
J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. One-shot adaptation of supervised deep convolutional models. arXiv preprint arXiv:1312.6204, 2013.
-
(2013)
One-shot Adaptation of Supervised Deep Convolutional Models
-
-
Hoffman, J.1
Tzeng, E.2
Donahue, J.3
Jia, Y.4
Saenko, K.5
Darrell, T.6
-
14
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, volume 1, page 4, 2012.
-
(2012)
NIPS
, vol.1
, pp. 4
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
84887384986
-
From n to n+ 1: Multiclass transfer incremental learning
-
IEEE
-
I. Kuzborskij, F. Orabona, and B. Caputo. From n to n+ 1: Multiclass transfer incremental learning. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3358-3365. IEEE, 2013.
-
(2013)
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference On
, pp. 3358-3365
-
-
Kuzborskij, I.1
Orabona, F.2
Caputo, B.3
-
16
-
-
70450172710
-
Learning to detect unseen object classes by between-class attribute transfer
-
IEEE
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 951-958. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference On
, pp. 951-958
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
17
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
IEEE
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169-2178. IEEE, 2006.
-
(2006)
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference On, Volume 2
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
19
-
-
78149348137
-
Improving the fisher kernel for large-scale image classification
-
Springer
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, pages 143-156. Springer, 2010.
-
(2010)
ECCV
, pp. 143-156
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
20
-
-
85085787180
-
Mediamill at trecvid 2013: Searching concepts, objects, instances and events in video
-
C. Snoek, K. van de Sande, D. Fontijne, A. Habibian, M. Jain, S. Kordumova, Z. Li, M. Mazloom, S. Pintea, R. Tao, et al. Mediamill at trecvid 2013: Searching concepts, objects, instances and events in video. In NIST TRECVID Workshop, 2013.
-
(2013)
NIST TRECVID Workshop
-
-
Snoek, C.1
Van De Sande, K.2
Fontijne, D.3
Habibian, A.4
Jain, M.5
Kordumova, S.6
Li, Z.7
Mazloom, M.8
Pintea, S.9
Tao, R.10
-
21
-
-
85031124575
-
Is learning the n-th thing any easier than learning the first?
-
S. Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural information processing systems, pages 640-646, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, pp. 640-646
-
-
Thrun, S.1
-
22
-
-
77956005674
-
Safety in numbers: Learning categories from few examples with multi model knowledge transfer
-
IEEE
-
T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few examples with multi model knowledge transfer. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3081-3088. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference On
, pp. 3081-3088
-
-
Tommasi, T.1
Orabona, F.2
Caputo, B.3
-
23
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
IEEE
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3360-3367. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference On
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
24
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1):69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|