메뉴 건너뛰기




Volumn , Issue , 2014, Pages 177-186

Error-driven incremental learning in deep convolutional neural network for large-scale image classification

Author keywords

Deep convolutional neural network; Incremental learning; Large scale image classification

Indexed keywords

CLONING; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; DEEP NEURAL NETWORKS; FORECASTING; IMAGE CLASSIFICATION;

EID: 84913546601     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2647868.2654926     Document Type: Conference Paper
Times cited : (268)

References (24)
  • 3
    • 78149302207 scopus 로고    scopus 로고
    • What does classifying more than 10, 000 image categories tell us?
    • Springer
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10, 000 image categories tell us? In Computer Vision-ECCV 2010, pages 71-84. Springer, 2010.
    • (2010) Computer Vision-ECCV 2010 , pp. 71-84
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 5
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. Neural Networks, IEEE Transactions on, 22(10):1517-1531, 2011.
    • (2011) Neural Networks, IEEE Transactions On , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 9
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 14
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, volume 1, page 4, 2012.
    • (2012) NIPS , vol.1 , pp. 4
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 78149348137 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Springer
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, pages 143-156. Springer, 2010.
    • (2010) ECCV , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 21
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • S. Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural information processing systems, pages 640-646, 1996.
    • (1996) Advances in Neural Information Processing Systems , pp. 640-646
    • Thrun, S.1
  • 24
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.