메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1080-1088

Contextual action recognition with R∗CNN

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84973872492     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.129     Document Type: Conference Paper
Times cited : (414)

References (34)
  • 1
    • 84973907451 scopus 로고    scopus 로고
    • 2
    • http://pascallin. ecs. soton. Ac. uk/challenges/voc/voc2012/, 2012. 2
    • (2012)
  • 2
    • 84911448580 scopus 로고    scopus 로고
    • 2d human pose estimation: New benchmark and state of the art analysis
    • 2, 4
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR, 2014. 2, 4
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 3
    • 0020120019 scopus 로고
    • Scene perception detecting and judging objects undergoing relational violations
    • 3
    • I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene perception detecting and judging objects undergoing relational violations. Cognitive Psychology, 1982. 3
    • (1982) Cognitive Psychology
    • Biederman, I.1    Mezzanotte, R.J.2    Rabinowitz, J.C.3
  • 4
    • 84865029445 scopus 로고    scopus 로고
    • Describing people: Poselet-based attribute classification
    • 2, 7
    • L. Bourdev, S. Maji, and J. Malik. Describing people: Poselet-based attribute classification. In ICCV, 2011. 2, 7
    • (2011) ICCV
    • Bourdev, L.1    Maji, S.2    Malik, J.3
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 2
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 2
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 3
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010. 1, 3
    • (2010) TPAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 10
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 2, 3
    • R. Girshick. Fast R-CNN. In ICCV, 2015. 2, 3
    • (2015) ICCV
    • Girshick, R.1
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 2, 4
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2, 4
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84973883539 scopus 로고    scopus 로고
    • Actions and attributes from wholes and parts
    • 2, 5, 6, 8
    • G. Gkioxari, R. Girshick, and J. Malik. Actions and attributes from wholes and parts. In ICCV, 2015. 2, 5, 6, 8
    • (2015) ICCV
    • Gkioxari, G.1    Girshick, R.2    Malik, J.3
  • 13
    • 84959196122 scopus 로고    scopus 로고
    • Finding action tubes
    • 7
    • G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015. 7
    • (2015) CVPR
    • Gkioxari, G.1    Malik, J.2
  • 14
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 3
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 3
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 84990024921 scopus 로고    scopus 로고
    • Regularized max pooling for image categorization
    • 2, 5, 6
    • M. Hoai. Regularized max pooling for image categorization. In BMVC, 2014. 2, 5, 6
    • (2014) BMVC
    • Hoai, M.1
  • 16
    • 85081633736 scopus 로고    scopus 로고
    • Action recognition from weak alignment of body parts
    • 2
    • M. Hoai, L. Ladicky, and A. Zisserman. Action recognition from weak alignment of body parts. In BMVC, 2014. 2
    • (2014) BMVC
    • Hoai, M.1    Ladicky, L.2    Zisserman, A.3
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 2, 3
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. 2, 3
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 2
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 2
    • (2004) IJCV
    • Lowe, D.1
  • 20
    • 80052880806 scopus 로고    scopus 로고
    • Action recognition from a distributed representation of pose and appearance
    • 2
    • S. Maji, L. Bourdev, and J. Malik. Action recognition from a distributed representation of pose and appearance. In CVPR, 2011. 2
    • (2011) CVPR
    • Maji, S.1    Bourdev, L.2    Malik, J.3
  • 21
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple instance learning
    • 1, 3
    • O. Maron and T. Lozano-Pérez. A framework for multiple instance learning. In NIPS, 1998. 1, 3
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 23
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 2, 5, 6
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 2, 5, 6
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 25
    • 84973871157 scopus 로고    scopus 로고
    • Fine-grained activity recognition with holistic and pose based features
    • 2, 5, 6, 7
    • L. Pishchulin, M. Andriluka, and B. Schiele. Fine-grained activity recognition with holistic and pose based features. In GCPR, 2014. 2, 5, 6, 7
    • (2014) GCPR
    • Pishchulin, L.1    Andriluka, M.2    Schiele, B.3
  • 26
    • 84856142160 scopus 로고    scopus 로고
    • Weakly supervised learning of interactions between humans and objects
    • 2
    • A. Prest, C. Schmid, and V. Ferrari. Weakly supervised learning of interactions between humans and objects. PAMI, 2012. 2
    • (2012) PAMI
    • Prest, A.1    Schmid, C.2    Ferrari, V.3
  • 27
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • 7
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014. 7
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 2, 3, 4, 5, 6
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 2, 3, 4, 5, 6
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 31
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 1, 3
    • P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2005. 1, 3
    • (2005) NIPS
    • Viola, P.1    Platt, J.2    Zhang, C.3
  • 32
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • 2, 6
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 2, 6
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 33
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • 2
    • B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimination for fine-grained image categorization. In CVPR, 2011. 2
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.