메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 5455-5463

Visual saliency based on multiscale deep features

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; FEATURE EXTRACTION; NETWORK ARCHITECTURE; NEURAL NETWORKS; PATTERN RECOGNITION; VISUALIZATION;

EID: 84959188465     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299184     Document Type: Conference Paper
Times cited : (1493)

References (40)
  • 2
    • 34948898079 scopus 로고    scopus 로고
    • Image segmentation by probabilistic bottom-up aggregation and cue integration
    • S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue integration. In CVPR, 2007.
    • (2007) CVPR
    • Alpert, S.1    Galun, M.2    Basri, R.3    Brandt, A.4
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916,2011.
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 36949030812 scopus 로고    scopus 로고
    • Seam carving for content-aware image resizing
    • S. Avidan and A. Shamir. Seam carving for content-aware image resizing. ACM Trans. Graphics, 26(3), 2007.
    • (2007) ACM Trans. Graphics , vol.26 , Issue.3
    • Avidan, S.1    Shamir, A.2
  • 5
    • 77955985702 scopus 로고    scopus 로고
    • Icoseg: Interactive co-segmentation with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR, 2010.
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 6
    • 84870220894 scopus 로고    scopus 로고
    • State-of-the-art in visual attention modeling
    • A. Borji and L. Itti. State-of-the-art in visual attention modeling. TPAMI, 35(1): 185-207,2013.
    • (2013) TPAMI , vol.35 , Issue.1 , pp. 185-207
    • Borji, A.1    Itti, L.2
  • 7
    • 84863014339 scopus 로고    scopus 로고
    • Fusing generic objectness and visual saliency for salient object detection
    • K-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing generic objectness and visual saliency for salient object detection. In ICCV, 2011.
    • (2011) ICCV
    • Chang, K.-Y.1    Liu, T.-L.2    Chen, H.-T.3    Lai, S.-H.4
  • 12
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • 1,2
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI,35(8):1915-1929,2013. 1,2
    • (2013) TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 13
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graphbased image segmentation
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. lJCV, 59(2):167-181, 2004.
    • (2004) LJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 14
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202,1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1,2,3
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1,2,3
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 16
    • 84865331032 scopus 로고    scopus 로고
    • Context-aware saliency detection
    • S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. TPAMI, 34(10):1915-1926, 2012.
    • (2012) TPAMI , vol.34 , Issue.10 , pp. 1915-1926
    • Goferman, S.1    Zelnik-Manor, L.2    Tal, A.3
  • 18
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • 2,6,7
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007. 2,6,7
    • (2007) CVPR
    • Hou, X.1    Zhang, L.2
  • 19
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 20(11): 1254-1259,1998.
    • (1998) TPAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 20
    • 84898830857 scopus 로고    scopus 로고
    • Category-independent object-level saliency detection
    • Y. Jia and M. Han. Category-independent object-level saliency detection. In ICCV, 2013.
    • (2013) ICCV
    • Jia, Y.1    Han, M.2
  • 22
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • 2,4,5,6,7
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In CVPR, 2013. 2,4,5,6,7
    • (2013) CVPR
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 25
    • 84909604910 scopus 로고    scopus 로고
    • Adaptive partial differential equation learning for visual saliency detection
    • R. Liu, J. Cao, Z. Lin, and S. Shan. Adaptive partial differential equation learning for visual saliency detection. In CVPR, 2014.
    • (2014) CVPR
    • Liu, R.1    Cao, J.2    Lin, Z.3    Shan, S.4
  • 27
    • 84887368846 scopus 로고    scopus 로고
    • Saliency aggregation: A datadriven approach
    • L. Mai, Y. Niu, and F. Liu. Saliency aggregation: A datadriven approach. In CVPR, 2013.
    • (2013) CVPR
    • Mai, L.1    Niu, Y.2    Liu, F.3
  • 28
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICC V, 2001.
    • (2001) ICC v
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 29
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012. 6,7
    • (2012) CVPR , pp. 6-7
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 32
    • 5044223783 scopus 로고    scopus 로고
    • Is bottom-up attention useful for object recognition
    • U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom-up attention useful for object recognition? In CVPR, 2004.
    • (2004) CVPR
    • Rutishauser, U.1    Walther, D.2    Koch, C.3    Perona, P.4
  • 33
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012.
    • (2012) CVPR
    • Shen, X.1    Wu, Y.2
  • 34
    • 51949116409 scopus 로고    scopus 로고
    • Summarizing visual data using bidirectional similarity
    • D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual data using bidirectional similarity. In CVPR, 2008.
    • (2008) CVPR
    • Simakov, D.1    Caspi, Y.2    Shechtman, E.3    Irani, M.4
  • 35
    • 84887344857 scopus 로고    scopus 로고
    • Geodesic saliency using background priors
    • 2,6,7
    • Y. Wei, F. Wen, W Zhu, and J. Sun. Geodesic saliency using background priors. In ECCV. 2012. 2,6,7
    • (2012) ECCV
    • Wei, Y.1    Wen, F.2    Zhu, W.3    Sun, J.4
  • 36
    • 84887349346 scopus 로고    scopus 로고
    • Scale: Supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors
    • R. Wu, Y. Yu, and W. Wang. Scale: Supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors. In CVPR, 2013.
    • (2013) CVPR
    • Wu, R.1    Yu, Y.2    Wang, W.3
  • 37
    • 84887322898 scopus 로고    scopus 로고
    • Hierarchical saliency detection
    • 6,7,8
    • Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. In CVPR, 2013. 6,7,8
    • (2013) CVPR
    • Yan, Q.1    Xu, L.2    Shi, J.3    Jia, J.4
  • 38
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • c. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In CVPR, 2013. 6,7
    • (2013) CVPR , pp. 6-7
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.-H.5
  • 39
    • 84887375390 scopus 로고    scopus 로고
    • Unsupervised salience learning for person re-identification
    • R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience learning for person re-identification. In CVPR, 2013.
    • (2013) CVPR
    • Zhao, R.1    Ouyang, W.2    Wang, X.3
  • 40
    • 84911390996 scopus 로고    scopus 로고
    • Saliency optimization from robust background detection
    • 2,5, 6, 7,8
    • W Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust background detection. In CVPR, 2014. 2,5, 6, 7,8
    • (2014) CVPR
    • Zhu, W.1    Liang, S.2    Wei, Y.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.