메뉴 건너뛰기




Volumn 2, Issue January, 2014, Pages 1799-1807

Joint training of a convolutional network and a graphical model for human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; INFORMATION SCIENCE; MARKOV PROCESSES; NETWORK ARCHITECTURE;

EID: 84930634156     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1473)

References (31)
  • 1
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, 2009.
    • (2009) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 2
    • 75149167171 scopus 로고    scopus 로고
    • A study of parts-based object class detection using complete graphs
    • M. Bergtholdt, J. Kappes, S. Schmidt, and C. Schnörr. A study of parts-based object class detection using complete graphs. IJCV, 2010.
    • (2010) IJCV
    • Bergtholdt, M.1    Kappes, J.2    Schmidt, S.3    Schnörr, C.4
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 85102488792 scopus 로고
    • Remap: Recursive estimation and maximization of a posteriori probabilities in connectionist speech recognition
    • H. Bourlard, Y. Konig, and N. Morgan. Remap: recursive estimation and maximization of a posteriori probabilities in connectionist speech recognition. In EUROSPEECH, 1995.
    • (1995) EUROSPEECH
    • Bourlard, H.1    Konig, Y.2    Morgan, N.3
  • 5
    • 70450179964 scopus 로고    scopus 로고
    • Learning sign language by watching TV (using weakly aligned subtitles)
    • P. Buehler, A. Zisserman, and M. Everingham. Learning sign language by watching TV (using weakly aligned subtitles). CVPR, 2009.
    • (2009) CVPR
    • Buehler, P.1    Zisserman, A.2    Everingham, M.3
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84887344431 scopus 로고    scopus 로고
    • Human pose estimation using body parts dependent joint regressors
    • M. Dantone, J. Gall, C. Leistner, and L. Van Gool. Human pose estimation using body parts dependent joint regressors. In CVPR'13.
    • CVPR'13
    • Dantone, M.1    Gall, J.2    Leistner, C.3    Van Gool, L.4
  • 9
    • 84898906904 scopus 로고    scopus 로고
    • Better appearance models for pictorial structures
    • M. Eichner and V. Ferrari. Better appearance models for pictorial structures. In BMVC, 2009.
    • (2009) BMVC
    • Eichner, M.1    Ferrari, V.2
  • 10
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 12
    • 84887375411 scopus 로고    scopus 로고
    • Articulated pose estimation using discriminative armlet classifiers
    • G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative armlet classifiers. In CVPR'13.
    • CVPR'13
    • Gkioxari, G.1    Arbelaez, P.2    Bourdev, L.3    Malik, J.4
  • 13
    • 0344982832 scopus 로고    scopus 로고
    • Inferring 3d structure with a statistical image-based shape model
    • K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring 3d structure with a statistical image-based shape model. In ICCV, 2003.
    • (2003) ICCV
    • Grauman, K.1    Shakhnarovich, G.2    Darrell, T.3
  • 15
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • A. Jain, J. Tompson, M. Andriluka, G. Taylor, and C. Bregler. Learning human pose estimation features with convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3    Taylor, G.4    Bregler, C.5
  • 16
    • 84887397719 scopus 로고    scopus 로고
    • Learning effective human pose estimation from inaccurate annotation
    • S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In CVPR'11.
    • CVPR'11
    • Johnson, S.1    Everingham, M.2
  • 17
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 18
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.1
  • 19
    • 84906509764 scopus 로고    scopus 로고
    • Fast training of convolutional networks through ffts
    • M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks through ffts. In CoRR, 2013.
    • (2013) CoRR
    • Mathieu, M.1    Henaff, M.2    LeCun, Y.3
  • 20
    • 0042376057 scopus 로고    scopus 로고
    • Estimating human body configurations using shape context matching
    • G. Mori and J. Malik. Estimating human body configurations using shape context matching. ECCV, 2002.
    • (2002) ECCV
    • Mori, G.1    Malik, J.2
  • 24
    • 84898795911 scopus 로고    scopus 로고
    • Strong appearance and expressive spatial models for human pose estimation
    • L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In ICCV'13.
    • ICCV'13
    • Pishchulin, L.1    Andriluka, M.2    Gehler, P.3    Schiele, B.4
  • 25
    • 24644504137 scopus 로고    scopus 로고
    • Strike a pose: Tracking people by finding stylized poses
    • D. Ramanan, D. Forsyth, and A. Zisserman. Strike a pose: Tracking people by finding stylized poses. In CVPR, 2005.
    • (2005) CVPR
    • Ramanan, D.1    Forsyth, D.2    Zisserman, A.3
  • 26
    • 80052872903 scopus 로고    scopus 로고
    • Learning message-passing inference machines for structured prediction
    • S. Ross, D. Munoz, M. Hebert, and J.A Bagnell. Learning message-passing inference machines for structured prediction. In CVPR, 2011.
    • (2011) CVPR
    • Ross, S.1    Munoz, D.2    Hebert, M.3    Bagnell, J.A.4
  • 27
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 28
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 29
    • 84907552337 scopus 로고    scopus 로고
    • Real-time continuous pose recovery of human hands using convolutional networks
    • J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time continuous pose recovery of human hands using convolutional networks. In TOG, 2014.
    • (2014) TOG
    • Tompson, J.1    Stein, M.2    LeCun, Y.3    Perlin, K.4
  • 30
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 31
    • 84875885838 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • Yi Yang and Deva Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR'11.
    • CVPR'11
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.