-
2
-
-
14344266781
-
Semi-supervised learning using randomized mincuts
-
Blum, A., Lafferty, J., Rwebangira, M. R., and Reddy, R. (2004). Semi-supervised learning using randomized mincuts. In Proceedings of the International Conference on Machine Learning (ICML).
-
(2004)
Proceedings of the International Conference on Machine Learning (ICML)
-
-
Blum, A.1
Lafferty, J.2
Rwebangira, M.R.3
Reddy, R.4
-
3
-
-
10944265561
-
Helmholtz machines and wake-sleep learning
-
MIT Press, Cambridge, MA, 44(0)
-
Dayan, P. (2000). Helmholtz machines and wake-sleep learning. Handbook of Brain Theory and Neural Network. MIT Press, Cambridge, MA, 44(0).
-
(2000)
Handbook of Brain Theory and Neural Network
-
-
Dayan, P.1
-
5
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. (2010). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12: 2121-2159.
-
(2010)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
8
-
-
33750688264
-
Semi-supervised learning with trees
-
Kemp, C., and Griffiths, T. L., Stromsten, S., and Tenenbaum, J. B. (2003). Semi-supervised learning with trees. In Advances in Neural Information Processing Systems (NIPS).
-
(2003)
Advances in Neural Information Processing Systems (NIPS)
-
-
Kemp, C.1
Griffiths, T.L.2
Stromsten, S.3
Tenenbaum, J.B.4
-
10
-
-
84886992189
-
A variational approach to semi-supervised clustering
-
Li, P., Ying, Y., and Campbell, C. (2009). A variational approach to semi-supervised clustering. In Proceedings of the European Symposium on Artificial Neural Networks (ESANN), pages 11-16.
-
(2009)
Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
, pp. 11-16
-
-
Li, P.1
Ying, Y.2
Campbell, C.3
-
12
-
-
84906249895
-
Graph-based semi-supervised learning for phone and segment classification
-
Liu, Y. and Kirchhoff, K. (2013). Graph-based semi-supervised learning for phone and segment classification. In Proceedings of Interspeech.
-
(2013)
Proceedings of Interspeech
-
-
Liu, Y.1
Kirchhoff, K.2
-
13
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
15
-
-
84907062036
-
Semi-supervised learning using an unsupervised atlas
-
Pitelis, N., Russell, C., and Agapito, L. (2014). Semi-supervised learning using an unsupervised atlas. In Proceddings of the European Conference on Machine Learning (ECML), volume LNCS 8725, pages 565-580.
-
(2014)
Proceddings of the European Conference on Machine Learning (ECML), Volume LNCS 8725
, pp. 565-580
-
-
Pitelis, N.1
Russell, C.2
Agapito, L.3
-
17
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the International Conference on Machine Learning (ICML), volume 32 of JMLR W&CP.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML), Volume 32 of JMLR W&CP
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
18
-
-
85162427692
-
The manifold tangent classifier
-
Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and Muller, X. (2011). The manifold tangent classifier. In Advances in Neural Information Processing Systems (NIPS), pages 2294-2302.
-
(2011)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2294-2302
-
-
Rifai, S.1
Dauphin, Y.2
Vincent, P.3
Bengio, Y.4
Muller, X.5
-
20
-
-
80054895643
-
Semi-supervised learning improves gene expression-based prediction of cancer recurrence
-
Shi, M. and Zhang, B. (2011). Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics, 27(21): 3017-3023.
-
(2011)
Bioinformatics
, vol.27
, Issue.21
, pp. 3017-3023
-
-
Shi, M.1
Zhang, B.2
-
21
-
-
84898928896
-
Learning stochastic inverses
-
Stuhlmüller, A., Taylor, J., and Goodman, N. (2013). Learning stochastic inverses. In Advances in neural information processing systems, pages 3048-3056.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 3048-3056
-
-
Stuhlmüller, A.1
Taylor, J.2
Goodman, N.3
-
23
-
-
84863351869
-
A rate distortion approach for semi-supervised conditional random fields
-
Wang, Y., Haffari, G., Wang, S., and Mori, G. (2009). A rate distortion approach for semi-supervised conditional random fields. In Advances in Neural Information Processing Systems (NIPS), pages 2008-2016.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2008-2016
-
-
Wang, Y.1
Haffari, G.2
Wang, S.3
Mori, G.4
-
24
-
-
84872553130
-
Deep learning via semi-supervised embedding
-
Springer
-
Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639-655. Springer.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 639-655
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
Collobert, R.4
-
25
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin-Madison
-
Zhu, X. (2006). Semi-supervised learning literature survey. Technical report, Computer Science, University of Wisconsin-Madison.
-
(2006)
Technical Report, Computer Science
-
-
Zhu, X.1
-
26
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., Lafferty, J., et al. (2003). Semi-supervised learning using Gaussian fields and harmonic functions. In Proceddings of the International Conference on Machine Learning (ICML), Volume 3, pages 912-919.
-
(2003)
Proceddings of the International Conference on Machine Learning (ICML)
, vol.3
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|