-
1
-
-
84862277874
-
Understanding the difficulty of training deep feed-forward neural networks
-
May
-
Yoshua Bengio and Xavier Glorot. Understanding the difficulty of training deep feed-forward neural networks. In Proceedings of AISTATS 2010, volume 9, pages 249–256, May 2010.
-
(2010)
Proceedings of AISTATS 2010
, vol.9
, pp. 249-256
-
-
Bengio, Y.1
Glorot, X.2
-
2
-
-
34547975052
-
Scaling learning algorithms towards AI
-
L on Bottou, Olivier Chapelle, D. DeCoste, and J. Weston, editors, MIT Press
-
Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In L on Bottou, Olivier Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.
-
(2007)
Large Scale Kernel Machines
-
-
Bengio, Y.1
Yann LeCun2
-
3
-
-
84962018700
-
On the complexity of shallow and deep neural network classifiers
-
Bruges, Belgium, April 23-25, 2014
-
Monica Bianchini and Franco Scarselli. On the complexity of shallow and deep neural network classifiers. In 22th European Symposium on Artificial Neural Networks, ESANN 2014, Bruges, Belgium, April 23-25, 2014, 2014.
-
(2014)
22th European Symposium on Artificial Neural Networks, ESANN 2014
-
-
Bianchini, M.1
Scarselli, F.2
-
5
-
-
85029355144
-
Fast and accurate deep network learning by exponential linear units (elus)
-
abs/1511.07289
-
Djork-Arn Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.
-
(2015)
CoRR
-
-
Clevert, D.-A.1
Unterthiner, T.2
Hochreiter, S.3
-
7
-
-
84897543523
-
Maxout networks
-
Sanjoy Dasgupta and David McAllester, editors
-
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on Machine Learning (ICML’13), pages 1319–1327, 2013.
-
(2013)
Proceedings of The 30th International Conference on Machine Learning (ICML’13)
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
9
-
-
84958589374
-
Deep residual learning for image recognition
-
abs/1512.03385
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
-
(2015)
CoRR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
84946590548
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
abs/1502.01852
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015.
-
(2015)
CoRR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
85017428320
-
Identity mappings in deep residual networks
-
abs/1603.05027
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. CoRR, abs/1603.05027, 2016.
-
(2016)
CoRR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84984824417
-
Deep networks with stochastic depth
-
abs/1603.09382
-
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic depth. CoRR, abs/1603.09382, 2016.
-
(2016)
CoRR
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.Q.5
-
13
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
David Blei and Francis Bach, editors, JMLR Workshop and Conference Proceedings
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In David Blei and Francis Bach, editors, Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 448–456. JMLR Workshop and Conference Proceedings, 2015.
-
(2015)
Proceedings of The 32nd International Conference on Machine Learning (ICML-15)
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
16
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Zoubin Ghahramani, editor, ACM
-
Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In Zoubin Ghahramani, editor, Proceedings of the 24th International Conference on Machine Learning (ICML’07), pages 473–480. ACM, 2007.
-
(2007)
Proceedings of The 24th International Conference on Machine Learning (ICML’07)
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
18
-
-
84908678178
-
Network in network
-
abs/1312.4400
-
Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400, 2013.
-
(2013)
CoRR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
19
-
-
84930634427
-
On the number of linear regions of deep neural networks
-
December 8-13 2014, Montreal, Quebec, Canada
-
Guido F. Montúfar, Razvan Pascanu, KyungHyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2924–2932, 2014.
-
(2014)
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
, pp. 2924-2932
-
-
Montúfar, G.F.1
Pascanu, R.2
KyungHyun Cho3
Bengio, Y.4
-
20
-
-
84893409634
-
Deep learning made easier by linear transformations in perceptrons
-
Neil D. Lawrence and Mark A. Girolami, editors
-
Tapani Raiko, Harri Valpola, and Yann Lecun. Deep learning made easier by linear transformations in perceptrons. In Neil D. Lawrence and Mark A. Girolami, editors, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS-12), volume 22, pages 924–932, 2012.
-
(2012)
Proceedings of The Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS-12)
, vol.22
, pp. 924-932
-
-
Raiko, T.1
Valpola, H.2
Lecun, Y.3
-
21
-
-
84964544562
-
-
Technical Report arXiv
-
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. FitNets: Hints for thin deep nets. Technical Report Arxiv report 1412.6550, arXiv, 2014.
-
(2014)
FitNets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
22
-
-
0001033889
-
Learning complex, extended sequences using the principle of history compression
-
J. Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2):234–242, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 234-242
-
-
Schmidhuber, J.1
-
23
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
24
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.
-
(2014)
JMLR
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
26
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sanjoy Dasgupta and David Mcallester, editors, JMLR Workshop and Conference Proceedings, May
-
Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of initialization and momentum in deep learning. In Sanjoy Dasgupta and David Mcallester, editors, Proceedings of the 30th International Conference on Machine Learning (ICML-13), volume 28, pages 1139–1147. JMLR Workshop and Conference Proceedings, May 2013.
-
(2013)
Proceedings of The 30th International Conference on Machine Learning (ICML-13)
, vol.28
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
27
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
|