메뉴 건너뛰기




Volumn , Issue , 2016, Pages

All you need is a good init

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATION FUNCTIONS; COMPLEX SCHEMES; INNER PRODUCT; ORTHONORMAL; SIMPLE METHOD; STATE OF THE ART; TEST ACCURACY; WEIGHT INITIALIZATION;

EID: 85083951894     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (189)

References (29)
  • 1
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • Schölkopf, B., Platt, J.C., and Hoffman, T. (eds), MIT Press
    • Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, and Larochelle, Hugo. Greedy layer-wise training of deep networks. In Schölkopf, B., Platt, J.C., and Hoffman, T. (eds.), Advances in Neural Information Processing Systems 19, pp. 153–160. MIT Press, 2007. URL http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 5
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Gordon, Geoffrey J. and Dunson, David B. (eds), Journal of Machine Learning Research Workshop and Conference Proceedings
    • Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural networks. In Gordon, Geoffrey J. and Dunson, David B. (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), volume 15, pp. 315–323. Journal of Machine Learning Research - Workshop and Conference Proceedings, 2011. URL http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf.
    • (2011) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11) , vol.15 , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 7
    • 84959913792 scopus 로고    scopus 로고
    • arXiv e-prints, December
    • Graham, Ben. Fractional Max-Pooling. ArXiv e-prints, December 2014a. URL http://arxiv.org/abs/1412.6071.
    • (2014) Fractional Max-Pooling
    • Graham, B.1
  • 11
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In International Conference on Computer Vision (ICCV), 2015. URL http://arxiv.org/abs/1502.01852.
    • (2015) International Conference on Computer Vision (ICCV)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 13
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Blei, David and Bach, Francis (eds), JMLR Workshop and Conference Proceedings
    • Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Blei, David and Bach, Francis (eds.), Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 448–456. JMLR Workshop and Conference Proceedings, 2015. URL http://jmlr.org/proceedings/papers/v37/ioffe15.pdf.
    • (2015) Proceedings of the 32nd International Conference on Machine Learning (ICML-15) , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q. (eds), Curran Associates, Inc
    • Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q. (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks. pdf.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi: 10.1109/5.726791.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. Proc. ICML, 30, 2013.
    • (2013) Proc. ICML , vol.30
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 22
    • 85083950783 scopus 로고    scopus 로고
    • Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
    • Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In Proceedings of ICLR, 2014. URL http://arxiv.org/abs/1312.6120.
    • (2014) Proceedings of ICLR
    • Saxe, A.M.1    McClelland, J.L.2    Ganguli, S.3
  • 24
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale visual recognition
    • May
    • Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale visual recognition. In Proceedings of ICLR, May 2015. URL http://arxiv.org/abs/1409.1556.
    • (2015) Proceedings of ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 29
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5: RMSProp – Divide the gradient by a running average of its recent magnitude
    • Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5: RMSProp – Divide the gradient by a running average of its recent magnitude. In COURSERA: Neural Networks for Machine Learning. 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.