-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Schölkopf, B., Platt, J.C., and Hoffman, T. (eds), MIT Press
-
Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, and Larochelle, Hugo. Greedy layer-wise training of deep networks. In Schölkopf, B., Platt, J.C., and Hoffman, T. (eds.), Advances in Neural Information Processing Systems 19, pp. 153–160. MIT Press, 2007. URL http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
5
-
-
84862294866
-
Deep sparse rectifier neural networks
-
Gordon, Geoffrey J. and Dunson, David B. (eds), Journal of Machine Learning Research Workshop and Conference Proceedings
-
Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural networks. In Gordon, Geoffrey J. and Dunson, David B. (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), volume 15, pp. 315–323. Journal of Machine Learning Research - Workshop and Conference Proceedings, 2011. URL http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf.
-
(2011)
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11)
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
6
-
-
84897543523
-
Maxout networks
-
Atlanta, GA, USA, 16-21 June 2013
-
Goodfellow, Ian J., Warde-Farley, David, Mirza, Mehdi, Courville, Aaron C., and Bengio, Yoshua. Maxout networks. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 1319–1327, 2013. URL http://jmlr.org/proceedings/papers/v28/goodfellow13.html.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning, ICML 2013
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
7
-
-
84959913792
-
-
arXiv e-prints, December
-
Graham, Ben. Fractional Max-Pooling. ArXiv e-prints, December 2014a. URL http://arxiv.org/abs/1412.6071.
-
(2014)
Fractional Max-Pooling
-
-
Graham, B.1
-
10
-
-
84958589374
-
-
arXiv e-prints, December
-
He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition. ArXiv e-prints, December 2015. URL http://arxiv.org/abs/1512/03385.
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In International Conference on Computer Vision (ICCV), 2015. URL http://arxiv.org/abs/1502.01852.
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Blei, David and Bach, Francis (eds), JMLR Workshop and Conference Proceedings
-
Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Blei, David and Bach, Francis (eds.), Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 448–456. JMLR Workshop and Conference Proceedings, 2015. URL http://jmlr.org/proceedings/papers/v37/ioffe15.pdf.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
14
-
-
84913555165
-
-
arXiv preprint
-
Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q. (eds), Curran Associates, Inc
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q. (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks. pdf.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi: 10.1109/5.726791.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
85009928594
-
Deeply-supervised nets
-
San Diego, California, USA, May 9-12, 2015
-
Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick W., Zhang, Zhengyou, and Tu, Zhuowen. Deeply-supervised nets. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015, 2015. URL http://jmlr.org/proceedings/papers/v38/lee15a.html.
-
(2015)
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.W.3
Zhang, Z.4
Tu, Z.5
-
19
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. Proc. ICML, 30, 2013.
-
(2013)
Proc. ICML
, vol.30
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
20
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
May
-
Romero, Adriana, Ballas, Nicolas, Kahou, Samira Ebrahimi, Chassang, Antoine, Gatta, Carlo, and Bengio, Yoshua. Fitnets: Hints for thin deep nets. In Proceedings of ICLR, May 2015. URL http://arxiv.org/abs/1412.6550.
-
(2015)
Proceedings of ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
21
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
April
-
Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., and Fei-Fei, Li. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), pp. 1–42, April 2015. doi: 10.1007/s11263-015-0816-y.
-
(2015)
International Journal of Computer Vision (IJCV)
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
22
-
-
85083950783
-
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
-
Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In Proceedings of ICLR, 2014. URL http://arxiv.org/abs/1312.6120.
-
(2014)
Proceedings of ICLR
-
-
Saxe, A.M.1
McClelland, J.L.2
Ganguli, S.3
-
23
-
-
84994202024
-
-
arXiv e-prints, September
-
Sercu, T., Puhrsch, C., Kingsbury, B., and LeCun, Y. Very Deep Multilingual Convolutional Neural Networks for LVCSR. ArXiv e-prints, September 2015. URL http://arxiv.org/abs/1509/08967.
-
(2015)
Very Deep Multilingual Convolutional Neural Networks for LVCSR
-
-
Sercu, T.1
Puhrsch, C.2
Kingsbury, B.3
LeCun, Y.4
-
24
-
-
84925410541
-
Very deep convolutional networks for large-scale visual recognition
-
May
-
Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale visual recognition. In Proceedings of ICLR, May 2015. URL http://arxiv.org/abs/1409.1556.
-
(2015)
Proceedings of ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
25
-
-
84962006941
-
Striving for simplicity: The all convolutional net
-
December
-
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for Simplicity: The All Convolutional Net. In Proceedings of ICLR Workshop, December 2014. URL http://arxiv.org/abs/1412.6806.
-
(2014)
Proceedings of ICLR Workshop
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
28
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. Going deeper with convolutions. In CVPR 2015, 2015. URL http://arxiv.org/abs/1409.4842.
-
(2015)
CVPR 2015
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
29
-
-
84893343292
-
Lecture 6.5: RMSProp – Divide the gradient by a running average of its recent magnitude
-
Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5: RMSProp – Divide the gradient by a running average of its recent magnitude. In COURSERA: Neural Networks for Machine Learning. 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
-
-
Tieleman, T.1
Hinton, G.2
|